J. Mater. Sci. Technol. ›› 2021, Vol. 77: 28-37.DOI: 10.1016/j.jmst.2020.11.024
• Research Article • Previous Articles Next Articles
Lin Xuea,1, Liliang Shaoa,1, Qiang Luoa, Lina Hub,*(), Yunbo Zhaob, Kuibo Yinc, Mingyun Zhuc, Litao Sunc, Baolong Shena,d,**(
), Xiufang Bianb
Received:
2020-06-27
Revised:
2020-09-29
Accepted:
2020-10-06
Published:
2021-06-30
Online:
2020-11-11
Contact:
Lina Hu,Baolong Shen
About author:
** School of Materials Science and Engineering, Jiangsu Key Laboratory of Advanced Metallic Materials, Southeast University, Nanjing 211189, China. blshen@seu.edu.cn (B. Shen).1 These authors contributed equally to this work.
Lin Xue, Liliang Shao, Qiang Luo, Lina Hu, Yunbo Zhao, Kuibo Yin, Mingyun Zhu, Litao Sun, Baolong Shen, Xiufang Bian. Liquid dynamics and glass formation of Gd55Co20Al25 metallic glass with minor Si addition[J]. J. Mater. Sci. Technol., 2021, 77: 28-37.
Fig. 1. (a) XRD patterns of the as-cast Si0 rod with a diameter of 2 mm and Si0.5 rods with diameters from 3 to 7 mm. (b) DSC traces of the Si0 glassy rod with a diameter of 2 mm and the Si0.5 glassy rods with diameters of 2 and 7 mm, the inset picture shows the photo of the Si0.5 BMG with a diameter of 7 mm. The melting and solidification curves of Si0 and Si0.5 alloys at the rate of 10 K/min are exhibited in the inset, marked with melting temperature, Tm, liquid temperature, Tl and solidus temperature, Ts. (c) The HRTEM image and SAED pattern for the Si0.5 glassy rod with a diameter of 7 mm. (d) Magnetic entropy changes as a function of temperature for the Si0 and Si0.5 ribbon samples under maximum magnetic fields of 2 and 5 T, the inset shows the derivative of the temperature-dependent magnetization (dM/dT) curves measured under an applied field of 0.02 T.
Fig. 2. Crystallization fractions versus annealing times for the Si0 and Si0.5 BMG samples at temperatures of 620 and 623 K. The inset shows the Avrami plots.
Fig. 3. Changes of viscosities of superheated liquids as a function of temperature for the Si0 and Si0.5 melts. Red lines are Arrhenius fitting curves. ?, II, and III represent high-temperature liquid, transition region, and low-temperature liquid, respectively.
Fig. 4. SEM image and EDS spectrums at the vicinity of the interface between the Si0.5 alloy and crucible after the measurement of high-temperature viscosity. The inset shows the sectional view of the ingot after viscosity measurement.
MGs | MH | ML | ΔF | m' | m | f | Tfs (K) | logη∞ (Pa s) | C1 | C2 | W1 | W2 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Si0 | 2.34 | 9.88 | 0.76 | 64 | 39 | 1.63 | 960 | -2.45 | 5077.29 | 653.75 | 0.0323 | 0.000322 |
Si0.5 | 0.81 | 0.60 | 0.35 | 123 | 32 | 3.84 | 893 | -2.25 | 13945.91 | 720.93 | 1051.97 | 0.000386 |
Table 1. The data of fragilities of the high-temperature liquid (MH) and low-temperature liquid (ML) in superheated liquid, transition strength of LLT (ΔF), fragility factors of melting liquids (m') and supercooled liquids (m), transition magnitude (f=m'/m), FST temperature (Tfs), and optimized viscosity parameters using the extended MYEGA model for the Si0 and Si0.5 liquids.
MGs | MH | ML | ΔF | m' | m | f | Tfs (K) | logη∞ (Pa s) | C1 | C2 | W1 | W2 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Si0 | 2.34 | 9.88 | 0.76 | 64 | 39 | 1.63 | 960 | -2.45 | 5077.29 | 653.75 | 0.0323 | 0.000322 |
Si0.5 | 0.81 | 0.60 | 0.35 | 123 | 32 | 3.84 | 893 | -2.25 | 13945.91 | 720.93 | 1051.97 | 0.000386 |
Fig. 5. (a) Viscosity data and fitted curves for the Si0 and Si0.5 liquids. The data of strong SiO2, fragile OTP (orthoterphenyl) and the typical FST liquid water are also shown for comparison [17,45]. (b) Viscosity data and fitted curves versus Tg/T for the Si0 and Si0.5 liquids, the inset shows the Angell plot for the Si0.5 liquid.
Fig. 6. The heat flow versus temperature for the as-cast Si0 (a) and Si0.5 (b) BMG samples after annealing at various temperatures for 60 min. The insets show the Tonset versus annealing temperature Ta. (c) The excess enthalpies versus Ta for the Si0 and Si0.5 BMG samples.
Fig. 7. (a) Normalized loss modulus E" curves at 1 Hz for the Si0 and Si0.5 BMG samples, the inset shows the angles (∠?) exhibiting the extent of the curve line shifted from the peak of theβ-relaxation for both samples. Loss modulus E" curves for Si0 (b) and Si0.5 (c) BMGs obtained during isothermal DMA temperature scans with various measurement frequencies from 1 to 10 Hz. The insets of (b) and (c) show Arrhenius plots to obtain Eβ.
Fig. 9. The segmentation of the selected squares in Fig. 8(a) and (b) for auto-correlation analysis of the Si0 (a) and Si0.5 (b) BMG samples, respectively. The dimension of each segment or cell is 1.995 nm × 1.995 nm.
[1] |
W.H. Wang, Prog. Mater. Sci. 52 (2007) 540-596.
DOI URL |
[2] |
B. Zhang, R.J. Wang, D.Q. Zhao, M.X. Pan, W.H. Wang, Phys. Rev. B 73 (2006), 092201.
DOI URL |
[3] |
P.B. Chen, T. Liu, F.Y. Kong, A.D. Wang, C.Y. Yu, G. Wang, C.T. Chang, X.M. Wang, J. Mater. Sci. Technol. 34 (2018) 793-798.
DOI URL |
[4] | Q. Li, B.L. Shen, IEEE Trans. Magn. 57 (2011) 2490-2493. |
[5] |
Z.P. Lu, C.T. Liu, W.D. Porter, Appl. Phys. Lett. 83 (2003) 2581.
DOI URL |
[6] |
D.H. Xu, G. Duan, W.L. Johnson, Phys. Rev. Lett. 92 (2004), 245504.
DOI URL |
[7] |
S.G. Hao, C.Z. Wang, M.J. Kramer, K.M. Ho, J. Appl. Phys. 107 (2010), 053511.
DOI URL |
[8] |
S. Mukherjee, J. Schroers, Z. Zhou, W.L. Johnson, W.K. Rhim, Acta Mater. 52 (2004) 3689-3695.
DOI URL |
[9] |
Z.P. Lu, C.T. Liu, Phys. Rev. Lett. 91 (2003), 115505.
URL PMID |
[10] |
H. Ma, L.L. Shi, J. Xu, Y. Li, E. Ma, Appl. Phys. Lett. 87 (2005), 181915.
DOI URL |
[11] |
Y.Q. Cheng, E. Ma, Prog. Mater. Sci. 56 (2011) 379-473.
DOI URL |
[12] |
L.L. Shao, L. Xue, Q. Luo, Q.Q. Wang, B.L. Shen, Materialia 7 (2019), 100419.
DOI URL |
[13] |
W. Xu, M.T. Sandor, Y. Yu, H.B. Ke, H.P. Zhang, M.Z. Li, W.H. Wang, L. Liu, Y. Wu, Nat. Commun. 6 (2015) 7696.
DOI URL |
[14] |
C. Zhou, L.N. Hu, Q.J. Sun, J. Qin, X.F. Bian, Y.Z. Yue, Appl. Phys. Lett. 103 (2013), 171904.
DOI URL |
[15] |
S. Wei, F. Yang, J. Bednarcik, I. Kaban, O. Shuleshova, A. Meyer, R. Busch, Nat. Commun. 4 (2013) 2083.
DOI URL |
[16] |
K.N. Lad, N. Jakse, A. Pasturel, J. Chem. Phys. 136 (2012), 104509.
DOI URL PMID |
[17] |
C.Z. Zhang, L.N. Hu, Y.Z. Yue, J.C. Mauro, J. Chem. Phys. 133 (2010), 014508.
DOI URL |
[18] |
C. Zhou, L.N. Hu, Q.J. Sun, H. Zheng, C.Z. Zhang, Y.Z. Yue, J. Chem. Phys. 142 (2015), 064508.
DOI URL |
[19] |
X. Zhao, C.Z. Wang, H.J. Zheng, Z.A. Tian, L.N. Hu, Phys. Chem. Chem. Phys. 19 (2017) 15962-15972.
DOI URL PMID |
[20] |
X.N. Yang, C. Zhou, Q.J. Sun, L.N. Hu, J.C. Mauro, C.Z. Wang, Y.Z. Yue, J. Phys. Chem. B 118 (2014) 10258-10265.
DOI URL |
[21] |
H.J. Zheng, L.N. Hu, X. Zhao, C.Z. Wang, Q.J. Sun, T. Wang, X.D. Hui, Y.Z. Yue, X.F. Bian, J. Non-Cryst. Solids 471 (2017) 120-127.
DOI URL |
[22] | R. Roscoe, Proc. Phys. Soc. London 72 (1958) 576-584. |
[23] | J.C. Mauro, Y.Z. Yue, A.J. Ellison, P.K. Gupta, D.C. Allan, Proc. Natl. Acad. Sci. U.S.A. 106 (2009) 19780-19784. |
[24] |
C.A. Angell, Science 267 (1995) 1924-1935.
DOI URL |
[25] |
R. Brüning, K. Samwer, Phys. Rev. B 46 (1992) 11318.
DOI URL |
[26] |
R. Böhmer, K.L. Ngai, C.A. Angell, D.J. Plazek, J. Chem. Phys. 99 (1993) 4201.
DOI URL |
[27] |
M. Yang, X.J. Liu, Y. Wu, H. Wang, X.Z. Wang, Z.P. Lu, Mater. Res. Lett. 6 (2018) 495-500.
DOI URL |
[28] |
V. Franco, J.S. Blázquez, J.J. Ipus, J.Y. Law, L.M. Moreno-Ramírez, A. Conde, Prog. Mater. Sci. 93 (2018) 112-232.
DOI URL |
[29] |
K.A. Gschneidner, V.K. Pecharsky, Annu. Rev. Mater. Sci. 30 (2000) 387-429.
DOI URL |
[30] |
W.M. Yang, H.S. Liu, C.C. Dun, J. Li, Y. Zhao, B.L. Shen, J. Non-Cryst. Solids 361 (2013) 82-85.
DOI URL |
[31] |
J. Malek, Thermochim. Acta 267 (1995) 61-73.
DOI URL |
[32] | J.W. Christian, The Theory of Transformations in Metals and Alloys, third ed., Pergamon, New York,2002. |
[33] |
T. Pradell, D. Crespo, N. Clavaguera, M.T. Clavaguera-Mora, J. Phys. Condens. Matter 10 (1998) 3833-3844.
DOI URL |
[34] |
M.T. Clavaguera-Mora, N. Clavaguera, D. Crespo, T. Pradell, Prog. Mater. Sci. 47 (2002) 559-619.
DOI URL |
[35] |
X.F. Bian, B.A. Sun, L.N. Hu, Y.B. Jia, Phys. Lett. A 335 (2005) 61-67.
DOI URL |
[36] | S. Nishimura, S. Matsumoto, K. Terashima, J. Cryst. Growth 237 (2002) 1667-1670. |
[37] | S.N. Yannopoulos, G.P. Johari, Nature 442 (2006) E7-E8. |
[38] |
W.H. Wang, Prog. Mater. Sci. 57 (2012) 487-656.
DOI URL |
[39] |
K. Ito, C.T. Moynihan, C.A. Angell, Nature 398 (1999) 492-495.
DOI URL |
[40] |
M. Hemmati, C.T. Moynihan, C.A. Angell, J. Chem. Phys. 115 (2001) 6663-6671.
DOI URL |
[41] |
I. Saika-Voivod, P.H. Poole, F. Sciortino, Nature 412 (2001) 514-517.
URL PMID |
[42] | H. Tanaka, J. Phys. Condens. Matter 15 (2003) L703-L711. |
[43] |
J. Hedstrom, J. Swenson, R. Bergman, H. Jansson, S. Kittaka, Eur. Phys. J.: Special Topics 141 (2007) 53-56.
DOI URL |
[44] |
S.H. Chong, S.H. Chen, F. Mallamace, J. Phys. Condens. Matter 21 (2009), 504101.
DOI URL PMID |
[45] |
K.L. Ngai, S. Capaccioli, Phys. Rev. E 69 (2004), 031501.
DOI URL |
[46] |
Q.J. Sun, C. Zhou, Y.Z. Yue, L.N. Hu, J. Phys. Chem. Lett. 5 (2014) 1170-1174.
DOI URL |
[47] |
S. Lan, Y. Ren, X.Y. Wei, B. Wang, E.P. Gilbert, T. Shibayama, S. Watanabe, M. Ohnuma, X.L. Wang, Nat. Commun. 8 (2017) 14679.
DOI URL PMID |
[48] |
J.C. Qiao, Q. Wang, J.M. Pelletier, H. Kato, R. Casalini, D. Crespo, E. Pineda, Y. Yao, Y. Yang, Prog. Mater. Sci. 104 (2019) 250-329.
DOI URL |
[49] |
J.C. Qiao, J.M. Pelletier, J. Mater. Sci. Technol. 30 (2014) 523-545.
DOI URL |
[50] |
M. Frey, R. Busch, W. Possart, I. Gallino, Acta Mater. 155 (2018) 117-127.
DOI URL |
[51] |
H.B. Yu, W.H. Wang, H.Y. Bai, Y. Wu, M.W. Chen, Phys. Rev. B 81 (2010), 220201.
DOI URL |
[52] |
J.C. Qiao, Y.H. Chen, R. Casalini, J.M. Pelletier, Y. Yao, J. Mater. Sci. Technol. 35 (2019) 982-986.
DOI URL |
[53] |
H.B. Yu, W.H. Wang, K. Samwer, Mater. Today 16 (2013) 183-191.
DOI URL |
[54] |
P. Luo, Z. Lu, Z.G. Zhu, Y.Z. Li, H.Y. Bai, W.H. Wang, Appl. Phys. Lett. 106 (2015), 031907.
DOI URL |
[55] |
H.B. Yu, Z. Wang, W.H. Wang, H.Y. Bai, J. Non-Cryst. Solids 358 (2012) 869-871.
DOI URL |
[56] |
L.N. Hu, C. Zhou, C.Z. Zhang, Y.Z. Yue, J. Chem. Phys. 138 (2013), 174508.
DOI URL |
[57] |
A. Takeuchi, A. Inoue, Mater. Trans. 46 (2005) 2817-2829.
DOI URL |
[58] |
X.K. Xi, L.L. Li, B. Zhang, W.H. Wang, Y. Wu, Phys. Rev. Lett. 99 (2007), 095501.
DOI URL |
[59] |
M.Z. Li, C.Z. Wang, S.G. Hao, M.J. Kramer, K.M. Ho, Phys. Rev. B 80 (2009), 184201.
DOI URL |
[60] |
T. Ichitsubo, E. Matsubara, T. Yamamoto, H.S. Chen, N. Nishiyama, J. Saida, K. Anazawa, Phys. Rev. Lett. 95 (2005), 245501.
URL PMID |
[61] |
A.S. Nouri, Y. Liu, J.J. Lewandowski, Metall. Mater. Trans. A 40 (2009) 1314-1323.
DOI URL |
[62] |
Q. Wang, C.T. Liu, Y. Yang, J.B. Liu, Y.D. Dong, J. Lu, Sci. Rep. 4 (2014) 4648.
DOI URL |
[63] |
G.Y. Fan, J.M. Cowley, Ultramicroscopy 17 (1985) 345-355.
DOI URL |
[64] |
X.J. Liu, G.L. Chen, H.Y. Hou, X. Hui, K.F. Yao, Z.P. Lu, C.T. Liu, Acta Mater. 56 (2008) 2760-2769.
DOI URL |
[65] |
D. Turnbull, Contemp. Phys. 10 (1969) 473-488.
DOI URL |
[1] | S.J. Wu, Z.Q. Liu, R.T. Qu, Z.F. Zhang. Designing metallic glasses with optimal combinations of glass-forming ability and mechanical properties [J]. J. Mater. Sci. Technol., 2021, 67(0): 254-264. |
[2] | Kyubae Lee, Yazhou Chen, Xiaomeng Li, Naoki Kawazoe, Yingnan Yang, Guoping Chen. Influence of viscosity on chondrogenic differentiation of mesenchymal stem cells during 3D culture in viscous gelatin solution-embedded hydrogels [J]. J. Mater. Sci. Technol., 2021, 63(0): 1-8. |
[3] | Xiaodan Chi, Yong Hu. Role of competing interactions on dynamic relaxation and exchange bias in spin-glass/ferromagnet bilayer [J]. J. Mater. Sci. Technol., 2020, 51(0): 63-69. |
[4] | Przemysł Kot; aw, BaczmańAndrzej ski, GadalińElż ska; bieta, WrońSebastian ski, WrońMarcin ski, WróMirosł bel; aw, Gizo Bokuchava, ScheffzüChristian k, Krzysztof Wierzbanowski. Evolution of phase stresses in Al/SiCp composite during thermal cycling and compression test studied using diffraction and self-consistent models [J]. J. Mater. Sci. Technol., 2020, 36(0): 176-189. |
[5] | Ruishan Xie, Qingyu Shi, Gaoqiang Chen. Improved distortion prediction in additive manufacturing using an experimental-based stress relaxation model [J]. J. Mater. Sci. Technol., 2020, 59(0): 83-91. |
[6] | Jian-kun Ren, Yun Chen, Yan-fei Cao, Ming-yue Sun, Bin Xu, Dian-zhong Li. Modeling motion and growth of multiple dendrites during solidification based on vector-valued phase field and two-phase flow models [J]. J. Mater. Sci. Technol., 2020, 58(0): 171-187. |
[7] | Qing Du, Xiongjun Liu, Yihuan Cao, Yuren Wen, Dongdong Xiao, Yuan Wu, Hui Wang, Zhaoping Lu. Enhanced crystallization resistance and thermal stability via suppressing the metastable superlattice phase in Ni-(Pd)-P metallic glasses [J]. J. Mater. Sci. Technol., 2020, 42(0): 203-211. |
[8] | Yuling Liu, Cong Zhang, Changfa Du, Yong Du, Zhoushun Zheng, Shuhong Liu, Lei Huang, Shiyi Wen, Youliang Jin, Huaqing Zhang, Fan Zhang, George Kaptay. CALTPP: A general program to calculate thermophysical properties [J]. J. Mater. Sci. Technol., 2020, 42(0): 229-240. |
[9] | J.C. Qiao, Y.H. Chen, R. Casalini, J.M. Pelletier, Y. Yao. Main α relaxation and slow β relaxation processes in a La30Ce30Al15Co25 metallic glass [J]. J. Mater. Sci. Technol., 2019, 35(6): 982-986. |
[10] | Changjiu Chen, Kaikin Wong, Rithin P. Krishnan, Lei Zhifeng, Dehong Yu, Zhaoping Lu, Suresh M. Chathoth. Highly collective atomic transport mechanism in high-entropy glass-forming metallic liquids [J]. J. Mater. Sci. Technol., 2019, 35(1): 44-47. |
[11] | Ying Gong, Wenying Zhou, Zijun Wang, Li Xu, Yujia Kou, Huiwu Cai, Xiangrong Liu, Qingguo Chen, Zhi-Min Dang. Towards suppressing dielectric loss of GO/PVDF nanocomposites with TA-Fe coordination complexes as an interface layer [J]. J. Mater. Sci. Technol., 2018, 34(12): 2415-2423. |
[12] | Blum W., Eisenlohr P.. Deformation Strength of Nanocrystalline Thin Films [J]. J. Mater. Sci. Technol., 2017, 33(7): 718-722. |
[13] | W. Zhou, W.P. Weng, J.X. Hou. Glass-forming Ability and Corrosion Resistance of Zr——Cu——Al——Co Bulk Metallic Glass [J]. J. Mater. Sci. Technol., 2016, 32(4): 349-354. |
[14] | Guangcai Ma, Zhengwang Zhu, Zheng Wang, Haifeng Zhang. Deformation Behavior of the Zr53.5Cu26.5Ni5Al12Ag3 Bulk Metallic Glass Over a Wide Range of Strain Rate and Temperatures [J]. J. Mater. Sci. Technol., 2015, 31(9): 941-945. |
[15] | Minjie Shi, Zengqian Liu, Tao Zhang. Effects of Metalloid B Addition on the Glass Formation, Magnetic and Mechanical Properties of FePCB Bulk Metallic Glasses [J]. J. Mater. Sci. Technol., 2015, 31(5): 493-497. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||