J. Mater. Sci. Technol. ›› 2021, Vol. 77: 19-27.DOI: 10.1016/j.jmst.2020.08.046
• Research Article • Previous Articles Next Articles
Xin Wanga,1, Jiaqian Zhua,1, Xiang Yua,b, Xionghui Fua,*(), Yi Zhua,*(
), Yuanming Zhanga,*(
)
Received:
2020-05-27
Revised:
2020-06-30
Accepted:
2020-07-08
Published:
2021-06-30
Online:
2020-09-08
Contact:
Xionghui Fu,Yi Zhu,Yuanming Zhang
About author:
tzhangym@jnu.edu.cn (Y. Zhang).1 These authors contributed equally to this work.
Xin Wang, Jiaqian Zhu, Xiang Yu, Xionghui Fu, Yi Zhu, Yuanming Zhang. Enhanced removal of organic pollutant by separable and recyclable rGH-PANI/BiOI photocatalyst via the synergism of adsorption and photocatalytic degradation under visible light[J]. J. Mater. Sci. Technol., 2021, 77: 19-27.
Fig. 6. (a) Photocatalytic performances for BiOI, PANI/BiOI (PB), rGH-BiOI (GB) and rGH-PANI/BiOI (GPB) (λ > 420 nm) in static system; (b) the corresponding rate constantsk.
Fig. 9. The adsorption and photocatalytic behaviors in dynamic system. (a) Adsorption-photocatalytic behaviors of RhB by rGH-PANI/BiOI-70 % with different flow rates; (b) Adsorption behaviors of RhB by BiOI, PANI/BiOI-8 %, rGH-BiOI-70 % and rGH-PANI/BiOI-70 % with 0.4 mL/min flow rate; (c) Adsorption and adsorption-photocatalytic behaviors of RhB by rGH-PANI/BiOI-70 % with 0.4 mL/min flow rate; (d) Adsorption-photocatalytic behaviors of RhB by BiOI, PANI/BiOI-8 %, rGH-BiOI-70 % and rGH-PANI/BiOI-70 % with 0.4 mL/min flow rate.
Fig. 10. (a) Photocurrent responses of BiOI, PANI/BiOI, rGH-BiOI and rGH-PANI/BiOI; (b) Magnified view of their transient photocurrent responses of BiOI and PANI/BiOI; (c) Electrochemical impedance spectroscopy of different samples with the frequency from 100 kHz to 0.01 Hz (inset is the corresponding magnified view); (d) photoluminescence spectra of different samples.
[1] | Z.G. Geng, Y. Lin, X.X. Yu, Q.H. Shen, L. Ma, Z.Y. Li, N. Pan, X.P. Wang, J. Mater. Chem. 22 (2012) 3527-3535. |
[2] |
J.C. Fan, Z.X. Shi, M. Lian, H. Li, J. Yin, J. Mater. Chem. A. 1 (2013) 7433-7443.
DOI URL |
[3] |
I.E. Mejia. Carpio, J.D. Mangadlao, H.N. Nguyen, R.C. Advincula, D.F. Rodrigues, Carbon 77 (2014) 289-301.
DOI URL |
[4] |
Y. Ren, H.A. Abbood, F.B. He, H. Peng, K.X. Huang, Chem. Eng. J. 226 (2013) 300-311.
DOI URL |
[5] |
Z. Chen, X.M. Li, Q.X. Xu, Z. Tao, F.B. Yao, X.D. Huang, Y. Wu, D.B. Wang, P.H. Jiang, Q. Yang, Chem. Eng. J. 390 (2020), 124454.
DOI URL |
[6] |
S.J. Deng, H.J. Xu, X.S. Jiang, J. Yin, Macromolecules 46 (2013) 2399-2406.
DOI URL |
[7] |
D. Wu, H.Y. Liu, J. Chen, W.X. Liu, G. Histand, T.T. Wang, J. Colloid Interface Sci. 577 (2020) 441-449.
DOI URL |
[8] |
J.N. Tiwari, K. Mahesh, N.H. Le, K.C. Kemp, R. Timilsina, R.N. Tiwari, K.S. Kim, Carbon 56 (2013) 173-182.
DOI URL |
[9] |
J.S. Hu, P.F. Zhang, J.F. Cui, W.J. An, L. Liu, Y.H. Liang, Q.B. Yang, H.J. Yang, W.Q. Cui, J. Ind. Eng. Chem. 84 (2020) 305-314.
DOI URL |
[10] |
X.K. Zeng, D.T. McCarthy, A. Deletic, X.W. Zhang, Adv. Funct. Mater. 25 (2015) 4344-4351.
DOI URL |
[11] |
Y.O. Ibrahim, M.A. Gondal, A. Alaswad, R.A. Moqbel, M. Hassan, E. Cevik, T.F. Qahtan, M.A. Dastageer, A. Bozkurt, Ceram. Int. 46 (2020) 444-451.
DOI URL |
[12] |
Y.Q. Chen, L.B. Chen, H. Bai, L. Li, J. Mater. Chem. A. 1 (2013) 1992-2001.
DOI URL |
[13] |
H. Gao, Y. Sun, J. Zhou, R. Xu, H. Duan, ACS Appl. Mater. Interfaces 5 (2013) 425-432.
DOI URL |
[14] |
X.G. Meng, L.Q. Liu, S.X. Ouyang, H. Xu, D.F. Wang, N.Q. Zhao, J.H. Ye, Adv. Mater. 28 (2016) 6781-6803.
DOI URL |
[15] | H.J. Chen, Y.L. Yang, M. Hong, J.G. Chen, G.Q. Suo, X.J. Hou, L. Feng, Z.G. Chen, Sust. Mater. Technol. 21 (2019), e00105. |
[16] |
Y.L. Yang, H.J. Chen, X.X. Zou, X.L. Shi, W.D. Liu, L. Feng, G.Q. Suo, X.J. Hou, X.H. Ye, L. Zhang, C.H. Sun, H.S. Li, C.Q. Wang, Z.G. Chen, ACS Appl. Mater. Interfaces 12 (2020) 24845-24854.
DOI URL |
[17] |
M. Yan, Y.Q. Hua, F.F. Zhu, W. Gu, J.H. Jiang, H.Q. Shen, W.D. Shi, Appl. Catal. B-Environ. 202 (2017) 518-527.
DOI URL |
[18] |
H.M. Zhang, J. He, C.Y. Zhai, M.S. Zhu, Chin. Chem. Lett. 30 (2019) 2338-2342.
DOI URL |
[19] |
G.H. Dong, L.P. Yang, F. Wang, L. Zang, C.Y. Wang, ACS Catal. 6 (2016) 6511-6519.
DOI URL |
[20] |
J. Xu, Z.P. Wang, Y.F. Zhu, J. Mater. Sci. Technol. 49 (2020) 133-143.
DOI URL |
[21] | S.C. Wang, J.H. Yun, B. Luo, T. Butburee, P. Peerakiatkhajohn, S. Thaweesak, M. Xiao, L.Z. Wang, J. Mater. Sci. Technol. 33 (2017) 1-22. |
[22] |
M. Wu, X. He, B.H. Jing, T. Wang, C.Y. Wang, Y.L. Qin, Z.M. Ao, S.B. Wang, T.C. An, J. Hazard. Mater. 384 (2020), 121323.
DOI URL |
[23] |
C.Y. Nie, Z.M. Ao, X.G. Duan, C.Y. Wang, S.B. Wang, T.C. An, Chemosphere 206 (2018) 432-438.
DOI URL |
[24] |
C.Y. Nie, Z.H. Dai, H. Meng, X.G. Duan, Y.L. Qin, Y.B. Zhou, Z.M. Ao, S.B. Wang, T.C. An, Water Res. 166 (2019), 115043.
DOI URL |
[25] |
R. Saravanan, E. Sacari, F. Gracia, M.M. Khan, E. Mosquera, V.K. Gupta, J. Mol. Liq. 221 (2016) 1029-1033.
DOI URL |
[26] |
L. Liu, L. Ding, Y.G. Liu, W.J. An, S.G. Lin, Y.H. Liang, W.Q. Cui, Appl. Catal. B-Environ. 201 (2017) 92-104.
DOI URL |
[27] | R. Hao, X. Xiao, X. Zuo, J. Nan, W. Zhang, J. Hazard. Mater.209-210 (2012) 137-145. |
[28] |
J. Luo, S.S. Jiang, Y. Wu, M.L. Chen, X.Y. Liu, J. Polym. Sci. Part A Polym. Chem. 50 (2012) 4888-4894.
DOI URL |
[29] |
C. Liu, M.T. Yue, L. Liu, Y.L. Rui, W.Q. Cui, RSC Adv. 8 (2018) 22402-22410.
DOI URL |
[30] |
J. Di, J.X. Xia, S. Yin, H. Xu, L. Xu, Y.G. Xu, M.Q. He, H.M. Li, J. Mater. Chem. A. 2 (2014) 5340-5351.
DOI URL |
[31] |
S. Chatterjee, R.K. Layek, A.K. Nandi, Carbon 52 (2013) 509-519.
DOI URL |
[32] |
W.Q. Cui, J. He, H. Wang, J.S. Hu, L. Liu, Y.H. Liang, Appl. Catal. B-Environ. 232 (2018) 232-245.
DOI URL |
[33] |
J.J. Yang, D.M. Chen, Y. Zhu, Y.M. Zhang, Y.M. Zhu, Appl. Catal. B-Environ. 205 (2017) 228-237.
DOI URL |
[34] |
D.M. Chen, J.J. Yang, Y. Zhu, Y.M. Zhang, Y.F. Zhu, Appl. Catal. B-Environ. 233 (2018) 202-212.
DOI URL |
[35] |
X.G. Duan, H.Q. Sun, Z.M. Ao, L. Zhou, G.X. Wang, S.B. Wang, Carbon 107 (2016) 371-378.
DOI URL |
[36] |
J. Yang, H. Miao, Y.X. Wei, W.L. Li, Y.F. Zhu, Appl. Catal. B-Environ. 240 (2019) 225-233.
DOI URL |
[37] |
L.Q. Ye, H. Wang, X.L. Jin, Y.R. Su, D.Q. Wang, H.Q. Xie, X.D. Liu, X.X. Liu, Sol. Energy Mater. Sol. Cells. 144 (2016) 732-739.
DOI URL |
[38] |
D.D. Shao, G.S. Hou, J.X. Li, T. Wen, X.M. Ren, X.K. Wang, Chem. Eng. J. 255 (2014) 604-612.
DOI URL |
[39] |
Y.M. Zheng, Y.Y. Liu, X.L. Guo, Z.T. Chen, W.J. Zhang, Y.X. Wang, X. Tang, Y. Zhang, Y.H. Zhao, J. Mater. Sci. Technol. 41 (2020) 117-126.
DOI URL |
[40] |
L. Ge, C.C. Han, J. Liu, J. Mater. Chem. 22 (2012) 11843-11850.
DOI URL |
[41] |
Y. Zhang, D. Wang, X.T. Zhang, Y. Chen, L. Kong, P. Chen, Y.L. Wang, C.H. Wang, L.L. Wang, Y.C. Liu, Electrochim. Acta 195 (2016) 51-58.
DOI URL |
[42] |
T. Yan, M. Sun, H.Y. Liu, T.T. Wu, X.J. Liu, Q. Yan, W.G. Xu, B. Du, J. Alloys. Compd. 634 (2015) 223-231.
DOI URL |
[43] |
Y.F. Liu, W.Q. Yao, D. Liu, R.L. Zong, M. Zhang, X.G. Ma, Y.F. Zhu, Appl. Catal. B-Environ. 163 (2015) 547-553.
DOI URL |
[44] |
Q.Z. Wang, J. Hui, J.J. Li, Y.X. Cai, S.Q. Yin, F.P. Wang, B.T. Su, Appl. Surf. Sci. 283 (2013) 577-583.
DOI URL |
[1] | S. Srinivasa Rao, B.V. Appa Rao, S. Roopas Kiran, B. Sreedhar. Lactobionic Acid as a New Synergist in Combination with Phosphonate–Zn(II) System for Corrosion Inhibition of Carbon Steel [J]. J. Mater. Sci. Technol., 2014, 30(1): 77-89. |
[2] | Hong Yu,Yugui Zheng,Zhiming Yao. Cavitation Erosion Corrosion Behaviour of Manganese-nickel-aluminum Bronze in Comparison with Manganese-brass [J]. J Mater Sci Technol, 2009, 25(06): 758-766. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||