J. Mater. Sci. Technol. ›› 2022, Vol. 127: 153-163.DOI: 10.1016/j.jmst.2022.04.005
• Research Article • Previous Articles Next Articles
Zirui Jiaa,b,c,1,*(), Mingyue Konga,1, Bowen Yua, Yingzhuo Maa, Jiaying Pana, Guanglei Wua,*(
)
Received:
2022-03-04
Revised:
2022-03-30
Accepted:
2022-04-02
Published:
2022-11-10
Online:
2022-11-10
Contact:
Zirui Jia,Guanglei Wu
About author:
wuguanglei@qdu.edu.cn (G. Wu)Zirui Jia, Mingyue Kong, Bowen Yu, Yingzhuo Ma, Jiaying Pan, Guanglei Wu. Tunable Co/ZnO/C@MWCNTs based on carbon nanotube-coated MOF with excellent microwave absorption properties[J]. J. Mater. Sci. Technol., 2022, 127: 153-163.
Fig. 5. SEM images of (a) MWCNTs, (b) ZnCo-MOF, (c) MOF@M-25, (d) MOF@M-50, (e) MOF@M-75, (f) CZC, (g) CZC@M-25, (h) CZC@M-50 (i) CZC@M-75, and the element mapping of CZC@M-50 ((h1-h5)).
Fig. 7. Electromagnetic parameters of MWCNTs, CZC, CZC@M: (a) real part of permittivity, (b) imaginary part of permittivity, (c) real part of permeability, and (d) imaginary part of permeability, (e) dielectric loss tangent, and (f) magnetic loss tangent.
Fig. 8. Frequency dependence of RL values at different thicknesses for (a, a1, a2) MWCNTs, (b, b1, b2) CZC, (c, c1, c2) CZC@M-25, (d, d1, d2) CZC@M-50 and (e, e1, e2) CZC@M-75.
Fig. 9. (a) Typical Cole-Cole model of CZC@M-50; (b) attenuation constant of MWCNTs, CZC, CZC@M-25, CZC@M-50, CZC@M-75; (c) dependence of λ/4 matching thickness vs RL peak vs |Zin/Z0| plots of CZC@M-50.
Absorbing agent | RLmin (dB) | Thickness (mm) | Efficient bandwidth (RL <−10 dB) (GHz) | Ref. |
---|---|---|---|---|
CZC@M | −41.75 | 2.4. | 4.72 | This work |
Co/ZnO/RGO | −52.2 | 3.5 | 5.6 | [ |
C/Co@CNT | −56.8 | 3.8 | 4.8 | [ |
CNT/Co/C fiber | −14.4 | 2.0 | 8.02 | [ |
MWCNT/ZnO | −31.45 | 2.0 | —— | [ |
Fe/CNT | −25.3 | 2.9 | 6.1 | [ |
3D CoNi/N-GCT | −34.1 | 5.0 | 2.6 | [ |
CNT/ZnO | −55.42 | 3.0 | 1.87 | [ |
Table 1. Electromagnetic wave absorption performances of some system.
Absorbing agent | RLmin (dB) | Thickness (mm) | Efficient bandwidth (RL <−10 dB) (GHz) | Ref. |
---|---|---|---|---|
CZC@M | −41.75 | 2.4. | 4.72 | This work |
Co/ZnO/RGO | −52.2 | 3.5 | 5.6 | [ |
C/Co@CNT | −56.8 | 3.8 | 4.8 | [ |
CNT/Co/C fiber | −14.4 | 2.0 | 8.02 | [ |
MWCNT/ZnO | −31.45 | 2.0 | —— | [ |
Fe/CNT | −25.3 | 2.9 | 6.1 | [ |
3D CoNi/N-GCT | −34.1 | 5.0 | 2.6 | [ |
CNT/ZnO | −55.42 | 3.0 | 1.87 | [ |
[1] |
J.Q. Wang, J.Q. Ren, Q. Li, Y.F. Liu, Q.Y. Zhang, B.L. Zhang, Carbon 184 (2021) 195-206.
DOI URL |
[2] |
Y.L. Lian, B.H. Han, D.W. Liu, Y.H. Wang, H.H. Zhao, P. Xu, X.J. Han, Y.C. Du, Nano Micro Lett. 12 (2020) 153.
DOI URL |
[3] | Z.L. Ma, X.L. Xiang, L. Shao, Y.L. Zhang, J.W. Gu, Angew. Chem. Int. Ed. 61 (15) (2022) e202200705. |
[4] |
F. Wu, L.Y. Wan, T. Wang, P. Liu, Q.Y. Zhang, B.L. Zhang, J. Mater. Sci. Technol. 117 (2022) 36-48.
DOI URL |
[5] |
Z.C. Lou, C.L. Yuan, Y. Zhang, Y.J. Li, J.B. Cai, L.T. Yang, W.K. Wang, H. Han, J. Zou, J. Alloy. Compd. 775 (2019) 800-809.
DOI URL |
[6] |
J.K. Liu, Z.R. Jia, W.H. Zhou, X.H. Liu, C.H. Zhang, B.H. Xu, G.L. Wu, Chem. Eng. J. 429 (2021) 132253.
DOI URL |
[7] |
Z. Gao, Z. Ma, D. Lan, Z. Zhao, L. Zhang, H. Wu, Y. Hou, Adv. Funct. Mater. 32 (2022) 2112294.
DOI URL |
[8] | D. Lan, M. Qin, R.S. Yang, S. Chen, H.J. Wu, Y.C. Fan, Q.H. Fu, F.L. Zhang, J. Col-loid Interface Sci. 533 (2019) 481-491. |
[9] |
H.L. Lv, Z.H. Yang, B. Liu, G.L. Wu, Z.C. Lou, B. Fei, R.B. Wu, Nat. Commun. 12 (2021) 834.
DOI URL |
[10] |
Z.D. Wang, T. Zhang, J.K. Wang, G.Q. Yang, M.L. Li, G.L. Wu, Nanomaterials 12 (2022) 446.
DOI URL |
[11] |
H.Q. Zhao, Y. Cheng, H.L. Lv, G.B. Ji, Y.W. Du, Carbon 142 (2019) 245-253.
DOI URL |
[12] |
K.R. Yang, W.J. Chen, Y.S. Zhao, L.J. Ding, B. Du, S. Zhang, W. Yang, Compos. Sci. Technol. 221 (2022) 109178.
DOI URL |
[13] |
S. Gao, S.H. Yang, H.Y. Wang, G.S. Wang, P.G. Yin, Carbon 162 (2020) 438-444.
DOI URL |
[14] |
E.Q. Yang, X.S. Qi, R. Xie, Z.C. Bai, Y. Jiang, S.J. Qin, W. Zhong, Y.W. Du, Appl. Surf. Sci. 441 (2018) 780-790.
DOI URL |
[15] |
H.H. Zhao, X.Z. Xu, D.G. Fan, P. Xu, F.Y. Wang, L.R. Cui, X.J. Han, Y.C. Du, J. Mater. Chem. A 9 (2021) 22489-22500.
DOI URL |
[16] |
L.Q. Yue, B. Zhong, L. Xia, T. Zhang, Y.L. Yu, X.X. Huang, J. Colloid Interface Sci. 582 (2021) 177-186.
DOI URL |
[17] |
G.S. Ma, L. Xia, H. Yang, X.Y. Wang, T. Zhang, X.X. Huang, L. Xiong, C.L. Qin, G.W. Wen, Chem. Eng. J. 418 (2021) 129429.
DOI URL |
[18] |
D.W. Liu, Y.C. Du, P. Xu, F.Y. Wang, Y.H. Wang, L.R. Cui, H.H. Zhao, X.J. Han, J. Mater. Chem. A 9 (2021) 5086-5096.
DOI URL |
[19] |
M. Rostami, M. Jafarpour, M.H.M. Ara, J. Alloy. Compd. 872 (2021) 159656.
DOI URL |
[20] |
H.H. Zhao, F.Y. Wang, L.R. Cui, X.Z. Xu, X.J. Han, Y.N. Du, Nano Micro Lett. 13 (2021) 208.
DOI URL |
[21] |
K. Yang, Y.H. Cui, L.Y. Wan, Q.Y. Zhang, B.L. Zhang, Carbon 190 (2022) 366-375.
DOI URL |
[22] |
S.H. Wang, Y.C. Xu, R.R. Fu, H.H. Zhu, Q.Z. Jiao, T.Y. Feng, C.H. Feng, D.X. Shi, H.S. Li, Y. Zhao, Nano Micro Lett. 11 (2019) 76.
DOI URL |
[23] |
L.D. Xiao, H.J. Qi, K.Q. Qu, C. Shi, Y. Cheng, Z. Sun, B.N. Yuan, Z.H. Huang, D. Pan, Z.H. Guo, Adv. Compos. Hybrid Mater. 4 (2021) 306-316.
DOI URL |
[24] |
W. Xue, G. Yang, S. Bi, J.Y. Zhang, Z.L. Hou, Carbon 173 (2021) 521-527.
DOI URL |
[25] |
R.W. Shu, Y. Wu, W.J. Li, J.B. Zhang, Y. Liu, J.J. Shi, M.D. Zheng, Compos. Sci. Technol. 196 (2020) 108240.
DOI URL |
[26] | T.Y. Yan, J. Wang, Q.L. Wu, S.Q. Huo, H.J. Duan, J. Mater. Sci. Mater.Electron. 30 (2019) 12012-12022. |
[27] | Q. Liao, M. He, Y.M. Zhou, S.X. Nie, Y.J. Wang, S.C. Hu, H.Y. Yang, H.F. Li, Y. Tong, ACS Appl. Mater.Interfaces 10 (2018) 29136-29144. |
[28] |
Y.Z. Chen, C.M. Wang, Z.Y. Wu, Y.J. Xiong, Q. Xu, S.H. Yu, H.L. Jiang, Adv. Mater. 27 (2015) 5010-5016.
DOI URL |
[29] |
Q. Liao, M. He, Y.M. Zhou, S.X. Nie, Y.J. Wang, B.B. Wang, X.M. Yang, X.H. Bu, R.L. Wang, Langmuir 34 (2018) 15854-15863.
DOI URL |
[30] |
Y.Q. Wang, H.G. Wang, J.H. Ye, L.Y. Shi, X. Feng, Chem. Eng. J. 383 (2020) 123096.
DOI URL |
[31] |
B.W. Deng, Z. Xiang, J. Xiong, Z.C. Liu, L.Z. Yu, W. Lu, Nano Micro Lett. 12 (2020) 55.
DOI URL |
[32] |
L. Qiao, C. Wang, X.S. Zhao, ACS Appl. Energy Mater. 4 (2021) 7012-7019.
DOI URL |
[33] |
L.J. Yang, X.D. Zhou, Z.R. Jia, H.L. Lv, Y.T. Zhu, J.C. Liu, Z.H. Yang, Carbon 167 (2020) 843-851.
DOI URL |
[34] |
Y.L. Zhang, K.P. Ruan, X.T. Shi, H. Qiu, Y. Pan, Y. Yan, J.W. Gu, Carbon 175 (2021) 271-280.
DOI URL |
[35] |
X.Y. Liu, L.Z. Wu, T.T. Liu, L. Zhang, Appl. Catal. B Environ. 281 (2021) 119513.
DOI URL |
[36] | Z. Yu, Y. Bai, S.M. Zhang, Y.X. Liu, N.Q. Zhang, G.H. Wang, J.H. Wei, Q.B. Wu, K.N. Sun, Met. Org. ACS Appl. Mater. Interfaces 10 (2018) 6245-6252. |
[37] |
K. Wang, Z.J. Lu, Y.Z. Li, S.Q. Wang, Y.L. Cao, ChemSusChem 13 (2020) 5539-5548.
DOI URL |
[38] |
J. Yan, Y. Huang, X.P. Han, X.G. Gao, P.B. Liu, Compos. B Eng. 163 (2019) 67-76.
DOI URL |
[39] |
X.Y. Xiao, W.J. Zhu, Z. Tan, W. Tian, Y. Guo, H. Wang, J.N. Fu, X. Jian, Compos. B Eng. 152 (2018) 316-323.
DOI URL |
[40] | A. Wang, Y. Hu, H. Wang, Y. Cheng, T. Thomas, R. Ma, J. Wang, Mater. Today Phys. 17 (2021) 100353. |
[41] |
W. Feng, Y.M. Wang, J.C. Chen, B.Q. Li, L.X. Guo, J.H. Ouyang, D.C. Jia, Y. Zhou, J. Mater. Chem. C 6 (2018) 10-18.
DOI URL |
[42] |
X.K. Fu, B. Yang, W.Q. Chen, Z.B. Li, H.L. Yan, X. Zhao, L. Zuo, J. Mater. Sci. Technol. 76 (2021) 166-173.
DOI URL |
[43] |
H.L. Lv, Z.H. Yang, H.B. Xu, L.Y. Wang, R.B. Wu, Adv. Funct. Mater. 30 (2020) 1907251.
DOI URL |
[44] |
H.X. Zhang, Z.R. Jia, B.B. Wang, X.M. Wu, T. Sun, X.H. Liu, L. Bi, G.L. Wu, Chem. Eng. J. 421 (2021) 129960.
DOI URL |
[45] |
X.R. Gao, Z.R. Jia, B.B. Wang, X.M. Wu, T. Sun, X.H. Liu, Q.G. Chi, G.L. Wu, Chem. Eng. J. 419 (2021) 130019.
DOI URL |
[46] |
S. Chen, Y. Zheng, B. Zhang, Y.Y. Feng, J.X. Zhu, J.S. Xu, C. Zhang, W. Feng, T.X. Liu, ACS Appl. Mater. Interfaces 11 (2019) 1384-1393.
DOI URL |
[47] |
X.F. Zhou, Z.R. Jia, A.L. Feng, X.X. Wang, J.J. Liu, M. Zhang, H.J. Cao, G.L. Wu, Carbon 152 (2019) 827-836.
DOI URL |
[48] |
L. Wang, X.F. Yu, M.Q. Huang, W.B. You, Q.W. Zeng, J. Zhang, X.H. Liu, M. Wang, R.C. Che, Carbon 172 (2021) 516-528.
DOI URL |
[49] |
J. Guo, Z.R. Chen, X.J. Xu, X. Li, H. Liu, S.H. Xi, X.H. Liu, Q. Wu, P. Zhang, P. Zhang, B.B. Xu, J.F. Zhu, Z.H. Guo, Adv. Compos. Hybrid Mater. (2022) doi: 10.1007/s42114-022-00417-2
DOI |
[50] |
B.W. Dong, C. Zhang, G.X. Guo, X.Q. Zhang, Y.C. Wang, L.L. Huang, H. Ma, Q. Cheng, Nanophotonics 11 (2022) 2075-2083.
DOI URL |
[51] |
N.N. Wu, D.M. Xu, Z. Wang, F.L. Wang, J.R. Liu, W. Liu, Q. Shao, H. Liu, Q. Gao, Z.H. Guo, Carbon 145 (2019) 433-444.
DOI URL |
[52] |
T.Q. Hou, Z.R. Jia, A.L. Feng, Z.H. Zhou, X.H. Liu, H.L. Lv, G.L. Wu, J. Mater. Sci. Technol. 68 (2021) 61-69.
DOI URL |
[53] |
F. Pan, L.Z. Yu, Z. Xiang, Z.C. Liu, B.W. Deng, E.B. Cui, Z. Shi, X. Li, W. Lu, Carbon 172 (2021) 506-515.
DOI URL |
[54] | F. Zhang, Z.R. Jia, Z. Wang, C.H. Zhang, B.B. Wang, B.H. Xu, X.H. Liu, G.L. Wu, Mater. Today Phys. 20 (2021) 100475. |
[55] |
X.T. Yang, S.G. Fan, Y. Li, Y.Q. Guo, Y.G. Li, K.P. Ruan, S.M. Zhang, J.L. Zhang, J. Kong, J.W. Gu, Compos. Part A Appl. Sci. 128 (2020) 105670.
DOI URL |
[56] |
Y.X. Han, K.P. Ruan, J.W. Gu, Nano Res. 15 (2022) 4747-4755.
DOI URL |
[57] |
T.T. Zheng, Z.R. Jia, Q.Q. Zhan, M.B. Ling, Y.D. Su, B.B. Wang, C.H. Zhang, G.L. Wu, Carbon 186 (2022) 262-272.
DOI URL |
[58] | P. Song, Z.L. Ma, H. Qiu, Y.F. Ru, J.W. Gu, Nano Micro Lett. 14 (2022) 51. |
[59] |
Y. Li, F.B. Meng, Y. Mei, H.G. Wang, Y.F. Guo, Y. Wang, F.X. Peng, F. Huang, Z.W. Zhou, Chem. Eng. J. 391 (2020) 123512.
DOI URL |
[60] |
T.B. Ma, H. Ma, K.P. Ruan, X.T. Shi, H. Qiu, S.Y. Gao, J.W. Gu, Chin. J. Polym. Sci. 40 (2022) 248-255.
DOI URL |
[61] |
Y. Liu, Z.R. Jia, Q.Q. Zhan, Y.H. Dong, Q.M. Xu, G.L. Wu, Nano Res. 15 (2022) 5590-5600.
DOI URL |
[62] |
Y.L. Zhang, K.P. Ruan, J.W. Gu, Small 17 (2021) 2101951.
DOI URL |
[63] |
H.Q. Zhao, Y. Cheng, Z. Zhang, J.W. Yu, J. Zheng, M. Zhou, L. Zhou, B.S. Zhang, G.B. Ji, Compos. Part B Eng. 196 (2020) 108119.
DOI URL |
[64] |
L. Wang, Z.L. Ma, Y.L. Zhang, L.X. Chen, D.P. Cao, J.W. Gu, SusMat 1 (2021) 413-431.
DOI URL |
[65] | J.W. Wang, Z.R. Jia, X.H. Liu, J.L. Dou, B.H. Xu, B.B. Wang, G.L. Wu, Nano Micro Lett. 13 (2021) 175. |
[66] |
Z.H. Zhao, K.C. Kou, L.M. Zhang, H.J. Wu, J. Colloid Interface Sci. 579 (2020) 733-740.
DOI URL |
[67] |
Z. Gao, Z. Jia, K. Wang, X. Liu, L. Bi, G. Wu, Chem. Eng. J. 402 (2020) 125951.
DOI URL |
[68] |
X.L. Cao, Z.R. Jia, D.Q. Hu, G.L. Wu, Adv. Compos. Hybrid Mater. (2022) January 18, doi: 10.1007/s42114-021-00415-w
DOI |
[69] |
Z. Gao, D. Lan, L. Zhang, H. Wu, Adv. Funct. Mater. 31 (2021) 2106677.
DOI URL |
[70] |
S.J. Zhang, B. Cheng, Z.G. Gao, D. Lan, Z.W. Zhao, F.C. Wei, Q.S. Zhu, X.P. Lu, G.L. Wu, J. Alloy. Compd. 893 (2022) 162343.
DOI URL |
[71] |
N.N. Wu, B.B. Zhao, J.Y. Liu, Y.L. Li, Y.B. Chen, L. Chen, M. Wang, Z.H. Guo, Adv. Compos. Hybrid Mater. 4 (2021) 707-715.
DOI URL |
[72] |
X.F. Zhou, Z.R. Jia, A.L. Feng, K.K. Wang, X.H. Liu, L. Chen, H.J. Cao, G.L. Wu, Compos. Commun. 21 (2020) 100404.
DOI URL |
[73] |
J. Wang, B. Wang, Z. Wang, L. Chen, C. Gao, B. Xu, Z. Jia, G. Wu, J. Colloid Interfaces Sci. 586 (2021) 479-490.
DOI URL |
[74] |
M.L. Dong, M.Y. Peng, W. Wei, H.J. Xu, C.T. Liu, C.Y. Shen, J. Mater. Chem. C 9 (2021) 2178-2189.
DOI URL |
[75] |
M.L. Yang, Y. Yuan, Y. Li, X.X. Sun, S.S. Wang, L. Liang, Y.H. Ning, J.J. Li, W.L. Yin, R.C. Che, Y.B. Li, Carbon 161 (2020) 517-527.
DOI URL |
[76] |
A. Subagio, M.A. Kholil, W. Ristiawan, P. Priyono, Mater. Res. Express 7 (2020) 105009.
DOI URL |
[77] |
Y. Liu, J. Lai, J.F. Shi, New Carbon Mater. 35 (2020) 428-435.
DOI URL |
[78] |
X.C. Zhang, X. Zhang, H.R. Yuan, K.Y. Li, Q.Y. Ouyang, C.L. Zhu, S. Zhang, Y.J. Chen, Chem. Eng. J. 383 (2020) 123208.
DOI URL |
[79] |
H. Zhang, H.F. Pang, Y.P. Duan, W.P. Zhang, T.M. Wang, X.F. Zhang, J. Mater. Sci. Mater. Electron. 32 (2021) 12208-12222.
DOI URL |
[1] | Bin Li, Fenglong Wang, Kejun Wang, Jing Qiao, Dongmei Xu, Yunfei Yang, Xue Zhang, Longfei Lyu, Wei Liu, Jiurong Liu. Metal sulfides based composites as promising efficient microwave absorption materials: A review [J]. J. Mater. Sci. Technol., 2022, 104(0): 244-268. |
[2] | Jin-Bo Cheng, Hai-Bo Zhao, Ai-Ning Zhang, Yan-Qin Wang, Yu-Zhong Wang. Porous carbon/Fe composites from waste fabric for high-efficiency electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 126(0): 266-274. |
[3] | Jianping Yang, Linwen Jiang, Zhonghao Liu, Zhuo Tang, Anhua Wu. Multifunctional interstitial-carbon-doped FeCoNiCu high entropy alloys with excellent electromagnetic-wave absorption performance [J]. J. Mater. Sci. Technol., 2022, 113(0): 61-70. |
[4] | Zhuguang Nie, Yang Feng, Qing Zhu, YingXia Li, ping Luo, Lan Ma, Jie Su, Xingman Hu, Rumin Wang, Shuhua Qi. Layered-structure N-doped expanded-graphite/boron nitride composites towards high performance of microwave absorption [J]. J. Mater. Sci. Technol., 2022, 113(0): 71-81. |
[5] | Wei Luo, Yi Liu, Chuangye Wang, Dan Zhao, Xiaoyan Yuan, Jianfeng Zhu, Lei Wang, Shouwu Guo. Sacrificial template synthesis of (V0.8Ti0.1Cr0.1)2AlC and carbon fiber@(V0.8Ti0.1Cr0.1)2AlC microrods for efficient microwave absorption [J]. J. Mater. Sci. Technol., 2022, 111(0): 236-244. |
[6] | Yue-Yi Wang, , Wen-Jin Sun, Kun Dai, Ding-Xiang Yan, Zhong-Ming Li. Highly enhanced microwave absorption for carbon nanotube/barium ferrite composite with ultra-low carbon nanotube loading [J]. J. Mater. Sci. Technol., 2022, 102(0): 115-122. |
[7] | Yawei Zhang, Shuangshuang Li, Xinwei Tang, Wei Fan, Qianqian Lan, Le Li, Piming Ma, Weifu Dong, Zicheng Wang, Tianxi Liu. Ultralight and ordered lamellar polyimide-based graphene foams with efficient broadband electromagnetic absorption [J]. J. Mater. Sci. Technol., 2022, 102(0): 97-104. |
[8] | Yameng Jiao, Qiang Song, Xuemin Yin, Liyuan Han, Wei Li, Hejun Li. Grow defect-rich bamboo-like carbon nanotubes on carbon black for enhanced microwave absorption properties in X band [J]. J. Mater. Sci. Technol., 2022, 119(0): 200-208. |
[9] | Xuejiao Zhou, Junwu Wen, Zhenni Wang, Xiaohua Ma, Hongjing Wu. Broadband high-performance microwave absorption of the single-layer Ti3C2Tx Mxene [J]. J. Mater. Sci. Technol., 2022, 115(0): 148-155. |
[10] | Jijun Wang, Songlin Yu, Qingqing Wu, Yan Li, Fangyuan Li, Xiao Zhou, Yuhua Chen, Bingzhen Li, Panbo Liu. Heterogeneous junctions of magnetic Ni core@binary dielectric shells toward high-efficiency microwave attenuation [J]. J. Mater. Sci. Technol., 2022, 115(0): 71-80. |
[11] | Kangsen Peng, Chuyang Liu, Yuhan Wu, Gang Fang, Guoyue Xu, Yujing Zhang, Chen Wu, Mi Yan. Understanding the efficient microwave absorption for FeCo@ZnO flakes at elevated temperatures a combined experimental and theoretical approach [J]. J. Mater. Sci. Technol., 2022, 125(0): 212-221. |
[12] | Guohao Dai, Ruixiang Deng, Xiao You, Tao Zhang, Yun Yu, Lixin Song. Entropy-driven phase regulation of high-entropy transition metal oxide and its enhanced high-temperature microwave absorption by in-situ dual phases [J]. J. Mater. Sci. Technol., 2022, 116(0): 11-21. |
[13] | Fei Wu, Lingyun Wan, Ting Wang, Muhammad Rizwan Tariq, Tariq Shah, Pei Liu, Qiuyu Zhang, Baoliang Zhang. Construction of binary assembled MOF-derived nanocages with dual-band microwave absorbing properties [J]. J. Mater. Sci. Technol., 2022, 117(0): 36-48. |
[14] | Fuxi Peng, Mingfeng Dai, Zhenyu Wang, Yifan Guo, Zuowan Zhou. Progress in graphene-based magnetic hybrids towards highly efficiency for microwave absorption [J]. J. Mater. Sci. Technol., 2022, 106(0): 147-161. |
[15] | Biao Zhao, Yang Li, Qingwen Zeng, Bingbing Fan, Lei Wang, Rui Zhang, Renchao Che. Growth of magnetic metals on carbon microspheres with synergetic dissipation abilities to broaden microwave absorption [J]. J. Mater. Sci. Technol., 2022, 107(0): 100-110. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||