J. Mater. Sci. Technol. ›› 2022, Vol. 127: 164-176.DOI: 10.1016/j.jmst.2022.02.055
• Research Article • Previous Articles Next Articles
Xuli Liua, Yidong Wua,*(), Yansong Wangb, Jinbin Chena, Rui Baia, Lei Gaoa, Zhe Xua, William Yi Wangc, Chengwen Tanb,*(
), Xidong Huia,*(
)
Received:
2021-12-23
Revised:
2022-02-16
Accepted:
2022-02-24
Published:
2022-11-10
Online:
2022-11-10
Contact:
Yidong Wu,Chengwen Tan,Xidong Hui
About author:
xdhui@ustb.edu.cn (X. Hui)Xuli Liu, Yidong Wu, Yansong Wang, Jinbin Chen, Rui Bai, Lei Gao, Zhe Xu, William Yi Wang, Chengwen Tan, Xidong Hui. Enhanced dynamic deformability and strengthening effect via twinning and microbanding in high density NiCoFeCrMoW high-entropy alloys[J]. J. Mater. Sci. Technol., 2022, 127: 164-176.
Fig. 1. XRD patterns of Ni30Co30Fe30-x-yCr10MoxWy HEAs 60%-rolled and followed by annealing at 1273 K for 1 h (a), 1473 K for 1 h (b) and 1573 K for 10 min (c); (d) The magnified XRD patterns of FCC (111) plane in (b).
Fig. 2. SEM images and corresponding μ phase volume fraction of Ni30Co30Fe30-x-yCr10MoxWy HEAs 60%-rolled and followed by annealing at 1273 K for 1 h (a-d), 1473 K for 1 h (e-h) and 1573 K for 10 min (i-l).
Alloys | Region | Chemical compositions (at.%) | |||||
---|---|---|---|---|---|---|---|
Co | Ni | Cr | Fe | Mo | W | ||
Mo4W3 | Nominal | 30 | 30 | 10 | 23 | 4 | 3 |
Matrix | 29.5±0.3 | 30.3±0.3 | 9.8±0.1 | 22.7±0.2 | 4.3±0.1 | 3.4±0.1 | |
Mo4W5 | Nominal | 30 | 30 | 10 | 21 | 4 | 5 |
Matrix | 30.0±0.3 | 29.8±0.3 | 9.9±0.1 | 21.2±0.2 | 3.8±0.1 | 5.3±0.1 | |
Mo4W7 | Nominal | 30 | 30 | 10 | 19 | 4 | 7 |
Matrix | 29.4±0.5 | 30.7±0.5 | 10.8±0.2 | 17.4±0.3 | 4.1±0.1 | 7.6±0.1 | |
μ phase | 24.5±0.6 | 13.6±0.6 | 8.7±0.2 | 11.1±0.3 | 12.2±0.2 | 29.9±0.2 | |
Mo0W9 | Nominal | 30 | 30 | 10 | 21 | - | 9 |
Matrix | 29.4±0.3 | 29.6±0.3 | 10.6±0.2 | 21.5±0.2 | - | 8.9±0.1 | |
μ phase | 25.1±0.3 | 13.8±0.3 | 8.0±0.1 | 14.3±0.2 | - | 38.8±0.2 |
Table 1. The EDX results for Ni30Co30Fe30-x-yCr10MoxWy HEAs 60%-rolled and annealed at 1573 K for 10 min.
Alloys | Region | Chemical compositions (at.%) | |||||
---|---|---|---|---|---|---|---|
Co | Ni | Cr | Fe | Mo | W | ||
Mo4W3 | Nominal | 30 | 30 | 10 | 23 | 4 | 3 |
Matrix | 29.5±0.3 | 30.3±0.3 | 9.8±0.1 | 22.7±0.2 | 4.3±0.1 | 3.4±0.1 | |
Mo4W5 | Nominal | 30 | 30 | 10 | 21 | 4 | 5 |
Matrix | 30.0±0.3 | 29.8±0.3 | 9.9±0.1 | 21.2±0.2 | 3.8±0.1 | 5.3±0.1 | |
Mo4W7 | Nominal | 30 | 30 | 10 | 19 | 4 | 7 |
Matrix | 29.4±0.5 | 30.7±0.5 | 10.8±0.2 | 17.4±0.3 | 4.1±0.1 | 7.6±0.1 | |
μ phase | 24.5±0.6 | 13.6±0.6 | 8.7±0.2 | 11.1±0.3 | 12.2±0.2 | 29.9±0.2 | |
Mo0W9 | Nominal | 30 | 30 | 10 | 21 | - | 9 |
Matrix | 29.4±0.3 | 29.6±0.3 | 10.6±0.2 | 21.5±0.2 | - | 8.9±0.1 | |
μ phase | 25.1±0.3 | 13.8±0.3 | 8.0±0.1 | 14.3±0.2 | - | 38.8±0.2 |
Fig. 3. EBSD inverse pole figures (IPFs) and corresponding average grain size of Mo4W3 and Mo0W9 HEAs annealed at 1273 K for 1 h (a, b), 1473 K for 1 h (c, d) and 1573 K for 10 min (e, f).
Fig. 4. The room temperature quasi-static tensile engineering stress-strain curves of Ni30Co30Fe30-x-yCr10MoxWy HEAs annealed at 1273 K for 1 h (a), 1473 K for 1 h (b) and 1573 K for 10 min (c).
Fig. 5. True stress-true strain curves under different strain rates of HEAs annealed at 1573 K for 10 min: (a) Mo4W3 and (b) Mo0W9. The insets in (a) and (b) show the deformation of the Mo4W3 and Mo0W9 specimens under dynamic loads, respectively; (c) Work hardening rate as a function of true plastic strain.
Materials | Melting point (K) | Density (g/cm3) | Measured value of sound velocity (km/s) | Calculated value of sound velocity (km/s) |
---|---|---|---|---|
Mo4W3 | 1910 | 9.0±0.1 | 5.5±0.1 | 5.9 |
Mo4W5 | 1948 | 9.3±0.2 | - | 5.8 |
Mo4W7 | 1986 | 9.6±0.2 | - | 5.8 |
Mo0W9 | 1980 | 9.8±0.1 | 5.5±0.1 | 5.8 |
Cu | 1357 | 8.9±0.1 | 4.6±0.1 | - |
Co | 1768 | 8.9±0.1 | 5.6±0.1 | - |
Ni | 1728 | 8.9±0.1 | 5.8±0.1 | - |
Cr | 2180 | 7.1±0.1 | 6.6±0.1 | - |
Fe | 1811 | 7.8±0.1 | 5.9±0.1 | - |
Mo | 2896 | 10.2±0.1 | 6.5±0.1 | - |
W | 3695 | 18.2±0.1 | 5.1±0.1 | - |
Table 2. Properties of Ni30Co30Fe30-x-yCr10MoxWy HEAs and several pure metals.
Materials | Melting point (K) | Density (g/cm3) | Measured value of sound velocity (km/s) | Calculated value of sound velocity (km/s) |
---|---|---|---|---|
Mo4W3 | 1910 | 9.0±0.1 | 5.5±0.1 | 5.9 |
Mo4W5 | 1948 | 9.3±0.2 | - | 5.8 |
Mo4W7 | 1986 | 9.6±0.2 | - | 5.8 |
Mo0W9 | 1980 | 9.8±0.1 | 5.5±0.1 | 5.8 |
Cu | 1357 | 8.9±0.1 | 4.6±0.1 | - |
Co | 1768 | 8.9±0.1 | 5.6±0.1 | - |
Ni | 1728 | 8.9±0.1 | 5.8±0.1 | - |
Cr | 2180 | 7.1±0.1 | 6.6±0.1 | - |
Fe | 1811 | 7.8±0.1 | 5.9±0.1 | - |
Mo | 2896 | 10.2±0.1 | 6.5±0.1 | - |
W | 3695 | 18.2±0.1 | 5.1±0.1 | - |
Fig. 7. The variation of yielding strengths with strain rates at two distinct regions. Two distinguishable regions correspond to different strain rate sensitivity (SRS), i. e., quasi-static SRS (ms) and dynamic SRS (md).
Fig. 8. Variation of deformation-induced adiabatic temperature rise with the true plastic strain at different strain rates of (a) Mo4W3 and (b) Mo0W9 HEAs; Comparison between the experimental data and the flow stress predicted by the modified Johnson-Cook model upon dynamic loading for (c, d) Mo4W3 and (e, f) Mo0W9 HEAs.
Fig. 9. TEM microstructural characterizations and the corresponding SAED patterns of the Mo4W3 HEA after dynamic (~4500 s?1) deformation. (a) and (b) Bright field micrographs showing the interaction between dislocations; (c) and (d) Bright field micrographs of deformation twins and corresponding SAED pattern.
Fig. 10. HRTEM images in the Mo4W3 HEA after dynamic (~4500 s?1) deformation. (a) Twinning structures; (b) The magnified image of the rectangle region in (a); (c) V-shaped SF configuration with acute angle of 70.5°; (d) Mixed type SF configuration of T-shaped and V-shaped with angles of 109.5°.
Fig. 11. TEM microstructural characterizations and the corresponding SAED patterns of the Mo0W9 HEA after dynamic (~4100 s?1) deformation. (a) and (b) BF micrographs showing the dense dislocation walls and microbands; (c-e) Bright field micrographs show the deformation twins and corresponding SAED pattern; (f) Bright field micrographs of μ phases and corresponding SAED pattern.
[1] | G. Birkhoff, D.P. Macdougall, E.M. Pugh, S.G. Taylor, J. Appl. Phys. 19 (1948) 563-582. |
[2] |
H. He, S. Jia, J. Mater. Sci. Technol. 26 (2010) 429-432.
DOI URL |
[3] | M. Held, J. Battlef. Technol. 4 (2001) 1-7. |
[4] | Z.J. Guo, S.C. Zhang, Y. Lin, China Molybd. Ind. 29 (2005) 40-42. |
[5] |
T.F. Wang, H.R. Zhu, Propellants Explos. Pyrotech. 21 (1996) 193-195.
DOI URL |
[6] |
S. Singh, N. Wanderka, B.S. Murty, U. Glatzel, J. Banhart, Acta Mater. 59 (2011) 182-190.
DOI URL |
[7] |
O.N. Senkov, S.V. Senkova, C. Woodward, Acta Mater. 68 (2014) 214-228.
DOI URL |
[8] |
J.B. Cheng, X.B. Liang, B.S. Xu, Surf. Coat. Technol. 240 (2014) 184-190.
DOI URL |
[9] |
Y.D. Wu, Y.H. Cai, T. Wang, J.J. Si, J. Zhu, Y.D. Wang, X.D. Hui, Mater. Lett. 130 (2014) 277-280.
DOI URL |
[10] |
B. Vishwanadh, N. Sarkar, S. Gangil, S. Singh, R. Tewari, G.K. Dey, S. Banerjee, Scr. Mater. 124 (2016) 146-150.
DOI URL |
[11] |
B. Schuh, F. Mendez-Martin, B. Völker, E.P. George, H. Clemens, R. Pippan, A. Hohenwarter, Acta Mater. 96 (2015) 258-268.
DOI URL |
[12] |
B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, Science 345 (6201) (2014) 1153-1158.
DOI URL |
[13] |
T.W. Zhang, S.G. Ma, D. Zhao, Y.C. Wu, Y. Zhang, Z.H. Wang, J.W. Qiao, Int. J. Plast. 124 (2020) 226-246.
DOI URL |
[14] |
Z. Wu, Y. Gao, H. Bei, Acta Mater. 120 (2016) 108-119.
DOI URL |
[15] |
Z. Li, S. Zhao, S.M. Alotaibi, Y. Liu, B. Wang, M.A. Meyers, Acta Mater. 151 (2018) 424-431.
DOI URL |
[16] |
J.M. Park, J. Moon, J.W. Bae, M.J. Jang, J. Park, S. Lee, H.S. Kim, Mater. Sci. Eng. A 719 (2018) 155-163.
DOI URL |
[17] |
B. Wang, A. Fu, X. Huang, B. Liu, Y. Liu, Z. Li, X. Zan, J. Mater. Eng. Perform. 25 (2016) 2985-2992.
DOI URL |
[18] | W. Jiang, X. Gao, Y. Guo, X. Chen, Y. Zhao, Mater. Sci. Eng. A 824 (2021) 208-213. |
[19] |
D.L. Foley, S.H. Huang, E. Anber, L. Shanahan, M.L. Taheri, Acta Mater. 200 (2020) 1-11.
DOI URL |
[20] |
N. Kumar, Q. Ying, X. Nie, R.S. Mishra, Z. Tang, P.K. Liaw, R.E. Brennan, K.J. Do-herty, K.C. Cho, Mater. Des. 86 (2015) 598-602.
DOI URL |
[21] |
K. Jiang, T. Ren, G. Shan, T. Ye, L. Chen, C. Wang, F. Zhao, J. Li, T. Suo, Mater. Sci. Eng. A 797 (2020) 140125.
DOI URL |
[22] |
M. Komarasamy, K. Alagarsamy, R.S. Mishra, Intermetallics 84 (2017) 20-24.
DOI URL |
[23] |
Z. Li, S. Zhao, H. Diao, P.K. Liaw, M.A. Meyers, Sci. Rep. 7 (2017) 42742.
DOI PMID |
[24] |
S. Gangireddy, B. Gwalani, R.S. Mishra, Mater. Sci. Eng. A 736 (2018) 344-348.
DOI URL |
[25] |
J.W. Bae, J.M. Park, J. Moon, W.M. Choi, B.J. Lee, H.S. Kim, J. Alloy. Compd. 781 (2019) 75-83.
DOI URL |
[26] | T. Suo, K. Xie, Y.L. Li, F. Zhao, Q. Deng, Adv. Mater. Res. 160-162 (2010) 260-266. |
[27] | Z.W. Wang, I. Baker, W. Guo, J.D. Poplawsky, Acta Metall. 126 (2017) 346-360. |
[28] |
K. Ming, L. Li, Z. Li, X. Bi, J. Wang, Sci. Adv. 5 (2019) eaay0639.
DOI URL |
[29] |
K. Ming, X. Bi, J. Wang, Scr. Mater. 137 (2017) 88-93.
DOI URL |
[30] |
L. Wang, L. Wang, Y.C. Tang, L. Luo, H.Z. Fu, J. Alloy. Compd. 843 (2020) 155997.
DOI URL |
[31] |
W.H. Liu, Z.P. Lu, J.Y. He, J.H. Luan, Z.J. Wang, B. Liu, Y. Liu, M.W. Chen, C.T. Liu, Acta Mater. 116 (2016) 332-342.
DOI URL |
[32] |
W. Huo, H. Zhou, F. Fang, Z. Xie, J. Jiang, Mater. Des. 134 (2017) 226-233.
DOI URL |
[33] |
X.F. Wang, Y. Zhang, Y. Qiao, G.L. Chen, Intermetallics 15 (2007) 357-362.
DOI URL |
[34] |
J.Y. He, H. Wang, H.L. Huang, X.D. Xu, Z.P. Lu, Acta Mater. 102 (2016) 187-196.
DOI URL |
[35] |
T.W. Zhang, Z.M. Jiao, Z.H. Wang, J.W. Qiao, Scr. Mater. 136 (2017) 15-19.
DOI URL |
[36] |
S. Curtze, V.T. Kuokkala, Acta Mater. 58 (2010) 5129-5141.
DOI URL |
[37] | M.A. Meyers, Dynamic Behavior of Materials, John Wiley & Sons, New York, 1994. |
[38] |
W.S. Lee, C.F. Lin, T.H. Chen, H.W. Chen, Mater. Sci. Eng. A 528 (2011) 6279-6286.
DOI URL |
[39] | S. Nemat-Nasser, in: Proceedings of the IUTAM Symposium on Computational Mechanics of Solid Materials at Large Strains, Dordrecht, Springer, 2003. |
[40] |
Y. Zhang, JOM 64 (2012) 830-838.
DOI URL |
[41] | A. Tamm, A. Aabloo, M. Klintenberg, M. Stocks, A. Caro, Acta Mater. 99 (2015) 307-312. |
[42] |
Z. Wu, H. Bei, G.M. Pharr, E.P. George, Acta Mater. 81 (2014) 428-441.
DOI URL |
[43] |
S. Gangireddy, L. Kaimiao, B. Gwalani, R. Mishra, Mater. Sci. Eng. A 727 (2018) 148-159.
DOI URL |
[44] |
C.M. Cao, W. Tong, S.H. Bukhari, J. Xu, Y.X. Hao, P. Gu, H. Hao, L.M. Peng, Mater. Sci. Eng. A 759 (2019) 648-654.
DOI URL |
[45] |
J.A. Lichtenfeld, M.C. Mataya, C.J.V. Tyne, Metall. Mater. Trans. A 37 (2006) 147-161.
DOI URL |
[46] |
S. Zhang, Z. Wang, H.J. Yang, J.W. Qia, Z.H. Wang, Y.C. Wu, Intermetallics 121 (2020) 106699.
DOI URL |
[47] | K. Wang, X. Jin, Y. Zhang, P.K. Liaw, J.W. Qiao, Phys. Rev. Mater. 5 (2021) 113608. |
[48] |
A. Rohatgi, K.S. Vecchio, G.T. Gray, Metall. Mater. Trans. A 32 (2001) 135-145.
DOI URL |
[49] |
A.S. Khan, H.W. Liu, Int. J. Plast. 36 (2012) 1-14.
DOI URL |
[50] |
C.Y. Gao, L.C. Zhang, Int. J. Plast. 32-33 (2012) 121-133.
DOI URL |
[51] |
G. Laplanche, A. Kostka, O.M. Horst, G. Eggeler, E.P. George, Acta Mater. 118 (2016) 152-163.
DOI URL |
[52] |
H. Huh, J.H. Lim, S.H. Park, Int. J. Automot. Technol. 10 (2009) 195-204.
DOI URL |
[53] |
X. Zhong, Q. Zhang, J. Xie, M. Wu, F. Jiang, Y. Yan, Z. Wang, Mater. Sci. Eng. A 812 (2021) 141147.
DOI URL |
[54] |
S. Fréchard, A. Redjaïmia, E. Lach, A. Lichtenberger, Mater. Sci. Eng. A 480 (2008) 89-95.
DOI URL |
[55] |
W.G. Guo, S. Nemat-Nasser, Mech. Mater. 38 (2006) 1090-1103.
DOI URL |
[56] |
X. Zhong, Y. Yan, Q. Zhang, Acta Mech. Solida Sin. 32 (2019) 431-445.
DOI URL |
[57] |
I. Gutierrez-Urrutia, D. Raabe, Acta Mater. 59 (2011) 6449-6462.
DOI URL |
[58] |
Z. Wang, I. Baker, Z. Cai, S. Chen, J.D. Poplawsky, Acta Mater. 120 (2016) 228-239.
DOI URL |
[59] |
N. Hansen, Mater. Sci. Technol. 7 (1991) 544-553.
DOI URL |
[60] |
V.S. Ananthan, T. Leffers, N. Hansen, Mater. Sci. Technol. 7 (1991) 1069-1075.
DOI URL |
[61] |
J. Yoo, K. Choi, A. Zargaran, N.J. Kim, Scr. Mater. 137 (2017) 18-21.
DOI URL |
[62] |
W. Püschl, Prog. Mater. Sci. 47 (2002) 415-461.
DOI URL |
[63] |
O. Bouaziz, S. Allain, C. Scott, Scr. Mater. 58 (2008) 484-487.
DOI URL |
[64] |
M.A. Meyers, O. Vöhringer, V.A. Lubarda, Acta Mater. 49 (2001) 4025-4039.
DOI URL |
[65] |
T.S. Byun, Acta Mater. 51 (2003) 3063-3071.
DOI URL |
[66] |
C. Niu, C.R. LaRosa, J. Miao, M.J. Mills, M. Ghazisaeidi, Nat. Commun. 9 (2018) 1363.
DOI URL |
[67] |
C.E. Slone, S. Chakraborty, J. Miao, E.P. George, M.J. Mills, S.R. Niezgoda, Acta Mater. 158 (2018) 38-52.
DOI URL |
[68] |
H. Mecking, U.F. Kocks, Acta Metall. 29 (1981) 1865-1875.
DOI URL |
[69] |
K.T. Park, K.G. Jin, S.H. Han, S.W. Hwang, K. Choi, C.S. Lee, Mater. Sci. Eng. A 527 (2010) 3651-3661.
DOI URL |
[70] |
L. Zhang, R. Song, C. Zhao, F. Yang, Mater. Sci. Eng. A 640 (2015) 225-234.
DOI URL |
[71] |
F. Yang, R. Song, Y. Li, T. Sun, K. Wang, Mater. Des. 76 (2015) 32-39.
DOI URL |
[72] |
F. Zhao, Y.K. Zhu, J.H. Xie, Mater. Lett. 285 (2021) 129181.
DOI URL |
[73] |
Y.M. Ha, H. Kim, K.H. Kwon, S.G. Lee, S. Lee, N.J. Kim, Metall. Mater. Trans. A 46 (2015) 545-548.
DOI URL |
[74] |
Z.F. He, N. Jia, H.W. Wang, Y. Liu, Y.F. Shen, Mater. Sci. Eng. A 776 (2020) 138982.
DOI URL |
[75] | J.P. Hirth, J. Lothe, in: Theory of Dislocations, 2nd Ed., John Wiley & Sons, New York Chichester Brisbane Toronto Singapore, 1982, p. 857. |
[76] |
M.J. Jang, D.H. Ahn, J. Moon, J.W. Bae, D. Yim, J.W. Yeh, Y. Estrin, H.S. Kim, Mater. Res. Lett. 5 (2017) 350-356.
DOI URL |
[77] |
H.K. Yang, Z.J. Zhang, Y.Z. Tian, Z.F. Zhang, Mater. Sci. Eng. A 690 (2017) 146-157.
DOI URL |
[78] |
J. Narayan, Y.T. Zhu, Appl. Phys. Lett. 92 (2008) 151908.
DOI URL |
[79] |
B. Hammer, K.W. Jacobsen, V. Milman, M.C. Payne, J. Phys. Condens. Matter 4 (1992) 10453-10460.
DOI URL |
[80] |
C.B. Carter, S.M. Holmes, Philos. Mag. 35 (1977) 1161-1172.
DOI URL |
[81] |
J.C. Huang, G.T. Gray, Acta Metall. 37 (1989) 3335-3347.
DOI URL |
[82] |
J.D. Yoo, K.T. Park, Mater. Sci. Eng. A 496 (2008) 417-424.
DOI URL |
[1] | Nan Yang, Nagasivamuni Balasubramani, Jeffrey Venezuela, Helle Bielefeldt-Ohmann, Rachel Allavena, Sharifah Almathami, Matthew Dargusch. Microstructure refinement in biodegradable Zn-Cu-Ca alloy for enhanced mechanical properties, degradation homogeneity, and strength retention in simulated physiological condition [J]. J. Mater. Sci. Technol., 2022, 125(0): 1-14. |
[2] | Yiping Lu, Xiaoxiang Wu, Zhenghong Fu, Qiankun Yang, Yong Zhang, Qiming Liu, Tianxin Li, Yanzhong Tian, Hua Tan, Zhiming Li, Tongmin Wang, Tingju Li. Ductile and ultrahigh-strength eutectic high-entropy alloys by large-volume 3D printing [J]. J. Mater. Sci. Technol., 2022, 126(0): 15-21. |
[3] | Libo Fu, Deli Kong, Chengpeng Yang, Jiao Teng, Yan Lu, Yizhong Guo, Guo Yang, Xin Yan, Pan Liu, Mingwei Chen, Ze Zhang, Lihua Wang, Xiaodong Han. Ultra-high strength yet superplasticity in a hetero-grain-sized nanocrystalline Au nanowire [J]. J. Mater. Sci. Technol., 2022, 101(0): 95-106. |
[4] | Haoming Pang, Zhenbang Xu, Longjiang Shen, Jun Li, Junshuo Zhang, Zhiyuan Li, Shouhu Xuan, Xinglong Gong. The dynamic compressive properties of magnetorheological plastomers: enhanced magnetic-induced stresses by non-magnetic particles [J]. J. Mater. Sci. Technol., 2022, 102(0): 195-203. |
[5] | Z.W. Wang, J.F. Zhang, G.M. Xie, L.H. Wu, H. Zhang, P. Xue, D.R. Ni, B.L. Xiao, Z.Y. Ma. Evolution mechanisms of microstructure and mechanical properties in a friction stir welded ultrahigh-strength quenching and partitioning steel [J]. J. Mater. Sci. Technol., 2022, 102(0): 213-223. |
[6] | Guangyu Ren, Lili Huang, Kunling Hu, Tianxin Li, Yiping Lu, Dongxu Qiao, Haitao Zhang, Dake Xu, Tongmin Wang, Tingju Li, Peter K. Liaw. Enhanced antibacterial behavior of a novel Cu-bearing high-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 117(0): 158-166. |
[7] | Bang Xiao, Wenpeng Jia, Huiping Tang, Jian Wang, Lian Zhou. Microstructure and mechanical properties of WMoTaNbTi refractory high-entropy alloys fabricated by selective electron beam melting [J]. J. Mater. Sci. Technol., 2022, 108(0): 54-63. |
[8] | Huang Chunping, Liang Renyu, Liu Fenggang, Yang Haiou, Lin Xin. Effect of dimensionless heat input during laser solid forming of high-strength steel [J]. J. Mater. Sci. Technol., 2022, 99(0): 127-137. |
[9] | Yang Jianyan, Ren Weijun, Zhao Xinguo, Kikuchi Tatsuya, Miao Ping, Nakajima Kenji, Li Bing, Zhang Zhidong. Mictomagnetism and suppressed thermal conduction of the prototype high-entropy alloy CrMnFeCoNi [J]. J. Mater. Sci. Technol., 2022, 99(0): 55-60. |
[10] | Xin-Yu Mao, Xiao-Lei Shi, Liang-Chuang Zhai, Wei-Di Liu, Yue-Xing Chen, HanGao , Meng Li, De-Zhuang Wang, Hao Wu, Zhuang-Hao Zheng, Yi-Feng Wang, Qingfeng Liu, Zhi-Gang Chen. High thermoelectric and mechanical performance in the n-type polycrystalline SnSe incorporated with multi-walled carbon nanotubes [J]. J. Mater. Sci. Technol., 2022, 114(0): 55-61. |
[11] | Dong Huang, Yanxin Zhuang. Break the strength-ductility trade-off in a transformation-induced plasticity high-entropy alloy reinforced with precipitation strengthening [J]. J. Mater. Sci. Technol., 2022, 108(0): 125-132. |
[12] | Changshu He, Ying Li, Jingxun Wei, Zhiqiang Zhang, Ni Tian, Gaowu Qin, Xiang Zhao. Enhancing the mechanical performance of Al-Zn-Mg alloy builds fabricated via underwater friction stir additive manufacturing and post-processing aging [J]. J. Mater. Sci. Technol., 2022, 108(0): 26-36. |
[13] | Y. Lei, J. Sun, X.G. Song, M.X. Yang, T.L. Yang, J. Yin. Eutectic-reaction brazing of Al0.3CoCrFeNi high-entropy alloys using Ni/Nb/Ni interlayers [J]. J. Mater. Sci. Technol., 2022, 121(0): 245-255. |
[14] | Dong Wu, Wenya Li, Kun Liu, Yang Yang, Sijie Hao. Optimization of cold spray additive manufactured AA2024/Al2O3 metal matrix composite with heat treatment [J]. J. Mater. Sci. Technol., 2022, 106(0): 211-224. |
[15] | Yijing Wang, Enkang Hao, Xiaoqin Zhao, Yun Xue, Yulong An, Huidi Zhou. Effect of microstructure evolution of Ti6Al4V alloy on its cavitation erosion and corrosion resistance in artificial seawater [J]. J. Mater. Sci. Technol., 2022, 100(0): 169-181. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||