J. Mater. Sci. Technol. ›› 2022, Vol. 127: 177-182.DOI: 10.1016/j.jmst.2022.01.042
• Letter • Previous Articles Next Articles
Xiaolong Ana,b,c,*(), Yahang Mua,b, Jingjing Lianga,b,*(
), Jinguo Lia,b,*(
), Yizhou Zhoub, Xiaofeng Sunb
Revised:
2022-01-15
Published:
2022-11-10
Online:
2022-11-10
Contact:
Xiaolong An,Jingjing Liang,Jinguo Li
About author:
jgli@imr.ac.cn (J. Li)Xiaolong An, Yahang Mu, Jingjing Liang, Jinguo Li, Yizhou Zhou, Xiaofeng Sun. Stereolithography 3D printing of ceramic cores for hollow aeroengine turbine blades[J]. J. Mater. Sci. Technol., 2022, 127: 177-182.
Fig. 1. (A) Different perspectives of double wall ceramic core; (B) Scheme of a SLA-3D printed ceramic core emerging from the printer; (C) Slicing layer of double wall ceramic core; (D) Scheme inset of the slip boundary flow profile under the part, with a representative experimentally observed flow profile; (E) Photopolymerization process: degree of conversion versus exposure; (F) Comparison of the developed ceramic core suspension and publicly reported suspensions.
Fig. 2. (A) Microstructures and the particle size distributions of fused silica powders and zirconia powders; (B) 60 vol.% high solid loading ceramic core suspension; (C) Flow and viscosity curves as a function of the shear rate of the ceramic core suspension (The shear rate changes from 130 s?1 to 0.5 s?1); (D) FTIR spectrum of the ceramic core suspension; (E) UV absorption of the 60 vol.% high solid loading ceramic core suspensions in the mode of reflection; (F) The effect of light intensity to curing depth and size of wrong curing zone to select the optimal SLA-3DP parameters; (G) The performance data of high-throughput SLA-3DP ceramic core samples are systematically analyzed to guide the development and application of double wall ceramic core for preparation of single crystal hollow aeroengine blades.
Fig. 3. (A) TG-DTA curves for SLA-3DP 60 vol.% high solid loading ceramic core green body samples; (B) Profiles of debinding and sintering processes; (C) Room-temperature XRD patterns of SLA-3DP ceramic core samples sintered at different temperatures; (D) Room-temperature XRD patterns of SLA-3DP ceramic core samples sintered at 1100 °C, 1150 °C, 1200 °C, and 1250 °C after flexural strength test at 1550 °C; (E) 25 °C room-temperature and 1550 °C high-temperature flexural strengths of SLA-3DP ceramic core samples sintered at 1100 °C, 1150 °C, 1200 °C, and 1250 °C; (F) Shrinkage as a function of sintering temperature 1100 °C, 1150 °C, 1200 °C, and 1250 °C; (G) Bulk densities as a function of sintering temperature 1100 °C, 1150 °C, 1200 °C, and 1250 °C; (H) Open porosity rates of SLA-3DP ceramic core samples sintered at 1100 °C, 1150 °C, 1200 °C, and 1250 °C; (I) Number of cracks of SLA-3DP ceramic core samples sintered at 1100 °C, 1150 °C, 1200 °C, and 1250 °C different temperatures.
Fig. 4. SEM images at different spatial locations for typical microstructures characteristics such as large grains, cracks, pores and crack prapagation of SLA-3DP ceramic core samples sintered at different temperatures: 1100 °C, 1150 °C, 1200 °C, and 1250 °C. (A) Surface microstructures; (B) fracture microstructures after flexural strength test at room-temperature; (C) Surface microstructures of different magnification after flexural strength test at 1550 °C; (D) Fracture surface of different magnification after flexural strength test at 1550 °C.
Fig. 5. (A) Radar charts of some representative properties and crucial process parameters: room temperature bending strength (MPa), bulk density (g cm?3), shrinkage (%), porosity (%), and sintering temperature (°C) of SLA-3DP ceramic core samples sintered at different temperatures, showing the balance of multiple properties and process parameters optimization achieved for application; (B) Ashby chart for number of cracks, room temperature bending strength, high temperature bending strength, shrinkage, and porosity at different sintering temperatures. The performance data and process parameters of SLA-3DP ceramic core obtained in this work could predict and guide the selection of the most effective process parameters; (C) Key challenges associated with the stereolithography-based three-dimensional printing of ceramic cores applied for preparation of single crystal hollow aeroengine blades.
[1] |
M. Zastrow, Nature 578 (2020) 20-23.
DOI URL |
[2] |
D.A. Walker, J.L. Hedrick, C.A. Mirkin, Science 366 (2019) 360-364.
DOI URL |
[3] |
B.E. Kelly, I. Bhattacharya, H. Heidari, M. Shusteff, C.M. Spadaccini, H.K. Taylor, Science 363 (2019) 1075-1079.
DOI URL |
[4] |
Y. Lakhdar, C. Tuck, J. Binner, A. Terry, R. Goodridge, Prog. Mater. Sci. 116 (2021) 100736.
DOI URL |
[5] |
J.R. Tumbleston, D. Shirvanyants, N. Ermoshkin, R. Janusziewicz, A.R. Johnson, D. Kelly, K. Chen, R. Pinschmidt, J.P. Rolland, A. Ermoshkin, E.T. Samulski, J.M. DeSimone, Science 347 (2015) 1349-1352.
DOI URL |
[6] |
T. Chartier, A. Badev, Y. Abouliatim, P. Lebaudy, L. Lecamp, J. Eur. Ceram. Soc. 32 (2012) 1625-1634.
DOI URL |
[7] |
A. Kazemi, M.A. Faghihisani, H.R. Alizadeh, J. Eur. Ceram. Soc. 33 (2013) 3397-3402.
DOI URL |
[8] |
H. Li, Y. Liu, Y. Liu, Q. Zeng, J. Wang, K. Hu, Z. Lu, J. Liang, J. Eur. Ceram. Soc. 40 (2020) 4825-4836.
DOI URL |
[9] |
H. Li, K. Hu, Y. Liu, Z. Lu, J. Liang, Scr. Mater. 194 (2021) 113665.
DOI URL |
[10] |
C. Manière, G. Kerbart, C. Harnois, S. Marinel, Acta Mater 182 (2020) 163-171.
DOI URL |
[11] |
C.J. Bae, D. Kim, J.W. Halloran, J. Eur. Ceram. Soc. 39 (2019) 618-623.
DOI URL |
[12] | F. Wakai, G. Okuma, N. Nishiyama, Mater, Today -Proc 16 (2019) 4-13. |
[13] | K.H. Hu, Y.M. Wei, Z.G. Lu, L. Wan, P.J. Li, Addit. Manuf. 5 (2018) 311-318. |
[14] |
J.X. Sun, J. Binner, J.M. Bai, J. Eur. Ceram. Soc. 39 (2019) 1660-1667.
DOI URL |
[15] |
Y.D. Hazan, D. Penner, J. Eur. Ceram. Soc. 37 (2017) 5205-5212.
DOI URL |
[16] |
H.P. Zhao, C.S. Ye, Z.T. Fan, C.M. Wang, J. Eur. Ceram. Soc. 37 (2017) 5119-5125.
DOI URL |
[17] |
M.L. Griffith, J.W. Halloran, J. Am. Ceram. Soc. 79 (2020) 2601-2608.
DOI URL |
[18] |
J. Schmidta, A.A. Altun, M. Schwentenwein, P. Colombo, J. Eur. Ceram. Soc. 39 (2019) 1336-1343.
DOI URL |
[19] |
Z. Dong, H. Cui, H. Zhang, F. Wang, X. Zhan, F. Mayer, B. Nestler, M. Wegener, P.A. Levkin, Nat. Commun. 12 (2021) 247.
DOI URL |
[20] |
O. Santoliquido, P. Colombobc, A. Ortonaa, J. Eur. Ceram. Soc. 39 (2019) 2140-2148.
DOI |
[21] |
V. Tomeckova, J.W. Halloran, J. Eur. Ceram. Soc. 31 (2011) 2535-2542.
DOI URL |
[22] |
S. Jiang, P. Hou, C. Liu, H.M. Cheng, J. Mater. Sci. Technol. 35 (2019) 2447-2462.
DOI |
[23] |
J.W. Halloran, Annu. Rev. Mater. Res. 46 (2016) 19-40.
DOI URL |
[24] |
C.J. Bae, J.W. Halloran, Int. J. Appl. Ceram. Technol. 8 (2011) 1255-1262.
DOI URL |
[25] |
X. Li, K. Hu, Z. Lu, J. Eur. Ceram. Soc. 39 (2019) 2503-2509.
DOI URL |
[26] |
Z. Chen, Z. Li, J. Li, C. Liu, Y. Li, P. Wang, H. Yi, C. Lao, Y. Fu, J. Eur. Ceram. Soc. 39 (2019) 661-687.
DOI URL |
[27] |
A. Zocca, P. Colombo, C.M. Gomes, J. Günster, J. Am. Ceram. Soc. 98 (2015) 1983-2001.
DOI URL |
[28] |
T. Hafkamp, G.V. Baars, B. Jager, P. Etman, Mechatronics 56 (2018) 220-241.
DOI URL |
[29] |
X.H. Xu, S.X. Zhou, J.F. Wu, Q.K. Zhang, Y.X. Zhang, G.Y. Zhu, Ceram. Int. 46 (2020) 1895-1906.
DOI URL |
[30] |
H.Y. Xing, B. Zou, Q.G. Lai, C.Z. Huang, Q.H. Chen, X.S. Fu, Z.Y. Shi, Powder. Technol. 338 (2018) 153-161.
DOI URL |
[31] |
K.G. Zhang, X. Chen, G. Wang, R.J. He, Ceram. Int. 45 (2019) 203-208.
DOI URL |
[32] |
J. Guo, Y. Zeng, P. Li, J. Chen, Ceram. Int. 45 (2019) 23007-23012.
DOI URL |
[33] |
Z.C. Eckel, C. Zhou, J.H. Martin, A.J. Jacobsen, W.B. Carter, T.A. Schaedler, Science 351 (2016) 58-62.
DOI URL |
[34] |
S. Yin, L. Guo, L. Pan, S. Yan, H. Qiao, S. Zhang, J. Tang, H. Min, T. Qiu, W. Wan, J. Yang, J. Alloys Compd. 819 (2020) 152982.
DOI URL |
[35] |
T. Chartier, C. Dupas, P.M. Geffroy, V. Pateloup, M. Colas, J. Cornette, G.F. Sophie, J. Eur. Ceram. Soc. 37 (2017) 4431-4436.
DOI URL |
[36] |
C. Coulais, E. Teomy, K.D. Reus, Y. Shokef, M.V. Hecke, Nature 535 (2016) 529-532.
DOI URL |
[37] |
T. Chartier, A. Badev, Y. Abouliatim, P. Lebaudy, L. Lecamp, J. Eur. Ceram. Soc. 32 (2012) 1625-1634.
DOI URL |
[38] |
A. Zocca, P. Columbo, C.M. Gomes, J. G ¨unster, J. Am. Ceram. Soc. 98 (2015) 1983-2001.
DOI URL |
[39] |
F. Kotz, K. Arnold, W. Bauer, D. Schild, N. Keller, K. Sachsenheimer, T.M. Nargang, C. Richter, D. Helmer, B.E. Rapp, Nature 544 (2017) 337-339.
DOI URL |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||