J. Mater. Sci. Technol. ›› 2022, Vol. 125: 212-221.DOI: 10.1016/j.jmst.2021.12.079
• Prospective • Previous Articles Next Articles
Kangsen Penga, Chuyang Liua,c,*(), Yuhan Wua, Gang Fanga, Guoyue Xua, Yujing Zhangb,c,*(
), Chen Wuc, Mi Yanc
Received:
2021-11-15
Revised:
2021-12-23
Accepted:
2021-12-29
Published:
2022-04-04
Online:
2022-04-04
Contact:
Chuyang Liu,Yujing Zhang
About author:
zhangyujing@njust.edu.cn (Y. Zhang).Kangsen Peng, Chuyang Liu, Yuhan Wu, Gang Fang, Guoyue Xu, Yujing Zhang, Chen Wu, Mi Yan. Understanding the efficient microwave absorption for FeCo@ZnO flakes at elevated temperatures a combined experimental and theoretical approach[J]. J. Mater. Sci. Technol., 2022, 125: 212-221.
Fig. 1. A series experimental test at different temperatures. (a) XRD patterns with calculated curves and (b) the statistics for lattice parameters and quality ratio of ZnO and FeCo, (c) the Raman spectrum of FeCo@ZnO, XPS spectra of (d) Fe and (e) O, (f) the statistics of O ratio and Ion-Fe ratio.
Fig. 2. SEM images of (a) ZnO and FeCo, (b) ZnO coated FeCo with enlarged mapping area. (c) The element mapping of FeCo@ZnO. (d) The TEM images, (e) the HRTEM image of area I with corresponding SAED patterns and (f) FFT patterns with inverse FFT, (g) the enlarged view of area II and (h) area III with (i) FFT patterns and inverse FFT images.
Fig. 4. (a) The frequency dependence of complex permeability and permittivity, (b) the band structure and (c) the DOS curves of ZnO phase at 298 K-573 K temperature range.
Fig. 5. The frequency dependence of (a) impedance matching, (b) attenuation constant, (c) dielectric loss tangent and (d) magnetic loss tangent. The HFSS simulation results of (e) Poynting vectors and (f) volume loss density at different temperatures.
Fig. 7. Schematic illustration of (a) the microwave absorption mechanisms and (b) the intrinsic variation mechanism of complex electromagnetic parameters and microwave absorbing performance at increasing temperatures.
Sample | RLmin(dB) | EAB(GHz) | Thickness(mm) | Temperature(K) | Refs. |
---|---|---|---|---|---|
FeCo@ZnO | 31.1 | 4.2 | 1.85 | 373 | This work |
FeCo@ZnO | -22.8 | 3.3 | 1.85 | 573 | This work |
SiC-NiO | Unclear | 1.9 | Unclear | 373 | [8] |
SiC-NiO | Unclear | 2.5 | Unclear | 573 | [8] |
Co3O4@rGO/SiO2 | -23 | 4.0 | 2 | 393 | [10] |
Co3O4@rGO/SiO2 | -18 | 3.4 | 2 | 473 | [10] |
CdS-MWCNTs | -25 | 4.2 | 2.5 | 373 | [43] |
CdS-MWCNTs | -14 | 3.3 | 2.5 | 573 | [43] |
TiC/SiO2 | -27 | 2.6 | 2.5 | 373 | [46] |
TiC/SiO2 | -22 | 2.8 | 2.5 | 573 | [46] |
Table 1. Comparison between the vast majority of the current absorbers at elevated temperatures.
Sample | RLmin(dB) | EAB(GHz) | Thickness(mm) | Temperature(K) | Refs. |
---|---|---|---|---|---|
FeCo@ZnO | 31.1 | 4.2 | 1.85 | 373 | This work |
FeCo@ZnO | -22.8 | 3.3 | 1.85 | 573 | This work |
SiC-NiO | Unclear | 1.9 | Unclear | 373 | [8] |
SiC-NiO | Unclear | 2.5 | Unclear | 573 | [8] |
Co3O4@rGO/SiO2 | -23 | 4.0 | 2 | 393 | [10] |
Co3O4@rGO/SiO2 | -18 | 3.4 | 2 | 473 | [10] |
CdS-MWCNTs | -25 | 4.2 | 2.5 | 373 | [43] |
CdS-MWCNTs | -14 | 3.3 | 2.5 | 573 | [43] |
TiC/SiO2 | -27 | 2.6 | 2.5 | 373 | [46] |
TiC/SiO2 | -22 | 2.8 | 2.5 | 573 | [46] |
[1] |
P.B. Liu, S. Gao, G.Z. Zhang, Y. huang, W.B. You, R.C. Che, Adv. Funct. Mater. 31 (2021) 2102812.
DOI URL |
[2] |
C.B. Liang, Z.J. Gu, Y.L. Zhang, Z.L. Ma, H. Qiu, J.W. Gu, Nano Micro Lett. 13 (2021) 181.
DOI URL |
[3] |
Y.Y. Wang, S. Yang, W.J. Sun, K. Dai, D.X. Yan, Z.M. Li, J. Mater. Sci. Technol. 102 (2022) 115-122.
DOI URL |
[4] |
Y.X. Bi, M.L. Ma, Z.J. Liao, Z.Y. Tong, Y. Chen, R.Z. Wang, Y. Ma, G.L. Wu, J. Colloid Interface Sci. 605 (2022) 483-492.
DOI URL |
[5] |
C. Li, Z.H. Li, X.S. Qi, X. Gong, Y.L. Chen, Q. Peng, C.Y. Deng, T. Jing, W. Zhong, J. Colloid Interface Sci. 605 (2022) 13-22.
DOI URL |
[6] |
R.W. Shu, Y. Wu, X.H. Li, J.B. Zhang, Z.L. Wan, N.N. Li, Compos. Part A Appl. Sci. Manuf. 147 (2021) 106451.
DOI URL |
[7] |
X.Y. Yuan, L.F. Cheng, S.W. Guo, L.T. Zhang, Ceram. Int. 43 (2017) 282-288.
DOI URL |
[8] |
H.J. Yang, W.Q. Cao, D.Q. Zhang, et al., ACS Appl. Mater. Interface 7 (2015) 7073-7077.
DOI URL |
[9] |
X.L. Shi, M.S. Cao, X.Y. Fang, J. Yuan, Y.Q. Kang, W.L. Song, Appl. Phys. Lett. 93 (2008) 223112.
DOI URL |
[10] |
J.R. Ma, J.C. Shu, W.Q. Cao, M. Zhang, X.X. Wang, J. Yuan, M.S. Cao, Compos. Part B Eng. 166 (2019) 187-195.
DOI URL |
[11] | J.W. Gu, Q.Y. Zhang, H.C. Li, Y.S. Tang, J. Kong, J. Dang, Technol. Eng. 46 (2007) 1129-1134. |
[12] |
C.H. Cui, D.X. Yan, H. Pang, L.C. Jia, X. Xu, S. Yang, J.Z. Xu, Z.M. Li, Chem. Eng. J. 323 (2017) 29-36.
DOI URL |
[13] | B. Wen, M.S. Cao, Z.L. Hou, W.L. Song, L. Zhang, M.M. Lu, H.B. Jin, X.Y. Fang, W.Z. Wang, J. Yuan, Carbon 65 (2013) 124-139. |
[14] |
G.W. Wang, X.L. Li, P. Wang, J.M. Zhang, D. Wang, L. Qiao, T. Wang, F.S. Li, J. Magn. Magn. Mater. 456 (2018) 92-97.
DOI URL |
[15] | Z.Y. Tong, Z.J. Liao, Y.Y. Liu, M.L. Ma, Y.X. Bi, W.B. Huang, Y. Ma, M.T. Qiao, G. L. Wu, Carbon 179 (2021) 646-654. |
[16] | J.J. Zhang, Z.H. Li, X.S. Qi, X. Gong, R. Xie, C.Y. Deng, W. Zhong, Y.W. Du, Com-pos. Part B 222 (2021) 109067. |
[17] |
S. Gao, G.Z. Zhang, Y. Wang, X.P. Han, Y. Huang, P.B. Liu, J. Mater. Sci. Technol. 88 (2021) 56-65.
DOI URL |
[18] |
P.K. Chougule, S.S. Kumbhar, Y.D. Kolekar, C.H. Bhosale, J. Magn. Magn. Mater. 372 (2014) 181-186.
DOI URL |
[19] |
Y. Zare, M.H. Shams, M. Jazirehpour, J. Alloy. Compd. 717 (2017) 294-302.
DOI URL |
[20] |
Y. Wan, J. Xiao, C. Li, G. Xiong, R. Guo, L. Li, et al., J. Magn. Magn. Mater. 399 (2016) 252-259.
DOI URL |
[21] |
Y.L. Ren, H.Y. Wu, M.M. Lu, Y.J. Chen, C.L. Zhu, P. Gao, M.S. Cao, C.Y. Li, Q.Y. Ouyang, ACS Appl. Mater. Interfaces 4 (2012) 6436-6442.
DOI URL |
[22] |
J. Liu, W.Q. Cao, H.B. Jin, J. Yuan, D.Q. Zhang, M.S. Cao, J. Mater. Chem. C 3 (2015) 4670-4677.
DOI URL |
[23] |
K.S. Peng, Y.H. Wu, C.Y. Liu, A.D. Xiao, G.Y. Xu, G. Fang, Y.T. Zhang, Y.F. Cao, Y.J. Zhang, J. Magn. Magn. Mater. 502 (2020) 166561.
DOI URL |
[24] |
W.Y. Yang, Y.F. Zhang, G.Y. Qiao, Y.F. Lai, S.Q. Liu, C.S. Wang, J.Z. Han, H.L. Du, Y. Zhang, Y.C. Yang, Y.L. Hou, J.B. Yang, Acta Mater. 145 (2018) 331-336.
DOI URL |
[25] |
L.Y. Pan, G.Y. Xu, T.C. Guo, B. Zhang, S.S. Xiang, G. Fang, J. Li, Infrared Phys. Technol. 105 (2020) 103192.
DOI URL |
[26] |
C.D. Li, Z.Q. Liang, H.Y. Xiao, Y.Y. Wu, Y. Liu, J. Mater. Lett. 64 (2010) 1972-1974.
DOI URL |
[27] |
R.P.P. Singh, I.S. Hudiara, S. Panday, S.B. Rana, S. Deepa, J. Supercond. Nov. Magn. 29 (2016) 819-827.
DOI URL |
[28] |
S. Deepa, K.P. Kumari, B. Thomas, Ceram. Int. 43 (2017) 17128-17141.
DOI URL |
[29] |
P.K. Giri, J. Appl. Phys. 102 (2007) 093515.
DOI URL |
[30] |
K.A. Alim, V.A. Fonoberov, M. Shamasa, A.A. Balandin, J. Appl. Phys. 97 (2005) 124313.
DOI URL |
[31] |
K.Z. Qi, B. Cheng, J.G. Yu, W.K. Ho, J. Alloy. Compd. 727 (2017) 792-820.
DOI URL |
[32] |
Z.Q. Chen, A. Kawasuso, Y. Xu, H. Naramoto, X.L. Yuan, T. Sekiguchi, R. Suzuki, T. Ohdaira, J. Appl. Phys. 97 (2005) 013528.
DOI URL |
[33] |
B. Quan, W.H. Shi, S.J.H. Ong, X.C. Lu, P.L. Wang, G.B. Ji, Y.F. Guo, L.R. Zheng, Z. C. Xu, Adv. Funct. Mater. 29 (2019) 1901236.
DOI URL |
[34] |
A.N.S. Saqib, N.T.T. Huong, S.W. Kim, M.H. Jung, Y.H. Lee, J. Alloy. Compd. 853 (2021) 157153.
DOI URL |
[35] |
W.J. Li, R.W. Shu, Wu Yue, J.B. Zhang, Compos. Commun. 23 (2021) 100576.
DOI URL |
[36] |
R.W. Shu, N.N. Li, X.H. Li, J.J. Sun, J. Colloid Interfaces Sci. 606 (2022) 1918-1927.
DOI URL |
[37] |
M.M.P. Buzinaro, N.S. Ferreira, F. Cunha, M.A Macedo, Ceram. Int. 42 (2016) 5865-5872.
DOI URL |
[38] |
J.B. Chen, J. Zheng, Q.Q. Huang, F. Wang, G.B. Ji, ACS Appl. Mater. Interfaces 13 (2021) 36182-36189.
DOI URL |
[39] |
K.S. Peng, G. Fang, C. Guo, C.Y. Liu, G.Y. Xu, A.D. Xiao, Y.T. Zhang, Y.J. Zhang, J. Magn. Magn Mater. 490 (2019) 165488.
DOI URL |
[40] |
B. Qu, C.L. Zhu, C.Y. Li, X.T. Zhang, Y.J. Chen, ACS Appl. Mater. Interfaces 8 (2016) 3730-3735.
DOI URL |
[41] |
W.L. Song, M.S. Cao, Z.L. Hou, J. Yuan, X.Y. Fang, Scr. Mater. 61 (2009) 201-204.
DOI URL |
[42] | L.F. Sun, Z.R. Jia, S. Xu, M.B. Ling, D.Q. Hu, X.H. Liu, C.H. Zhang, G.L. Wu, Com-pos. Commun. 29 (2022) 100993. |
[43] |
M.M. Lu, X.X. Wang, W.Q. Cao, J. Yuan, M.S. Cao, Nanotechnology 27 (2016) 065702.
DOI URL |
[44] |
Z.J. Liao, M.L. Ma, Y.X. Bi, Z.Y. Tong, K.L. Chung, Z.J. Li, Y. Ma, B.L. Gao, Z.K. Cao, R.R. Sun, X. Zhong, J. Colloid Interfaces Sci. 606 (2022) 709-718.
DOI URL |
[45] |
Ü. Özgür, Ya.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Do ˘gan, V. Avrutin, S.J. Cho, H. Morkoç, J. Appl. Phys. 98 (2005) 041301.
DOI URL |
[46] |
X.Y. Yuan, L.F. Cheng, L.T. Zhang, Ceram. Int. 40 (2014) 15391-15397.
DOI URL |
[47] |
R.W. Shu, X.H. Li, K.H. Tian, J.J. Shi, Compos. Part B Eng. 228 (2022) 109423.
DOI URL |
[48] |
T.Q. Hou, Z.R. Jia, A.L. Feng, Z.H. Zhou, X.H. Liu, H.L. Lv, G.L. Wu, J. Mater. Sci. technol. 68 (2021) 61-69.
DOI URL |
[49] |
J. Zhao, J.L. Zhang, L. Wang, J.K. Li, T. Feng, J.C. Fan, L.X. Chen, J.W. Gu, Compos. Commun. 22 (2020) 100486.
DOI URL |
[50] |
Y.P. Duan, H.F. Pang, X. Wen, X.F. Zhang, T.M. Wang, J. Mater. Sci. Technol. 77 (2021) 209-216.
DOI URL |
[51] |
Z.H. Huang, J.Y. Cheng, H.B. Zhang, Y.F. Xiong, Z.X. Zhou, Q.B. Zheng, G.P. Zheng, D. Q. Zhang, M.S. Cao, J. Mater. Sci. Technol. 107 (2022) 155-164.
DOI URL |
[1] | Jianqi Huang, Zhiyong Liu, Teng Yang, Zhidong Zhang. New selection rule of resonant Raman scattering in MoS2 monolayer under circular polarization [J]. J. Mater. Sci. Technol., 2022, 102(0): 132-136. |
[2] | Bin Liu, Yuchen Liu, Changhua Zhu, Huimin Xiang, Hongfei Chen, Luchao Sun, Yanfeng Gao, Yanchun Zhou. Advances on strategies for searching for next generation thermal barrier coating materials [J]. J. Mater. Sci. Technol., 2019, 35(5): 833-851. |
[3] | B. Wurentuya, Shuang Ma, B. Narsu, O. Tegus, Zhidong Zhang. Lattice dynamics of FeMnP0.5Si0.5 compound from first principles calculation [J]. J. Mater. Sci. Technol., 2019, 35(1): 127-133. |
[4] | Bin Zhang, Li Liu, Tianshu Li, Ying Li, Mingkai Lei, Fuhui Wang. Adsorption and Diffusion Behavior of Cl- on Sputtering Fe-20Cr Nanocrystalline Thin Film in Acid Solution (pH = 2) [J]. J. Mater. Sci. Technol., 2015, 31(12): 1198-1206. |
[5] | Zhou Yanchun, Xiang Huimin, Feng Zhihai. Theoretical Investigation on Mechanical and Thermal Properties of a Promising Thermal Barrier Material: Yb3Al5O12 [J]. J. Mater. Sci. Technol., 2014, 30(7): 631-638. |
[6] | Zhijun LIN, Yanchun ZHOU, Meishuan LI. Synthesis, Microstructure, and Property of Cr2AlC [J]. J Mater Sci Technol, 2007, 23(06): 721-746. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||