J. Mater. Sci. Technol. ›› 2022, Vol. 120: 214-226.DOI: 10.1016/j.jmst.2021.12.036
• Research Article • Previous Articles Next Articles
Mirza Zahid Hussaina,b, Jiangtao Xionga,b,*(), Jinglong Lia,b,*(
), Farah Siddiquea, Lin Jie Zhangc, Yajie Dua,b, Xian Rong Zhouc
Received:
2021-09-19
Revised:
2021-11-25
Accepted:
2021-12-07
Published:
2022-09-01
Online:
2022-03-04
Contact:
Jiangtao Xiong,Jinglong Li
About author:
lijinglg@nwpu.edu.cn (J. Li).Mirza Zahid Hussain, Jiangtao Xiong, Jinglong Li, Farah Siddique, Lin Jie Zhang, Yajie Du, Xian Rong Zhou. Effect of Ti-Hf-Zr-Cu-Ni high entropy alloy addition on laser beam welded joint of Ti2AlNb based intermetallic alloy[J]. J. Mater. Sci. Technol., 2022, 120: 214-226.
Elements | Al | Nb | Ti | Hf | Zr | Ni | Cu |
---|---|---|---|---|---|---|---|
Ti-22Al-27Nb | 22.4 | 27.6 | Bal. | - | - | - | - |
Ti-Hf-Zr-Cu-Ni | - | - | 22.9 | 15.5 | Bal. | 15.3 | 22.6 |
Table 1. Chemical composition (at.%) of the BM and the filler.
Elements | Al | Nb | Ti | Hf | Zr | Ni | Cu |
---|---|---|---|---|---|---|---|
Ti-22Al-27Nb | 22.4 | 27.6 | Bal. | - | - | - | - |
Ti-Hf-Zr-Cu-Ni | - | - | 22.9 | 15.5 | Bal. | 15.3 | 22.6 |
Fig. 1. Microstructure and XRD patterns: (a) microstructure of Ti-22Al-27Nb, (b) microstructure of Ti-Hf-Zr-Cu-Ni, (c) XRD patterns of Ti-22Al-27Nb and Ti-Hf-Zr-Cu-Ni.
BM | Tensile strength (MPa) | Elongation (%) | Hardness (HV) |
---|---|---|---|
Ti-22Al-27Nb | 1060 | 13.4 | 345 |
Table 2. Mechanical properties of the BM (at room temperature).
BM | Tensile strength (MPa) | Elongation (%) | Hardness (HV) |
---|---|---|---|
Ti-22Al-27Nb | 1060 | 13.4 | 345 |
Laser power (kW) | Welding speed (mm/min) | Laser spot diameter (mm) | Defocusing distance (mm) | Flow rate of Ar (L/min) | Purity of Ar (%) |
---|---|---|---|---|---|
1.9 | 1100 | 0.4 | 0 | 15 | 99.999 |
Table 3. LBW parameters.
Laser power (kW) | Welding speed (mm/min) | Laser spot diameter (mm) | Defocusing distance (mm) | Flow rate of Ar (L/min) | Purity of Ar (%) |
---|---|---|---|---|---|
1.9 | 1100 | 0.4 | 0 | 15 | 99.999 |
Fig. 4. EPMA of the LBWJ J-1: (a) positions for point analysis and (b-h) elemental distribution maps of Ti, Al, Hf, Ni, Cu, Zr, and Nb, respectively for the WZ.
Point # | Chemical composition (at.%) | ||||||
---|---|---|---|---|---|---|---|
Ti | Al | Nb | Hf | Zr | Cu | Ni | |
1 | 55.048 | 17.075 | 25.399 | 0.4574 | 0.9076 | 0.4430 | 0.6702 |
2 | 54.442 | 16.820 | 26.232 | 0.5522 | 0.8381 | 0.5629 | 0.5531 |
3 | 55.421 | 16.904 | 25.364 | 0.4066 | 0.9510 | 0.4383 | 0.5163 |
4 | 54.765 | 17.810 | 24.886 | 0.4964 | 0.9079 | 0.6099 | 0.5236 |
5 | 54.430 | 16.753 | 26.381 | 0.3958 | 1.0671 | 0.4022 | 0.5709 |
6 | 58.064 | 16.041 | 24.028 | 0.4517 | 0.7169 | 0.0000 | 0.7164 |
7 | 52.338 | 14.563 | 26.582 | 1.6266 | 2.4435 | 1.4571 | 0.9895 |
Table 4. Chemical composition of the selected points (Fig. 4(a)) from FZ of J-1.
Point # | Chemical composition (at.%) | ||||||
---|---|---|---|---|---|---|---|
Ti | Al | Nb | Hf | Zr | Cu | Ni | |
1 | 55.048 | 17.075 | 25.399 | 0.4574 | 0.9076 | 0.4430 | 0.6702 |
2 | 54.442 | 16.820 | 26.232 | 0.5522 | 0.8381 | 0.5629 | 0.5531 |
3 | 55.421 | 16.904 | 25.364 | 0.4066 | 0.9510 | 0.4383 | 0.5163 |
4 | 54.765 | 17.810 | 24.886 | 0.4964 | 0.9079 | 0.6099 | 0.5236 |
5 | 54.430 | 16.753 | 26.381 | 0.3958 | 1.0671 | 0.4022 | 0.5709 |
6 | 58.064 | 16.041 | 24.028 | 0.4517 | 0.7169 | 0.0000 | 0.7164 |
7 | 52.338 | 14.563 | 26.582 | 1.6266 | 2.4435 | 1.4571 | 0.9895 |
Fig. 6. A comparative EBSD analysis between FZ of J-0 and J-1: (a, c) phase profiles of J-0 and J-1, respectively; (d, f) grain size and its distribution, J-0 and J-1, respectively; (g, i) crystallographic orientation, J-0 and J-1, respectively; (j, l) recrystallized, deformed and substructure grains, J-0 and J-1, respectively; (b, e, h and k) legends for Fig. 6(a, c), Fig. 6(d, f), Fig. 6(g, i), and Fig. 6(j, l), respectively.
Fig. 7. A comparative EBSD analysis between FZ of J-0 and J-1: (a) grain size and its distribution, (b) inter-grain misorientation angle, (c) local area misorientation (intragrain misorientation), (d) XRD patterns for FZ of J-0 and J-1.
Fig. 9. HAADF analysis of the grains shown in Fig. 8(a): (a) high-resolution transmission electron microscopy (HRTEM) image and (b-h) elemental distribution of Ti, Al, Nb, Hf, Zr, Cu and Ni, respectively.
Fig. 10. TEM images of the S2: (a) BF image, B2 grain with LAGB; (b) HRSTEM image of the selected region from Fig. 10(a); (c) SAED patterns for the upper sub-grain shown in Fig. 10(b); (d) SAED patterns for LAGB as shown Fig. 10(b); (e) SAED patterns for lower sub-grain as shown in Fig. 10(b); (f) inset of Fig. 10(b), illustrating the dislocations at higher magnification.
Joint | Room temperature | ||
---|---|---|---|
UTS (MPa) | Elongation (%) | Fracture location | |
J-0 | 957 | 10.9 | FZ |
J-1 | 1062 | 11.2 | Junction of FZ and HAZ |
BM | 1060 | 13.4 | BM |
Table 5. Room temperature tensile properties of J-0, J-1 and the BM.
Joint | Room temperature | ||
---|---|---|---|
UTS (MPa) | Elongation (%) | Fracture location | |
J-0 | 957 | 10.9 | FZ |
J-1 | 1062 | 11.2 | Junction of FZ and HAZ |
BM | 1060 | 13.4 | BM |
Region # | Chemical composition (at.%) | ||||||
---|---|---|---|---|---|---|---|
Ti | Al | Nb | Hf | Zr | Cu | Ni | |
L1 | Balance | 20.89 | 25.16 | - | - | - | - |
L2 | Balance | 19.22 | 25.87 | - | - | - | - |
L3 | Balance | 20.91 | 25.77 | - | - | - | - |
L4 | Balance | 22.80 | 28.77 | 0.41 | 0.78 | 0.39 | 0.58 |
L5 | Balance | 14.25 | 25.24 | 1.26 | 2.87 | 1.21 | 3.25 |
L6 | Balance | 21.54 | 26.96 | 0.38 | 0.82 | 0.42 | 0.64 |
Table 6. Chemical composition of the marked regions in Fig. 14.
Region # | Chemical composition (at.%) | ||||||
---|---|---|---|---|---|---|---|
Ti | Al | Nb | Hf | Zr | Cu | Ni | |
L1 | Balance | 20.89 | 25.16 | - | - | - | - |
L2 | Balance | 19.22 | 25.87 | - | - | - | - |
L3 | Balance | 20.91 | 25.77 | - | - | - | - |
L4 | Balance | 22.80 | 28.77 | 0.41 | 0.78 | 0.39 | 0.58 |
L5 | Balance | 14.25 | 25.24 | 1.26 | 2.87 | 1.21 | 3.25 |
L6 | Balance | 21.54 | 26.96 | 0.38 | 0.82 | 0.42 | 0.64 |
Fig. 16. A comparative analysis between solidification mechanism of weld pool, J-0 and J-1: (a) J-0, normal mode of solidification through nucleation and growth from BM; (b) J-1, effect of heterogenous nucleation on composite mode of solidification and grain refinement due to addition of the HEA in LBWJ. (Note: Fig. 16 was developed by combining the results from Figs. 6 and 15).
[1] |
L. Germann, D. Banerjee, J.Y. Guédou, J.L. Strudel, Intermetallics 13 (2005) 920-924.
DOI URL |
[2] | G. Choubey, L. Suneetha, K.M. Pandey, Mater. Today Proc. 5 (2018) 1321-1326. |
[3] |
J.C. Williams, E.A. Starke, Acta Mater. 51 (2003) 5775-5799.
DOI URL |
[4] |
M. Peters, J. Kumpfert, C.H. Ward, C. Leyens, Adv. Eng. Mater. 5 (2003) 419-427.
DOI URL |
[5] |
C.J. Cowen, C.J. Boehlert, Intermetallics 14 (2006) 412-422.
DOI URL |
[6] |
X. Jiao, G. Liu, D. Wang, Y. Wu, Mater. Sci. Eng. A 680 (2017) 182-189.
DOI URL |
[7] |
X. Jiao, D. Wang, J. Yang, Z. Liu, G. Liu, J. Alloy. Compd. 789 (2019) 639-646.
DOI URL |
[8] |
Y. Zhang, Y. Liu, L. Yu, H. Liang, Y. Huang, Z. Ma, Mater. Sci. Eng. A 776 (2020) 139043.
DOI URL |
[9] |
H. Zhang, N. Yan, H. Liang, Y. Liu, J. Mater. Sci. Technol. 80 (2021) 203-216.
DOI URL |
[10] | K. Goyal, N. Sardana, Mater. Today Proc. 41 (2021) 951-968. |
[11] |
Y. Zhao, L.B. Liu, L.G. Zhang, J.J. Yang, P.J. Masset, Metals 10 (2020) 1-16 (Basel).
DOI URL |
[12] |
T.K. Nandy, D. Banerjee, Intermetallics 8 (2020) 1269-1282.
DOI URL |
[13] |
B. Shao, D. Shan, B. Guo, Y. Zong, Int. J. Plast. 113 (2019) 18-34.
DOI URL |
[14] | J. Cao, J. Qi, X. Song, J. Feng, Materials 7 (2014) 4 930-4 962 (Basel). |
[15] |
Z. Lei, Z. Dong, Y. Chen, J. Zhang, R. Zhu, Mater. Des. 46 (2013) 151-156.
DOI URL |
[16] |
Y. Chen, K. Zhang, X. Hu, Z. Lei, L. Ni, J. Alloy. Compd. 681 (2016) 175-185.
DOI URL |
[17] |
X. Jiao, B. Kong, W. Tao, G. Liu, H. Ning, Mater. Des. 130 (2017) 166-174.
DOI URL |
[18] |
K. Zhang, L. Ni, Z. Lei, Y. Chen, X. Hu, Mater. Charact. 123 (2017) 51-57.
DOI URL |
[19] |
Z. Lei, K. Zhang, H. Zhou, L. Ni, Y. Chen, J. Mater. Process. Technol. 255 (2018) 477-487.
DOI URL |
[20] |
K. Zhang, Z. Lei, Y. Chen, K. Yang, Y. Bao, Mater. Sci. Eng. A 744 (2019) 436-444.
DOI URL |
[21] |
K. Zhang, Z. Lei, L. Ni, H. Zhou, Y. Chen, J. Mater. Process. Technol. 288 (2021) 116848.
DOI URL |
[22] |
D. Luo, Y. Xiao, L. Hardwick, R. Snell, M. Way, X.S. Morell, F. Livera, N. Ludford, C. Panwisawas, H. Dong, R. Goodall, Entropy 23 (2021) 78.
DOI URL |
[23] |
X. Ren, H. Ren, Y. Shang, H. Xiong, K. Zhang, J. Zheng, D. Liu, J. Lin, J. Jiang, Prog. Nat. Sci. Mater. Int. 30 (2020) 410-416.
DOI URL |
[24] |
Y.H. Meng, F.H. Duan, J. Pan, Y. Li, Intermetallics 111 (2019) 106515.
DOI URL |
[25] |
G. Yi, X. Zhang, J. Qin, J. Ning, S. Zhang, M. Ma, R. Liu, Comput. Mater. Sci. 110 (2015) 121-125.
DOI URL |
[26] |
K.K. Song, D.Y. Wu, S. Pauly, C.X. Peng, L. Wang, J. Eckert, Intermetallics 67 (2015) 177-184.
DOI URL |
[27] |
D. Piorunek, J. Frenzel, N. Jöns, C. Somsen, G. Eggeler, Intermetallics 122 (2020) 106792.
DOI URL |
[28] |
S.H. Chang, P.T. Lin, C.W. Tsai, Sci. Rep. 9 (2019) 1-7.
DOI URL |
[29] |
M. Abdel-Hady, K. Hinoshita, M. Morinaga, Scr. Mater. 55 (2006) 477-480.
DOI URL |
[30] |
M. Abdel-Hady, H. Fuwa, K. Hinoshita, H. Kimura, Y. Shinzato, M. Morinaga, Scr. Mater. 57 (2007) 1000-1003.
DOI URL |
[31] |
J. Lin, S. Ozan, Y. Li, D. Ping, X. Tong, G. Li, C. Wen, Sci. Rep. 6 (2016) 1-11.
DOI URL |
[32] |
H. Fu, F. Xie, Sci. Technol. Adv. Mater. 2 (2001) 193-196.
DOI URL |
[33] |
R. Trivedi, W. Kurz, Acta Metall. 34 (1986) 1663-1670.
DOI URL |
[34] | S. Kou, Welding Metallurgy, John Wiley & Sons, Inc., Hoboken, New Jersey, 2003. |
[35] |
M. Hakamada, Y. Nakamoto, H. Matsumoto, H. Iwasaki, Y. Chen, H. Kusuda, M. Mabuchi, Mater. Sci. Eng. A 457 (2007) 120-126.
DOI URL |
[36] |
H.M. Zahid, J.T. Xiong, J. Li, S. Farah, L.J. Zhang, X.R. Zhou, Mater. Sci. Eng. A 825 (2021) 141843.
DOI URL |
[37] |
P. Thirathipviwat, G. Song, J. Bednarcik, U. Kühn, T. Gemming, K. Nielsch, J. Han, Prog. Nat. Sci. Mater. Int. 30 (2020) 545-551.
DOI URL |
[1] | Fan Yang, Lilin Wang, Zhijun Wang, Qingfeng Wu, Kexuan Zhou, Xin Lin, Weidong Huang. Ultra strong and ductile eutectic high entropy alloy fabricated by selective laser melting [J]. J. Mater. Sci. Technol., 2022, 106(0): 128-132. |
[2] | Yuan-Yuan Tan, Zhong-Jun Chen, Ming-Yao Su, Gan Ding, Min-Qiang Jiang, Zhou-Can Xie, Yu Gong, Tao Wu, Zhong-Hua Wu, Hai-Ying Wang, Lan-Hong Dai. Lattice distortion and magnetic property of high entropy alloys at low temperatures [J]. J. Mater. Sci. Technol., 2022, 104(0): 236-243. |
[3] | Hongge Li, Wenjie Zhao, Tian Chen, Yongjiang Huang, Jianfei Sun, Ping Zhu, Yunzhuo Lu, Alfonso H.W. Ngan, Daqing Wei, Qing Du, Yongchun Zou. Beneficial effects of deep cryogenic treatment on mechanical properties of additively manufactured high entropy alloy: cyclic vs single cryogenic cooling [J]. J. Mater. Sci. Technol., 2022, 115(0): 40-51. |
[4] | Y.F. Zhao, H.H. Chen, D.D. Zhang, J.Y. Zhang, Y.Q. Wang, K. Wu, G. Liu, J. Sun. Unusual He-ion irradiation strengthening and inverse layer thickness-dependent strain rate sensitivity in transformable high-entropy alloy/metal nanolaminates: A comparison of Fe50Mn30Co10Cr10/Cu vs Fe50Mn30Co10Ni10/Cu [J]. J. Mater. Sci. Technol., 2022, 116(0): 199-213. |
[5] | Jingbo Gao, Yuting Jin, Yongqiang Fan, Dake Xu, Lei Meng, Cong Wang, Yuanping Yu, Deliang Zhang, Fuhui Wang. Fabricating antibacterial CoCrCuFeNi high-entropy alloy via selective laser melting and in-situ alloying [J]. J. Mater. Sci. Technol., 2022, 102(0): 159-165. |
[6] | Yu Yin, Qiyang Tan, Qiang Sun, Wangrui Ren, Jingqi Zhang, Shiyang Liu, Yingang Liu, Michael Bermingham, Houwen Chen, Ming-Xing Zhang. Heterogeneous lamella design to tune the mechanical behaviour of a new cost-effective compositionally complicated alloy [J]. J. Mater. Sci. Technol., 2022, 96(0): 113-125. |
[7] | Lin He, Shiwei Wu, Anping Dong, Haibin Tang, Dafan Du, Guoliang Zhu, Baode Sun, Wentao Yan. Selective laser melting of dense and crack-free AlCoCrFeNi2.1 eutectic high entropy alloy: Synergizing strength and ductility [J]. J. Mater. Sci. Technol., 2022, 117(0): 133-145. |
[8] | Jufu Jiang, Minjie Huang, Ying Wang, Yingze Liu, Ying Zhang. Microstructure evolution and formation mechanism of CoCrCu1.2FeNi high entropy alloy during the whole process of semi‐solid billet preparation [J]. J. Mater. Sci. Technol., 2022, 120(0): 172-185. |
[9] | Meng Dai, P.P. Cao, H.L. Huang, S.H. Jiang, X.J. Liu, H. Wang, Y. Wu, Z.P. Lu. Microstructural stability and aging behavior of refractory high entropy alloys at intermediate temperatures [J]. J. Mater. Sci. Technol., 2022, 122(0): 243-254. |
[10] | Chen Chen, Yanzhou Fan, Wei Wang, Hang Zhang, Jialiang Hou, Ran Wei, Tao Zhang, Tan Wang, Mo Li, Shaokang Guan, Fushan Li. Synthesis of ultrafine dual-phase structure in CrFeCoNiAl0.6 high entropy alloy via solid-state phase transformation during sub-rapid solidification [J]. J. Mater. Sci. Technol., 2022, 113(0): 253-260. |
[11] | Jianping Yang, Linwen Jiang, Zhonghao Liu, Zhuo Tang, Anhua Wu. Multifunctional interstitial-carbon-doped FeCoNiCu high entropy alloys with excellent electromagnetic-wave absorption performance [J]. J. Mater. Sci. Technol., 2022, 113(0): 61-70. |
[12] | S. Shuang, Q. Yu, X. Gao, Q.F. He, J.Y. Zhang, S.Q. Shi, Y. Yang. Tuning the microstructure for superb corrosion resistance in eutectic high entropy alloy [J]. J. Mater. Sci. Technol., 2022, 109(0): 197-208. |
[13] | Pengfei Zhou, Dong Liu, Yuyun Chen, Mingpeng Chen, Yunxiao Liu, Shi Chen, Chi Tat Kwok, Yuxin Tang, Shuangpeng Wang, Hui Pan. Corrosion engineering boosting bulk Fe50Mn30Co10Cr10 high-entropy alloy as high-efficient alkaline oxygen evolution reaction electrocatalyst [J]. J. Mater. Sci. Technol., 2022, 109(0): 267-275. |
[14] | Shiyu Wu, Dongxu Qiao, Haitao Zhang, Junwei Miao, Hongliang Zhao, Jun Wang, Yiping Lu, Tongmin Wang, Tingju Li. Microstructure and mechanical properties of CxHf0.25NbTaW0.5 refractory high-entropy alloys at room and high temperatures [J]. J. Mater. Sci. Technol., 2022, 97(0): 229-238. |
[15] | H.T. Jeong, W.J. Kim. Effect of roll speed ratio on the texture and microstructural evolution of an FCC high-entropy alloy during differential speed rolling [J]. J. Mater. Sci. Technol., 2022, 111(0): 152-166. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||