J. Mater. Sci. Technol. ›› 2022, Vol. 120: 227-252.DOI: 10.1016/j.jmst.2021.10.056
• Research Article • Previous Articles Next Articles
Lulu Guoa, Lina Zhanga,*(), Joel Anderssonb, Olanrewaju Ojoa,*(
)
Received:
2021-04-29
Revised:
2021-09-06
Accepted:
2021-10-03
Published:
2022-09-01
Online:
2022-03-09
Contact:
Lina Zhang,Olanrewaju Ojo
About author:
olanrewaju.ojo@umanitoba.ca (O. Ojo).Lulu Guo, Lina Zhang, Joel Andersson, Olanrewaju Ojo. Additive manufacturing of 18% nickel maraging steels: Defect, structure and mechanical properties: A review[J]. J. Mater. Sci. Technol., 2022, 120: 227-252.
Wire | Processing parameter | Refs. | ||
---|---|---|---|---|
Empty Cell | Arc current (A) | Travel speed (m/min) | Wire feed speed (m/min) | Empty Cell |
C300 | 150 | 0.18 | 1.56 | [ |
C250 | 180 | 0.20 | 1.80 | [ |
Table 1. Overview of WAAM technique for fabricating 18% nickel maraging steels.
Wire | Processing parameter | Refs. | ||
---|---|---|---|---|
Empty Cell | Arc current (A) | Travel speed (m/min) | Wire feed speed (m/min) | Empty Cell |
C300 | 150 | 0.18 | 1.56 | [ |
C250 | 180 | 0.20 | 1.80 | [ |
Fig. 4. Macrostructure features in the vertical cross-section of additive manufactured 18% nickel maraging steels: (a) L-PBF produced C300 part [36]; (b) L-DED fabricated C300 part [99]; and (c) WAAM fabricated C250 part [91]. ↑ Shows build direction.
Laser power (W) | Laser energy density (J/mm3) | Molten pool depth (μm) | Molten pool width (μm) | Refs. |
---|---|---|---|---|
255 | 81.61 | 50-100 | 50 | [ |
≤100 | - | 80-90 | - | [ |
285 | 67.47 | 45 | 80 | [ |
285 | 67.47 | 40-50 | 80-100 | [ |
- | - | 35-55 | 45-70 | [ |
Table 2. Dimensions of molten pools in L-PBF produced C300 parts.
Laser power (W) | Laser energy density (J/mm3) | Molten pool depth (μm) | Molten pool width (μm) | Refs. |
---|---|---|---|---|
255 | 81.61 | 50-100 | 50 | [ |
≤100 | - | 80-90 | - | [ |
285 | 67.47 | 45 | 80 | [ |
285 | 67.47 | 40-50 | 80-100 | [ |
- | - | 35-55 | 45-70 | [ |
Fig. 5. Solidification structures formed in the maraging steels produced by different AM techniques: (a) L-PBF produced C300 part [35]; (b) L-DED produced Fe-19Ni-xAl part [48]; and (c) WAAM built C250 part [91].
Fig. 6. Transmission electron microscopy (TEM) images of martensite formed in as-built L-PBF C300 part: (a) cellular structure; (b) high-density dislocations in cells in (a); and (c) selected area electron diffraction showing lath martensite [31].
Fig. 10. Pole figures of C250 single-pass multilayer maraging steel produced by WAAM technique: (a) as-built condition; (b) after rolling with 50 kN [114]. TD: transverse direction and ND: normal direction. The build direction is along ND.
Fig. 11. Crystallographic orientation maps (a-d) for different scanning strategies and corresponding {001} pole figures (e-h) of the top and side planes [108]. The build direction is along the z axis.
Fig. 13. Microstructure of L-PBF produced C300 parts after different heat treatments: (a) as-fabricated specimen; (b) specimen subjected to DAT (direct aged at 480 °C for 6 h); (c) specimen subjected to ST at 900 °C for 1 h; and (d) specimen subjected to SAT (solution annealed at 900 °C for 1 h+ aged at 480 °C for 6 h)) [41].
Fig. 14. TEM analysis of nanoprecipitate characteristics in L-PBF produced samples after being subjected to DAT: (a) massive nanoprecipitates embedded in martensite matrix, and (b) and (c) morphology of nanoprecipitates in (a) [31].
Fig. 16. Phase transformation in L-PBF built C300 maraging steels during the continuous heating with different heating rates: (a) phase transformation in the as-built and solution-treated parts during the continuous heating at heating rate of 0.167 °C/s; (b) phase transformation in the as-built parts during the continuous heating processes at heating rates of 0.167 and 5 °C/s; and (c) volume fraction of austenite in the as-built and solution-treated parts during continuous heating, which was observed through in-situ synchrotron XRD observations [122].
Fig. 17. Volume fraction of reverted austenite in L-PBF built C300 maraging steels in the as-built and solution-treated conditions during isothermal tempering at different intercritical temperatures: (a) 530 °C; (b) 570 °C; (c) 650 °C; (d) 670 °C [122]. Heating rate of 500 °C/s was used in the isothermal intercritical tempering processes.
Fig. 20. UTS and EL of L-PBF and WAAM built 18% nickel maraging steels after post-manufacturing heat treatments and those of conventionally produced alloys after SAT (The data shown in Fig. 20 are extracted from Appendix C).
Fig. 21. Hardness of C300 parts printed with different L-PBF build directions: (a) data derived from [31]; (b) data derived from [43]; (c) data derived from [89]; and (d) data derived from [81]. 0°, 45°, and 90° are the angles between the build direction and horizontal direction.
Fig. 22. Hardness distribution along the build direction of additive manufactured parts: (a) WAAM produced C250 part [6], and (b) L-DED built C300 part [46].
Fig. 23. Influence of AT on the hardness of L-PBF built C300 parts: (a) effect of aging time on the hardness of L-PBF built parts aged at various aging temperatures [39]; (b) time required for the peak hardness of L-PBF built parts aged at different aging temperatures (Data derived from [39] and [43]).
Fig. 24. Charpy impact toughness of L-PBF built C300 maraging steels in the as-fabricated and heat-treated conditions: (a) influence of solution temperature on the impact toughness with the duration of 1 h; (b) influence of solution time on the impact toughness at 900 °C; (c) effects of aging temperatures in DAT and SAT routines on the impact toughness with a holding time of 6 h; (d) effect of the aging duration in DAT and SAT on the impact toughness at 520 °C [41].
Fig. 25. Comparison in the fatigue resistance between L-PBF built and wrought C300 maraging steels: (a) fatigue crack growth rate as a function of the applied stress intensity factor range, which were obtained in the compact tension fatigue tests; (b) stress amplitude vs number of cycles to failure (S-N), which were acquired from fully-reversed, load controlled axial tension-compression fatigue tests. P means the applied load direction is parallel to build direction, and V represents the direction of the load is vertical to build direction in (a). 90° and 0° are the angles between the build direction and horizontal direction in (b).
Optimized processing parameter | Empty Cell | Empty Cell | Empty Cell | |||||
---|---|---|---|---|---|---|---|---|
Laser power (W) | Hatch spacing (mm) | Scanning speed (mm/s) | Layer thickness (mm) | Laser spot size (μm) | Scan strategies | Laser energy density (J/mm3) | Maximum relative density (%) | Refs. |
- | 0.115 | 900 | 0.045 | - | 90° | - | 99.97 | [ |
180 | 0.105 | 600 | 0.03 | 50 | - | - | 95.24 | [ |
200 | 0.105 | 600 | 0.03 | 150 | islands | 105.82 | 99.54±0.04 | [ |
180 | 0.105 | 600 | 0.03 | 60 | 90° | 95.24 | >99 | [ |
≤100 | 0.112 | 150 | 0.03 | 180 | 0° | - | 99.4 | [ |
105 | 0.112 | 150 | 0.03 | 180 | islands | 208.33 | - | [ |
≤100 | 0.10 | 200 | 0.04 | 200 | - | - | - | [ |
305 | 0.11 | 1,010 | 0.04 | - | - | 68.63 | - | [ |
285 | 0.11 | 960 | 0.04 | - | - | 67.47 | - | [ |
285 | 0.11 | 960 | 0.04 | 100 | 67° | 67.47 | 99.98 | [ |
150 | 0.10 | 800 | 0.02 | 80 | 67° | 93.75 | 99.18 | [ |
285 | 0.11 | 960 | 0.04 | 100 | 67° | 67.47 | 99.22±0.32 | [ |
255 | 0.05 | 2,083 | 0.03 | 100 | 90° | 81.61 | - | [ |
200 | 0.08 | Not applicable | 0.04 | 75 | 67° | - | - | [ |
120 | 0.10 | 500 | 0.02 | - | - | 120.00 | - | [ |
160 | 0.07 | 400 | - | 70 | 90° | - | 99.19 | [ |
450 | 0.07 | 2,500 | 0.04 | - | 90° | 64.29 | 99.34 | [ |
100 | 0.14 | 180 | 0.03 | 200 | islands | 132.28 | >99 | [ |
160 | 0.05 | 1,250 | 0.03 | 100 | 90° | 85.33 | 99.8 | [ |
100 | 0.14 | 180 | 0.03 | 200 | islands | 132.28 | 99.9 | [ |
285 | 0.11 | 960 | 0.04 | - | 67° | 67.47 | 99.9 | [ |
300 | 0.12 | 700 | 0.05 | 200 | islands | 71.43 | 99.8 | [ |
180 | 0.105 | 600 | 0.03 | 110 | - | 95.24 | 99.6 | [ |
120 | - | 500 | 0.02 | 55 | islands | - | - | [ |
170 | 0.10 | 1,250 | 0.02 | 100 | - | 68 | - | [ |
285 | 0.11 | 960 | 0.04 | - | - | - | - | [ |
170 | 0.10 | 1,250 | 0.02 | 100 | 67° | 68 | 99.47±0.04 | [ |
Overview of processing parameters of L-PBF technique to fabricate C300 parts.
Optimized processing parameter | Empty Cell | Empty Cell | Empty Cell | |||||
---|---|---|---|---|---|---|---|---|
Laser power (W) | Hatch spacing (mm) | Scanning speed (mm/s) | Layer thickness (mm) | Laser spot size (μm) | Scan strategies | Laser energy density (J/mm3) | Maximum relative density (%) | Refs. |
- | 0.115 | 900 | 0.045 | - | 90° | - | 99.97 | [ |
180 | 0.105 | 600 | 0.03 | 50 | - | - | 95.24 | [ |
200 | 0.105 | 600 | 0.03 | 150 | islands | 105.82 | 99.54±0.04 | [ |
180 | 0.105 | 600 | 0.03 | 60 | 90° | 95.24 | >99 | [ |
≤100 | 0.112 | 150 | 0.03 | 180 | 0° | - | 99.4 | [ |
105 | 0.112 | 150 | 0.03 | 180 | islands | 208.33 | - | [ |
≤100 | 0.10 | 200 | 0.04 | 200 | - | - | - | [ |
305 | 0.11 | 1,010 | 0.04 | - | - | 68.63 | - | [ |
285 | 0.11 | 960 | 0.04 | - | - | 67.47 | - | [ |
285 | 0.11 | 960 | 0.04 | 100 | 67° | 67.47 | 99.98 | [ |
150 | 0.10 | 800 | 0.02 | 80 | 67° | 93.75 | 99.18 | [ |
285 | 0.11 | 960 | 0.04 | 100 | 67° | 67.47 | 99.22±0.32 | [ |
255 | 0.05 | 2,083 | 0.03 | 100 | 90° | 81.61 | - | [ |
200 | 0.08 | Not applicable | 0.04 | 75 | 67° | - | - | [ |
120 | 0.10 | 500 | 0.02 | - | - | 120.00 | - | [ |
160 | 0.07 | 400 | - | 70 | 90° | - | 99.19 | [ |
450 | 0.07 | 2,500 | 0.04 | - | 90° | 64.29 | 99.34 | [ |
100 | 0.14 | 180 | 0.03 | 200 | islands | 132.28 | >99 | [ |
160 | 0.05 | 1,250 | 0.03 | 100 | 90° | 85.33 | 99.8 | [ |
100 | 0.14 | 180 | 0.03 | 200 | islands | 132.28 | 99.9 | [ |
285 | 0.11 | 960 | 0.04 | - | 67° | 67.47 | 99.9 | [ |
300 | 0.12 | 700 | 0.05 | 200 | islands | 71.43 | 99.8 | [ |
180 | 0.105 | 600 | 0.03 | 110 | - | 95.24 | 99.6 | [ |
120 | - | 500 | 0.02 | 55 | islands | - | - | [ |
170 | 0.10 | 1,250 | 0.02 | 100 | - | 68 | - | [ |
285 | 0.11 | 960 | 0.04 | - | - | - | - | [ |
170 | 0.10 | 1,250 | 0.02 | 100 | 67° | 68 | 99.47±0.04 | [ |
Alloy grade | Fabrication process | Build orientation | Test direction | UTS (MPa) | YS (MPa) | EL (%) | Hardness (HV) | Hardness (HRC) | Refs. |
---|---|---|---|---|---|---|---|---|---|
C300 | L-PBF | - | - | 1,187.6±10.4 | 914.9±12.5 | 6.14±1.33 | - | - | [ |
L-PBF | Horizontal | - | 1,165±7 | 915±7 | 12.4±0.1 | 320# | 34.8±0.2 | [ | |
L-PBF | Vertical | - | 1,085±19 | 920±24 | 11.3±0.3 | 332# | 35.7±1.1 | [ | |
L-PBF | Vertical | - | 1,060 | - | 4.2 | 349.2 | 36* | [ | |
L-PBF (Single exposure) | - | Parallel | 1,205 | 1,080 | 12.0 | - | - | [ | |
L-PBF (Single exposure) | - | Vertical | 1,100 | 1,050 | 12.1 | - | - | [ | |
L-PBF (Double exposure) | - | Parallel | 1,120 | 1,040 | 12.1 | - | - | [ | |
L-PBF (Double exposure) | - | Vertical | 1,010 | 900 | 8.3 | - | - | [ | |
L-PBF | Vertical | Parallel | 1,324.7±51 | 825.9±96 | 14.0±1.5 | - | - | [ | |
L-PBF | Vertical | Vertical | 1,260.1±79 | 768.0±29 | 13.9±2 | - | - | [ | |
L-PBF | - | Parallel | 1,080 | 999 | 11.3 | Around 370 | 38* | [ | |
L-PBF | - | Parallel | 1,155.2 | 1,019.7 | 11.70 | 348.6 | 36* | [ | |
L-PBF | - | - | 1,177.61 | - | 7.9 | 381.2 | 39* | [ | |
L-PBF | - | - | 1,290±114 | 1,214±99 | 13.3±1.9 | 376# | 39.9±0.1 | [ | |
L-PBF | - | - | 1,233±10 | 1,192±17 | 3.8±0.1 | - | - | [ | |
L-PBF | 0° | Parallel | 1,174 | 1,069 | 15.7 | 382 | 39* | [ | |
L-PBF | 45° | Parallel | 1,144 | 991 | 6.8 | 327 | 34* | [ | |
L-PBF | 90° | Parallel | 1,057 | 892 | 13.8 | 375 | 38* | [ | |
L-PBF | 0 | Parallel | 1,172 | 1,028 | 12.9 | 369 | 38* | [ | |
L-PBF | 45° | Parallel | 1,053 | 773 | 15.9 | 329 | 34* | [ | |
L-PBF | 90° | Parallel | 1,035 | 853 | 15.1 | 328 | 34* | [ | |
L-PBF | 0° | Vertical | 1,120 | 900 | 12 | - | - | [ | |
L-PBF | 90° | Vertical | 1,225 | 1,000 | 13.5 | - | - | [ | |
L-PBF | 0° | Parallel | 1,047.8±56.9 | 954.7±35.5 | 18.2±1.2 | About 399 | 41* | [ | |
L-PBF | 45° | Parallel | 1,024.0±37.6 | 949.5±42.1 | 14.4±1.5 | About 360 | 37* | [ | |
L-PBF | 90° | Parallel | 1,012.3±24.1 | 973.4±27.0 | 13.7±2.4 | About 400 | 41* | [ | |
L-DED | Vertical | - | 959.21±20.27 | - | - | 350.5 | 36* | [ | |
Wrought | - | - | 1,000-1,170 | 760-895 | 6-15 | 285-351# | 30-37 | [ | |
C250 | WAAM | Vertical | Parallel | 1,026±10 | 833±26 | 8.0±3.8 | - | - | [ |
WAAM | Vertical | Vertical | 1,118±94 | 904±78 | 11.7±0.8 | - | - | [ | |
Wrought | - | - | 1,000-1,140 | 725-895 | 8-16 | 271-332 | 28-35 | [ |
Mechanical performance of additive manufactured parts vs wrought parts.+
Alloy grade | Fabrication process | Build orientation | Test direction | UTS (MPa) | YS (MPa) | EL (%) | Hardness (HV) | Hardness (HRC) | Refs. |
---|---|---|---|---|---|---|---|---|---|
C300 | L-PBF | - | - | 1,187.6±10.4 | 914.9±12.5 | 6.14±1.33 | - | - | [ |
L-PBF | Horizontal | - | 1,165±7 | 915±7 | 12.4±0.1 | 320# | 34.8±0.2 | [ | |
L-PBF | Vertical | - | 1,085±19 | 920±24 | 11.3±0.3 | 332# | 35.7±1.1 | [ | |
L-PBF | Vertical | - | 1,060 | - | 4.2 | 349.2 | 36* | [ | |
L-PBF (Single exposure) | - | Parallel | 1,205 | 1,080 | 12.0 | - | - | [ | |
L-PBF (Single exposure) | - | Vertical | 1,100 | 1,050 | 12.1 | - | - | [ | |
L-PBF (Double exposure) | - | Parallel | 1,120 | 1,040 | 12.1 | - | - | [ | |
L-PBF (Double exposure) | - | Vertical | 1,010 | 900 | 8.3 | - | - | [ | |
L-PBF | Vertical | Parallel | 1,324.7±51 | 825.9±96 | 14.0±1.5 | - | - | [ | |
L-PBF | Vertical | Vertical | 1,260.1±79 | 768.0±29 | 13.9±2 | - | - | [ | |
L-PBF | - | Parallel | 1,080 | 999 | 11.3 | Around 370 | 38* | [ | |
L-PBF | - | Parallel | 1,155.2 | 1,019.7 | 11.70 | 348.6 | 36* | [ | |
L-PBF | - | - | 1,177.61 | - | 7.9 | 381.2 | 39* | [ | |
L-PBF | - | - | 1,290±114 | 1,214±99 | 13.3±1.9 | 376# | 39.9±0.1 | [ | |
L-PBF | - | - | 1,233±10 | 1,192±17 | 3.8±0.1 | - | - | [ | |
L-PBF | 0° | Parallel | 1,174 | 1,069 | 15.7 | 382 | 39* | [ | |
L-PBF | 45° | Parallel | 1,144 | 991 | 6.8 | 327 | 34* | [ | |
L-PBF | 90° | Parallel | 1,057 | 892 | 13.8 | 375 | 38* | [ | |
L-PBF | 0 | Parallel | 1,172 | 1,028 | 12.9 | 369 | 38* | [ | |
L-PBF | 45° | Parallel | 1,053 | 773 | 15.9 | 329 | 34* | [ | |
L-PBF | 90° | Parallel | 1,035 | 853 | 15.1 | 328 | 34* | [ | |
L-PBF | 0° | Vertical | 1,120 | 900 | 12 | - | - | [ | |
L-PBF | 90° | Vertical | 1,225 | 1,000 | 13.5 | - | - | [ | |
L-PBF | 0° | Parallel | 1,047.8±56.9 | 954.7±35.5 | 18.2±1.2 | About 399 | 41* | [ | |
L-PBF | 45° | Parallel | 1,024.0±37.6 | 949.5±42.1 | 14.4±1.5 | About 360 | 37* | [ | |
L-PBF | 90° | Parallel | 1,012.3±24.1 | 973.4±27.0 | 13.7±2.4 | About 400 | 41* | [ | |
L-DED | Vertical | - | 959.21±20.27 | - | - | 350.5 | 36* | [ | |
Wrought | - | - | 1,000-1,170 | 760-895 | 6-15 | 285-351# | 30-37 | [ | |
C250 | WAAM | Vertical | Parallel | 1,026±10 | 833±26 | 8.0±3.8 | - | - | [ |
WAAM | Vertical | Vertical | 1,118±94 | 904±78 | 11.7±0.8 | - | - | [ | |
Wrought | - | - | 1,000-1,140 | 725-895 | 8-16 | 271-332 | 28-35 | [ |
Alloy grade | Fabrication process | Heat treatment | Test direction | UTS (MPa) | YS (MPa) | EL (%) | Hardness (HV) | Hardness (HRC) | Refs. |
---|---|---|---|---|---|---|---|---|---|
C300 | L-PBF | ST (820 °C/2 h) | - | 1,030 | - | 14 | 309.1 | 32* | [ |
L-PBF | ST (840 °C/1 h) | - | 1,080.17 | - | 10.2 | 341.7 | 35* | [ | |
L-PBF (Horizontal) | ST (840 °C/1 h) | - | 1,025±5 | 962±6 | 14.4±0.4 | 277# | 29.8±1.3 | [ | |
L-PBF (Vertical) | ST (840 °C/1 h) | - | 983±13 | 923±16 | 13.7±0.7 | 262# | 27.5±0.4 | [ | |
L-PBF (Single) | ST (830 °C/1 h) | Parallel | 950 | 800 | 13.5 | - | - | [ | |
L-PBF (Single) | ST (830 °C/1 h) | Vertical | 950 | 800 | 11.8 | - | - | [ | |
L-PBF (Double) | ST (830 °C/1 h) | Parallel | 990 | 815 | 12.5 | - | - | [ | |
L-PBF (Double) | ST (830 °C/1 h) | Vertical | 1,000 | 810 | 11.9 | - | - | [ | |
L-PBF | DAT (460 °C/12 h) | Parallel | 2,089.7 | 2,034.0 | 5.05 | 628.9 | 54* | [ | |
L-PBF | DAT (480 °C/3 h) | - | 2,097±33 | - | 1.3±0.7 | - | - | [ | |
L-PBF | DAT (480 °C/5 h) | - | 2,217±73 | 1,998±32 | 1.6±0.26 | 746# | 58±0.1 | [ | |
L-PBF | DAT (480 °C/5 h) | Parallel | 2,088.3±190 | 1,833.3±65 | 3.2±0.6 | - | - | [ | |
L-PBF | DAT (480 °C/5 h) | Vertical | 2,216.1±156 | 1,953.0±87 | 3.1±0.4 | - | - | [ | |
L-PBF | DAT (490 °C/6 h) | Parallel | 1,944 | 1,867 | 3.5 | About 605 | 54* | [ | |
L-PBF (Horizontal) | DAT (490 °C/6 h) | - | 2,014±9 | 1,967±11 | 3.3±0.1 | 589# | 54.6±0.8 | [ | |
L-PBF (Vertical) | DAT (490 °C/6 h) | - | 1,942±31 | 1,867±22 | 2.8±0.1 | 549# | 52.9±1.2 | [ | |
L-PBF | DAT (500 °C/3 h) | Parallel | 2,031.6 | 1,968.1 | 5.12 | 605.5 | 54* | [ | |
L-PBF (Single) | SAT (830 °C/1 h +490 °C/6 h) | Parallel | 1,850 | 1,750 | 5.1 | - | - | [ | |
L-PBF (Single) | SAT (830 °C/1 h +490 °C/6 h) | Vertical | 1,800 | 1,720 | 4.5 | - | - | [ | |
L-PBF (Double) | SAT (830 °C/1 h +490 °C/6 h) | Vertical | 1,840 | 1,790 | 4.4 | - | - | [ | |
L-PBF | SAT (815 °C/0.5 h+460 °C/8 h) | - | 2,017.1±57.7 | 1,956.8±43.3 | 1.51±0.2 | - | - | [ | |
L-PBF | SAT (820 °C/1 h+490 °C/6 h) | Parallel | 1,992 | 1,943 | 2.5 | About 615 | 54* | [ | |
L-PBF | SAT (840 °C/1 h+480 °C/6 h) | Vertical | 2,163.92 | - | 2.5 | 645.9 | 54* | [ | |
L-PBF | SAT (820 °C/2 h+500 °C/4 h) | - | 1,830 | - | 2.3 | 587.5 | 53* | [ | |
L-PBF (Horizontal) | SAT (840 °C/1 h+490 °C/6 h) | - | 1,943±8 | 1,882±14 | 5.6±0.1 | 567# | 53.5±0.8 | [ | |
L-PBF (Vertical) | SAT (840 °C/1 h+490 °C/6 h) | - | 1,898±33 | 1,818±27 | 4.8±0.2 | 531# | 51.3±0.9 | [ | |
L-PBF (0°) | DAT (480 °C/3 h) | Parallel | 1821.8±24.2 | 1701.1±57.1 | 3.3±0.2 | About 705 | 56* | [ | |
L-PBF (45°) | DAT (480 °C/3 h) | Parallel | 1726.6±19.2 | 1714.4±20.9 | 1.7±0.3 | About 680 | 55* | [ | |
L-PBF (90°) | DAT (480 °C/3 h) | Parallel | 1740.6±58.0 | 1710.1±77.8 | 4.3±1.5 | About 705 | 56* | [ | |
L-PBF (0°) | DAT (490 °C/8 h) | Parallel | 2,020 | 1,969 | 8.3 | 608 | 54* | [ | |
L-PBF (45°) | DAT (490 °C/8 h) | Parallel | 1,993 | 1,930 | 7.8 | 606 | 54* | [ | |
L-PBF (90°) | DAT (490 °C/8 h) | Parallel | 1,978 | 1,912 | 4.2 | 615 | 54* | [ | |
L-PBF (0°) | DAT (490 °C/8 h) | Parallel | 2,047 | 1,998 | - | 636 | 54* | [ | |
L-PBF (45°) | DAT (490 °C/8 h) | Parallel | 2,069 | 2,013 | 3.4 | 635 | 54* | [ | |
L-PBF (90°) | DAT (490 °C/8 h) | Parallel | 2,067 | 2,005 | 5.5 | 640 | 54* | [ | |
L-DED | SAT (815 °C/1 h+ 490 °C/4 h) | - | 1,561.79±16.52 | - | - | 533.4 | 51* | [ | |
Wrought | SAT (815 °C/1 h+ 480 °C/3 h) | - | 2,050 | 2,000 | 7 | 589# | 54 | [ | |
C250 | WAAM (90°) | SAT (815 °C/1 h+482 °C/3 h) | Parallel | 1,345±19 | 1,227±31 | 6.0±1.7 | - | - | [ |
WAAM (90°) | SAT (815 °C/1 h+482 °C/3 h) | Vertical | 1,410±32 | 1,303±29 | 8.5±3.3 | - | - | [ | |
Wrought | ST (815 °C/1 h) + AT (480 °C/3 h) | - | 1,800 | 1,700 | 8 | - | - | [ |
Mechanical performance of additive manufactured parts after different heat treatments and wrought parts after standard heat treatment.
Alloy grade | Fabrication process | Heat treatment | Test direction | UTS (MPa) | YS (MPa) | EL (%) | Hardness (HV) | Hardness (HRC) | Refs. |
---|---|---|---|---|---|---|---|---|---|
C300 | L-PBF | ST (820 °C/2 h) | - | 1,030 | - | 14 | 309.1 | 32* | [ |
L-PBF | ST (840 °C/1 h) | - | 1,080.17 | - | 10.2 | 341.7 | 35* | [ | |
L-PBF (Horizontal) | ST (840 °C/1 h) | - | 1,025±5 | 962±6 | 14.4±0.4 | 277# | 29.8±1.3 | [ | |
L-PBF (Vertical) | ST (840 °C/1 h) | - | 983±13 | 923±16 | 13.7±0.7 | 262# | 27.5±0.4 | [ | |
L-PBF (Single) | ST (830 °C/1 h) | Parallel | 950 | 800 | 13.5 | - | - | [ | |
L-PBF (Single) | ST (830 °C/1 h) | Vertical | 950 | 800 | 11.8 | - | - | [ | |
L-PBF (Double) | ST (830 °C/1 h) | Parallel | 990 | 815 | 12.5 | - | - | [ | |
L-PBF (Double) | ST (830 °C/1 h) | Vertical | 1,000 | 810 | 11.9 | - | - | [ | |
L-PBF | DAT (460 °C/12 h) | Parallel | 2,089.7 | 2,034.0 | 5.05 | 628.9 | 54* | [ | |
L-PBF | DAT (480 °C/3 h) | - | 2,097±33 | - | 1.3±0.7 | - | - | [ | |
L-PBF | DAT (480 °C/5 h) | - | 2,217±73 | 1,998±32 | 1.6±0.26 | 746# | 58±0.1 | [ | |
L-PBF | DAT (480 °C/5 h) | Parallel | 2,088.3±190 | 1,833.3±65 | 3.2±0.6 | - | - | [ | |
L-PBF | DAT (480 °C/5 h) | Vertical | 2,216.1±156 | 1,953.0±87 | 3.1±0.4 | - | - | [ | |
L-PBF | DAT (490 °C/6 h) | Parallel | 1,944 | 1,867 | 3.5 | About 605 | 54* | [ | |
L-PBF (Horizontal) | DAT (490 °C/6 h) | - | 2,014±9 | 1,967±11 | 3.3±0.1 | 589# | 54.6±0.8 | [ | |
L-PBF (Vertical) | DAT (490 °C/6 h) | - | 1,942±31 | 1,867±22 | 2.8±0.1 | 549# | 52.9±1.2 | [ | |
L-PBF | DAT (500 °C/3 h) | Parallel | 2,031.6 | 1,968.1 | 5.12 | 605.5 | 54* | [ | |
L-PBF (Single) | SAT (830 °C/1 h +490 °C/6 h) | Parallel | 1,850 | 1,750 | 5.1 | - | - | [ | |
L-PBF (Single) | SAT (830 °C/1 h +490 °C/6 h) | Vertical | 1,800 | 1,720 | 4.5 | - | - | [ | |
L-PBF (Double) | SAT (830 °C/1 h +490 °C/6 h) | Vertical | 1,840 | 1,790 | 4.4 | - | - | [ | |
L-PBF | SAT (815 °C/0.5 h+460 °C/8 h) | - | 2,017.1±57.7 | 1,956.8±43.3 | 1.51±0.2 | - | - | [ | |
L-PBF | SAT (820 °C/1 h+490 °C/6 h) | Parallel | 1,992 | 1,943 | 2.5 | About 615 | 54* | [ | |
L-PBF | SAT (840 °C/1 h+480 °C/6 h) | Vertical | 2,163.92 | - | 2.5 | 645.9 | 54* | [ | |
L-PBF | SAT (820 °C/2 h+500 °C/4 h) | - | 1,830 | - | 2.3 | 587.5 | 53* | [ | |
L-PBF (Horizontal) | SAT (840 °C/1 h+490 °C/6 h) | - | 1,943±8 | 1,882±14 | 5.6±0.1 | 567# | 53.5±0.8 | [ | |
L-PBF (Vertical) | SAT (840 °C/1 h+490 °C/6 h) | - | 1,898±33 | 1,818±27 | 4.8±0.2 | 531# | 51.3±0.9 | [ | |
L-PBF (0°) | DAT (480 °C/3 h) | Parallel | 1821.8±24.2 | 1701.1±57.1 | 3.3±0.2 | About 705 | 56* | [ | |
L-PBF (45°) | DAT (480 °C/3 h) | Parallel | 1726.6±19.2 | 1714.4±20.9 | 1.7±0.3 | About 680 | 55* | [ | |
L-PBF (90°) | DAT (480 °C/3 h) | Parallel | 1740.6±58.0 | 1710.1±77.8 | 4.3±1.5 | About 705 | 56* | [ | |
L-PBF (0°) | DAT (490 °C/8 h) | Parallel | 2,020 | 1,969 | 8.3 | 608 | 54* | [ | |
L-PBF (45°) | DAT (490 °C/8 h) | Parallel | 1,993 | 1,930 | 7.8 | 606 | 54* | [ | |
L-PBF (90°) | DAT (490 °C/8 h) | Parallel | 1,978 | 1,912 | 4.2 | 615 | 54* | [ | |
L-PBF (0°) | DAT (490 °C/8 h) | Parallel | 2,047 | 1,998 | - | 636 | 54* | [ | |
L-PBF (45°) | DAT (490 °C/8 h) | Parallel | 2,069 | 2,013 | 3.4 | 635 | 54* | [ | |
L-PBF (90°) | DAT (490 °C/8 h) | Parallel | 2,067 | 2,005 | 5.5 | 640 | 54* | [ | |
L-DED | SAT (815 °C/1 h+ 490 °C/4 h) | - | 1,561.79±16.52 | - | - | 533.4 | 51* | [ | |
Wrought | SAT (815 °C/1 h+ 480 °C/3 h) | - | 2,050 | 2,000 | 7 | 589# | 54 | [ | |
C250 | WAAM (90°) | SAT (815 °C/1 h+482 °C/3 h) | Parallel | 1,345±19 | 1,227±31 | 6.0±1.7 | - | - | [ |
WAAM (90°) | SAT (815 °C/1 h+482 °C/3 h) | Vertical | 1,410±32 | 1,303±29 | 8.5±3.3 | - | - | [ | |
Wrought | ST (815 °C/1 h) + AT (480 °C/3 h) | - | 1,800 | 1,700 | 8 | - | - | [ |
[1] |
S. Floreen, Metall. Rev. 13 (1968) 115-128.
DOI URL |
[2] | C. Carson, in: ASM Handbook, Vol. 4D, Heat Treat. Irons Steels, 2014, pp. 468-480. |
[3] | X. Xu, Wire + Arc Additive Manufacture of New and Multiple Materials, Cran- field University, 2018. |
[4] | R.F. Decker, J.T. Eash, A.J. Goldman, Trans. ASM. 55 (1962) 58-76. |
[5] | P.R. Sakai, M.S.F. Lima, L. Fanton, C.V. Gomes, S. Lombardo, D.F. Silva, A.J. Ab- dalla, Proc. Eng. 114 (2015) 291-297. |
[6] |
X. Xu, S. Ganguly, J. Ding, S. Guo, S. Williams, F. Martina, Mater. Charact. 143 (2018) 152-162.
DOI URL |
[7] |
B. Rohit, N.R. Muktinutalapati, Mater. Sci. Technol. 34 (2018) 253-260.
DOI URL |
[8] | 18 Percent Nickel Maraging Steels - Engineering Properties, 1976 Publication No.4419. |
[9] |
V.K. Vasudevan, S.J. Kim, C.M. Wayman, Metall. Trans. A 21 A (1990) 2655-2668.
DOI URL |
[10] | Allegheny Technologies Incorporated, ATI C-200 /C-250 / C-300 C-350 techni- cal data sheet, 2012. |
[11] | A. Wi ′sniewski, B. Garbarz, W. Burian, J. Marcisz, Probl. Tech. Uzbroj. 42 (2013) 33-41. |
[12] | J. Marcisz, B. Garbarz, W. Burian, M. Adamczyk, A. Wisniewski, in: 26th Int. Symp. Ballist., 2011, pp. 1595-1606. |
[13] | B. Garbarz, J. Marcisz, M. Adamczyk, A. Wi ′sniewski, Probl. Mechatroniki Uzbroj. Lotnictwo, In ˙zynieria Bezpiecze ′nstwa. 1 (2011) 25-36. |
[14] |
V.J. Sundaram, Bull. Mater. Sci. 19 (1996) 1025-1029.
DOI URL |
[15] |
V. Diwakar, S. Arumugham, T.S. Lakshmanan, B.K. Sarkar, J. Mater. Sci. 20 (1985) 1351-1356.
DOI URL |
[16] |
S.V.S. Narayana Murty, G. Sudarsana Rao, A. Venugopal, P. Ramesh Narayanan, S.C. Sharma, K.M. George, Metallogr. Microstruct. Anal. 3 (2014) 433-447.
DOI URL |
[17] | J.C.O. Lopes, Ciência Tecnol. Dos Mater. 20 (2008) 78-82. |
[18] | I. Perlmutter, V. DePierre, Arch. Eisenhuettenwes. 37 (9) (1966) 701-718. |
[19] | D. Klobčar, J. Tuček, B. Taljat, 472, 2008, pp. 198-207. |
[20] | K.D. Fuchs, in:6TH Int. Tool. Conf., 2007, pp. 17-26. |
[21] |
D. Klobčar, J. Tuček, B. Taljat, L. Kosec, M. Pleterski, Comput. Mater. Sci. 44 (2008) 515-522.
DOI URL |
[22] | M.A. Kottman, D. Schwam, 2015. |
[23] |
J.O. Milewski, G.K. Lewis, D.J. Thoma, G.I. Keel, R.B. Nemec, R.A. Reinert, J. Mater. Process. Technol. 75 (1998) 165-172.
DOI URL |
[24] |
T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid A. De, W. Zhang, Prog. Mater. Sci. 92 (2018) 112-224.
DOI URL |
[25] |
T.D. Ngo, A. Kashani, G. Imbalzano, K.T.Q. Nguyen, D. Hui, Compos. Part B Eng. 143 (2018) 172-196.
DOI URL |
[26] |
B. Wu, Z. Pan, D. Ding, D. Cuiuri, H. Li, J. Xu, J. Norrish, J. Manuf. Process. 35 (2018) 127-139.
DOI URL |
[27] | J.J. Beaman, C.R. Deckard, Selective laser sinterng with assisted powder han- dling, U.S, Patent 5053090 (1991). |
[28] | ASTM International, Rapid Manuf. Assoc. 10.04 (2013) 10-12. |
[29] |
D. Herzog, V. Seyda, E. Wycisk, C. Emmelmann, Acta Mater. 117 (2016) 371-392.
DOI URL |
[30] |
J.P. Oliveira, T.G. Santos, R.M. Miranda, Prog. Mater. Sci. 107 (2020) 100590.
DOI URL |
[31] |
C. Tan, K. Zhou, M. Kuang, W. Ma, T. Kuang, Sci. Technol. Adv. Mater. 19 (2018) 746-758.
DOI URL |
[32] |
S. Bodziak, K.S. Al-Rubaie, L.D. Valentina, F.H. Lafratta, E.C. Santos, A.M. Zanatta, Y. Chen, Mater. Charact. 151 (2019) 73-83.
DOI URL |
[33] |
N. Takata, R. Nishida, A. Suzuki, M. Kobashi, M. Kato, Metals 8 (2018) 440.
DOI URL |
[34] |
E.A. Jägle, Z. Sheng, L. Wu, L. Lu, J. Risse, A. Weisheit, D. Raabe, JOM 68 (2016) 943-949.
DOI URL |
[35] |
R. Casati, J.N. Lemke, A. Tuissi, M. Vedani, Metals 6 (2016) 218.
DOI URL |
[36] |
C. Tan, K. Zhou, W. Ma, P. Zhang, M. Liu, T. Kuang, Mater. Des. 134 (2017) 23-34.
DOI URL |
[37] |
S. Gorsse, C. Hutchinson, M. Gouné, R. Banerjee, Sci. Technol. Adv. Mater. 18 (2017) 584-610.
DOI URL |
[38] | K. Kempen, E. Yasa, L. Thijs, J.P. Kruth, J. Van Humbeeck, Phys. Proc. 12 (2011) 255-263. |
[39] |
W.F. Guo, C. Guo, Q. Zhu, Mater. Sci. Forum 941 (2018) 2160-2166.
DOI URL |
[40] | C. Tan, K. Zhou, X. Tong, Y. Huang, J. Li, W. Ma, F. Li, T. Kuang, in: 2016 6th Int. Conf. Adv. Des. Manuf. Eng. (ICADME 2016), 2016, pp. 404-410. |
[41] |
Y. Bai, D. Wang, Y. Yang, H. Wang, Mater. Sci. Eng. A 760 (2019) 105-117.
DOI URL |
[42] |
D. Croccolo, M. De Agostinis, S. Fini, G. Olmi, F. Robusto, S. Ć. Kostić, A. Vranić, N. Bogojević, Metals 8 (2018) 505.
DOI URL |
[43] |
B. Mooney, K.I. Kourousis, R. Raghavendra, Addit. Manuf. 25 (2019) 19-31.
DOI |
[44] | T. Bhardwaj, M. Shukla, Mater. Today Proc. 5 (2018) 20485-20491. |
[45] | T. Bhardwaj, M. Shukla, Mater. Today Proc. 18 (2019) 3842-3848. |
[46] |
E.A. Jägle, Z. Sheng, P. Kürnsteiner, S. Ocylok, A. Weisheit, D. Raabe, Materials 10 (2017) 8.
DOI URL |
[47] |
Y. Yao, Y. Huang, B. Chen, C. Tan, Y. Su, J. Feng, Opt. Laser Technol. 105 (2018) 171-179.
DOI URL |
[48] |
P. Kürnsteiner, M.B. Wilms, A. Weisheit, P. Barriobero-Vila, E.A. Jägle, D. Raabe, Acta Mater. 129 (2017) 52-60.
DOI URL |
[49] |
X. Xu, J. Ding, S. Ganguly, C. Diao, S. Williams, J. Mater, Process. Technol. 252 (2018) 739-750.
DOI URL |
[50] |
P.K. Gokuldoss, S. Kolla, J. Eckert, Materials 10 (2017) 672.
DOI URL |
[51] |
D. Ding, Z. Pan, D. Cuiuri, H. Li, Int. J. Adv. Manuf. Technol. 81 (2015) 465-481, doi: 10.1007/s00170-015-7077-3.
DOI URL |
[52] |
K.A. Mumtaz, N. Hopkinson, J. Mater, Process. Technol. 210 (2010) 279-287.
DOI URL |
[53] |
K. Mumtaz, N. Hopkinson, Rapid Prototyp. J. 15 (2009) 96-103.
DOI URL |
[54] |
W.E. Frazier, J. Mater. Eng. Perform. 23 (2014) 1917-1928.
DOI URL |
[55] |
M.W. Khaing, J.Y.H. Fuh, L. Lu, J. Mater, Process. Technol. 113 (2001) 269-272.
DOI URL |
[56] | T. Grünberger, R. Domröse, Laser Tech. J. 11 (2014) 40-42. |
[57] |
J. Nandy, H. Sarangi, S. Sahoo, Lasers Manuf. Mater. Process. 6 (2019) 280-316.
DOI URL |
[58] | A. Zadi-Maad, R. Rohib, A. Irawan, in: IOP Conf. Ser. Mater. Sci. Eng., 2018, p. 12028. |
[59] | K.M. Taminger, R.A. Hafley, Electron Beam Freeform Fabrication for Cost Ef- fective Near-Net Shape Manufacturing, 2006 Virginia. |
[60] | L. Xue, M.U. Islam, Laser consolidation -a novel one-step manufacturing pro- cess for making net-shape functional components, In Cost Effective Manufac- ture via Net-Shape Processing (2006) pp. 15-1 -15-14. |
[61] |
P. Heinl, A. Rottmair, C. Körner, R.F. Singer, Adv. Eng. Mater. 9 (2007) 360-364.
DOI URL |
[62] |
F. Martina, J. Mehnen, S.W. Williams, P. Colegrove, F. Wang, J. Mater. Process. Technol. 212 (2012) 1377-1386.
DOI URL |
[63] |
S.W. Williams, F. Martina, A.C. Addison, J. Ding, G. Pardal, P. Colegrove, Mater. Sci. Technol. 32 (2016) 641-647.
DOI URL |
[64] |
C. Zhong, J. Liu, T. Zhao, T. Schopphoven, J. Fu, A. Gasser, J.H. Schleifenbaum, Appl. Sci. 10 (2020) 764.
DOI URL |
[65] | P. Ghosal, M.C. Majumder, A. Chattopadhyay, Mater. Today Proc. 5 (2018) 12509-12518. |
[66] | F.Q. Ramalho, M.L. Alves, M.S. Correia, L.M. Vilhena, A. Ramalho, in: Progress Digit. Phys. Manuf., Springer, Cham, 2019, pp. 225-239. |
[67] | S. Ocylok, M. Leichnitz, S. Thieme, S. Nowotny, in: 9th Int. Conf. Photonic Technol. LANE 2016, Bayerisches Laserzentrum GmbH, 2016, p. 4 |
[68] |
W.U.H. Syed, A.J. Pinkerton, L. Li, Appl. Surf. Sci. 252 (2006) 4803-4808.
DOI URL |
[69] | B. Dutta, S. Palaniswamy, J. Choi, L.J. Song, J. Mazumder, Adv. Mater. Process. 169 (2011) 33-36. |
[70] | B. Silwal, C. Gerdmann, S. Migues, K. Kardel, S. Xu, A. Durrence, in: Solid Free. Fabr. 2017 Proc. 28th Annu. Int. Solid Free. Fabr. Symp. - Addit. Manuf. Conf., 2017, pp. 1585-1593. |
[71] |
J. Mutua, S. Nakata, T. Onda, Z.C. Chen, Mater. Des. 139 (2018) 486-497.
DOI URL |
[72] |
A. Suzuki, R. Nishida, N. Takata, M. Kobashi, M. Kato, Addit. Manuf. 28 (2019) 160-168.
DOI |
[73] |
Y. Bai, Y. Yang, D. Wang, M. Zhang, Mater. Sci. Eng. A 703 (2017) 116-123.
DOI URL |
[74] |
L. Mugwagwa, I. Yadroitsev, S. Matope, Metals 9 (2019) 1042.
DOI URL |
[75] |
C. Casavola, S.L. Campanelli, C. Pappalettere, J. Strain Anal. Eng. Des. 44 (2009) 93-104.
DOI URL |
[76] |
R. Branco, J.D.M. Costa, F. Berto, S.M.J. Razavi, J.A.M. Ferreira, C. Capela, L. San- tos, F. Antunes, Metals 8 (2018) 32.
DOI URL |
[77] |
G. Casalino, S.L. Campanelli, N. Contuzzi, A.D. Ludovico, Opt. Laser Technol. 65 (2015) 151-158.
DOI URL |
[78] | C. Chen, X. Yan, Y. Xie, R. Huang, M. Kuang, W. Ma, R. Zhao, J. Wang, M. Liu, Z. Ren, H. Liao, Mater. Sci. Eng. A 743 (2019) 4 82-4 93. |
[79] | N.T. Aboulkhair, N.M. Everitt, I. Ashcroft, C. Tuck, Addit. Manuf. 1-4 (2014) 77-86. |
[80] | H. Gong, K. Rafi, H. Gu, T. Starr, B. Stucker, Addit. Manuf 1-4 (2014) 87-98. |
[81] |
B. Mooney, K.I. Kourousis, R. Raghavendra, D. Agius, Mater. Sci. Eng. A 745 (2019) 115-125.
DOI URL |
[82] |
Y.J. Kwon, R. Casati, M. Coduri, M. Vedani, C.S. Lee, Materials 12 (2019) 2360.
DOI URL |
[83] |
N.T. Aboulkhair, M. Simonelli, L. Parry, I. Ashcroft, C. Tuck, R. Hague, Prog. Mater. Sci. 106 (2019) 100578.
DOI URL |
[84] | S. Kou, Welding Metallurgy, second ed., 2003 New Jersey, USA. |
[85] |
T.H. Becker, D. Dimitrov, Rapid Prototyp. J. 22 (2016) 4 87-4 94.
DOI URL |
[86] |
L.M.S. Santos, L.P. Borrego, J.A.M. Ferreira, J. de Jesus, J.D. Costa, C. Capela, Theor. Appl. Fract. Mech. 102 (2019) 10-15.
DOI URL |
[87] |
F. Zhou, R. Wu, W. Xie, L. Zhang, Ironmak. Steelmak. 47 (2020) 980-985.
DOI URL |
[88] | J. Damon, T. Hanemann, S. Dietrich, G. Graf, K.H. Lang, V. Schulze, Int. J. Fa- tigue 127 (2019) 395-402. |
[89] |
A.R. Oliveira, J.A.A. Diaz, A.D.C. Nizes, A.L. Jardini, E.G. Del Conte, J. Mater. Eng. Perform. 30 (2021) 1479-1489.
DOI URL |
[90] |
D. Croccolo, M. De Agostinis, S. Fini, G. Olmi, F. Robusto, S. Ćirić-Kostić, S. Morača, N. Bogojević, Fatigue Fract. Eng. Mater. Struct. 42 (2019) 374-386.
DOI URL |
[91] |
X. Xu, J. Ding, S. Ganguly, C. Diao, S. Williams, J. Mater. Eng. Perform. 28 (2019) 594-600.
DOI URL |
[92] |
L. Ji, J. Lu, S. Tang, Q. Wu, J. Wang, S. Ma, H. Fan, C. Liu, Materials 11 (2018) 1104.
DOI URL |
[93] |
H. Lee, J. Kim, C. Pyo, J. Kim, Processes 8 (2020) 1211.
DOI URL |
[94] |
H. Fayazfar, M. Salarian, A. Rogalsky, D. Sarker, P. Russo, V. Paserin, E. Toy- serkani, Mater. Des. 144 (2018) 98-128.
DOI URL |
[95] |
I.A. Roberts, C.J. Wang, R. Esterlein, M. Stanford, D.J. Mynors, Int. J. Mach. Tools Manuf. 49 (2009) 916-923.
DOI URL |
[96] | K. Oyama, S. Diplas, M. M’hamdi, A.E Gunnæs, A.S. Azar, Addit. Manuf. 26 (2019) 180-192. |
[97] |
N.S. Tsai, T.W. Eagar, Metall. Trans. B 16 (1985) 841-846.
DOI URL |
[98] |
Y. Chen, Y. Guo, M. Xu, C. Ma, Q. Zhang, L. Wang, J. Yao, Z. Li, Mater. Sci. Eng. A 754 (2019) 339-347.
DOI URL |
[99] |
E.A. Jägle, Z. Sheng, P. Kürnsteiner, S. Ocylok, A. Weisheit, D. Raabe, Materials 10 (2017) 8.
DOI URL |
[100] | E. Yasa, K. Kempen, J.P. Kruth, in: Solid Free. Fabr. Symp. Proc., 2010, pp. 383-396. |
[101] | S. Yin, C. Chen, X. Yan, X. Feng, R. Jenkins, P. O’Reilly, M. Liu, H. Li, R. Lupoi, Addit. Manuf. 22 (2018) 592-600. |
[102] |
T.Y. Ansell, J.P. Ricks, C. Park, C.S. Tipper, C.C. Luhrs, Metals 10 (2020) 218.
DOI URL |
[103] | B. Zhang, Y. Li, Q. Bai, J. Chinese, Mech. Eng. 30 (2017) 515-527. |
[104] | F.F. Conde, J.D. Escobar, J.P. Oliveira, A.L. Jardini, W.W. Bose Filho, J.A. Avila, Addit. Manuf. 29 (2019) 100804. |
[105] |
E.A. Jägle, P.P. Choi, J. Van Humbeeck, D. Raabe, J. Mater. Res. 29 (2014) 2072-2079.
DOI URL |
[106] |
L. Kučerová, K. Burdová, Š. Jeníček, I. Chena, Mater. Sci. Eng. A 814 (2021) 141195.
DOI URL |
[107] | P.A. Hooper, Addit. Manuf. 22 (2018) 548-559. |
[108] |
T. Bhardwaj, M. Shukla, Mater. Sci. Eng. A 734 (2018) 102-109.
DOI URL |
[109] |
F. Tetteh, S. Boakye-Yiadom, Microsc. Microanal. 25 (2019) 2576-2577.
DOI URL |
[110] | F.F. Conde, W.W. Bose Filho, J. Escobar, A. Tschiptschin, A.L. Jardini, J.P. Olive- ria, J.A. Avila, in:25th ABCM Int. Congr. Mech. Eng, 2019, p. 7. |
[111] | A. Strakosova, J. Kubásek, A. Michalcová, F. Pruša, D. Vojtěch, D. Dvorský, Ma- terials 12 (2019) 4174. |
[112] |
F.F. Conde, J.D. Escobar, J.P. Oliveira, M. Béreš, A.L. Jardini, W.W. Bose, J.A. Avila, Mater. Sci. Eng. A 758 (2019) 192-201.
DOI URL |
[113] |
C. Liu, Z. Zhao, D.O. Northwood, Y. Liu, J. Mater, Process. Technol. 113 (2001) 556-562.
DOI URL |
[114] |
X. Xu, S. Ganguly, J. Ding, P. Dirisu, F. Martina, X. Liu, S.W. Williams, Mater. Sci. Eng. A 747 (2019) 111-118.
DOI URL |
[115] |
I. Yadroitsev, P. Krakhmalev, I. Yadroitsava, S. Johansson, I. Smurov, J. Mater, Process. Technol. 213 (2013) 606-613.
DOI URL |
[116] |
J.D. Escobar, G.A. Faria, L. Wu, J.P. Oliveira, P.R. Mei, A.J. Ramirez, Acta Mater. 138 (2017) 92-99.
DOI URL |
[117] |
J. Suryawanshi, K.G. Prashanth, U. Ramamurty, J. Alloys Compd. 725 (2017) 355-364.
DOI URL |
[118] |
L. Thijs, M.L.M. Sistiaga, R. Wauthle, Q. Xie, J.P. Kruth, J. Van Humbeeck, Acta Mater. 61 (2013) 4657-4668.
DOI URL |
[119] |
S.L. Campanelli, N. Contuzzi, P. Posa, A. Angelastro, Mater. Res. Express 6 (2019) 066580.
DOI URL |
[120] |
M. Shiomi, K. Osakada, K. Nakamura, T. Yamashita, F. Abe, CIRP Ann. 53 (2004) 195-198.
DOI URL |
[121] |
T. Vilaro, C. Colin, J.D. Bartout, Metall. Mater. Trans. A 42 (2011) 3190-3199.
DOI URL |
[122] | F.F. Conde, J.A. Avila, J.P. Oliveira, N. Schell, M.F. Oliveira, J.D. Escobar, Addit. Manuf. 46 (2021) 102122. |
[123] |
M.M. Wang, C.C. Tasan, D. Ponge, A. Kostka, D. Raabe, Acta Mater. 79 (2014) 268-281.
DOI URL |
[124] |
Y. Bai, Y. Yang, Z. Xiao, D. Wang, Rapid Prototyp. J. 24 (2018) 623-629.
DOI URL |
[125] | C. Turk, H. Zunko, C. Aumayr, H. Leitner, M. Kapp, BHM Berg- Und Hütten- münnische Monatshefte. 164 (2019) 112-116. |
[126] | T. Hrbáčková, T. Simson, J. Koch, G. Wolf, IOP Conf. Ser. Mater. Sci. Eng., 2018. |
[127] |
H.J. Rack, D. Kalish, Metall. Mater. Trans. B 2 (1971) 3011-3020.
DOI URL |
[128] |
U.K. Viswanathan, G.K. Dey, M.K. Asundi, Metall. Trans. A 24 (1993) 2429-2442.
DOI URL |
[129] |
K. Shimizu, H. Okamoto, Trans. Jpn. Inst. Met. 12 (1971) 273-279.
DOI URL |
[130] |
J.B. Lecomte, C. Servant, G. Cizeron, J. Mater. Sci. 20 (1985) 3339-3352.
DOI URL |
[131] | R. Casati, J. Lemke, M. Vedani, La Metall. Ital. 109 (2017) 11-20. |
[132] |
Y. Yao, Y. Huang, B. Chen, C. Tan, Y. Su, J. Feng, Opt. Laser Technol. 105 (2018) 171-179.
DOI URL |
[133] |
Y. Kok, X.P. Tan, P. Wang, M.L.S. Nai, N.H. Loh, E. Liu, S.B. Tor, Mater. Des. 139 (2018) 565-586.
DOI URL |
[134] |
V. Gerold, H. Haberkorn, Phys. Status Solidi. 16 (1966) 675-684.
DOI URL |
[135] |
F. Zhu, Y.F. Yin, R.G. Faulkner, Mater. Sci. Technol. 27 (2011) 395-405.
DOI URL |
[136] |
E. Cyr, A. Lloyd, M. Mohammadi, J. Manuf. Process. 35 (2018) 289-294.
DOI URL |
[137] | ASM Hand Book: Heat Treating, 4, 1991. |
[138] |
P. Venkata Ramana, G.M. Reddy, T. Mohandas, Sci. Technol. Weld. Join. 13 (2008) 388-394.
DOI URL |
[139] | D. Apparao, M.V. Jagannadha Raju, in: Int. Conf. Emerg. Trends Eng., 2020, pp. 721-730. |
[140] |
W. Wang, W. Yan, Q. Duan, Y. Shan, Z. Zhang, K. Yang, Mater. Sci. Eng. A 527 (2010) 3057-3063.
DOI URL |
[141] |
U. Karr, R. Schuller, M. Fitzka, B. Schönbauer, D. Tran, B. Pennings, H. Mayer, J. Mater. Sci. 52 (2017) 5954-5967.
DOI URL |
[142] |
B. Wang, P. Zhang, Q.Q. Duan, Z.J. Zhang, H.J. Yang, X.W. Li, Z.F. Zhang, Mater. Sci. Eng. A 707 (2017) 674-688.
DOI URL |
[143] |
D. Croccolo, M. De Agostinis, S. Fini, G. Olmi, A. Vranic, S. Ciric-Kostic, Fatigue Fract. Eng. Mater. Struct. 39 (2016) 637-647.
DOI URL |
[144] |
P. Mercelis, J.P. Kruth, Rapid Prototyp. J. 12 (2006) 254-265.
DOI URL |
[145] | A. Gatto, E. Bassoli, L. Denti, Addit. Manuf. 24 (2018) 13-19. |
[146] | G. Meneghetti, D. Rigon, D. Cozzi, W. Waldhauser, M. Dabalà, Proc. Struct. Integr. 7 (2017) 149-157. |
[147] | L. Thijs, J. Van Humbeeck, K. Kempen, E. Yasa, J.P. Kruth, in: Innov. Dev. Virtual Phys. Prototyp., 2012, pp. 297-304. |
[148] |
K. Monkova, I. Zetkova, L. Kučerová, M. Zetek, P. Monka, M. Daňna, Arch. Appl. Mech. 89 (2019) 791-804.
DOI URL |
[149] | J. Tian, Z. Huang, W. Qi, Y. Li, J. Liu, G. Hu, in: Advances in Materials Process- ing, Springer, Singapore, 2018, pp. 229-241. |
[150] | D. Rigon, G. Meneghetti, M. Görtler, D. Cozzi, W. Waldhauser, M. Dabalà, in: MATEC Web Conf., 2018, p. 02005. |
[151] | C. Morel, V.V. Cioca, S. Lavernhe, A.L. Jardini, E. Conte, in: 14th Int. Conf. High Speed Manuf., 2018, pp. 3-6. |
[152] |
ASTM International Am. Soc. Test. Mater. 03.01 (2019) 1-25.
DOI URL |
[1] | Guhui Gao, Rong Liu, Yusong Fan, Guian Qian, Xiaolu Gui, R.D.K. Misra, Bingzhe Bai. Mechanism of subsurface microstructural fatigue crack initiation during high and very-high cycle fatigue of advanced bainitic steels [J]. J. Mater. Sci. Technol., 2022, 108(0): 142-157. |
[2] | Lixia Ma, Min Wan, Weidong Li, Jie Shao, Xiaoning Han, Jichun Zhang. On the superplastic deformation mechanisms of near-α TNW700 titanium alloy [J]. J. Mater. Sci. Technol., 2022, 108(0): 173-185. |
[3] | H. Zhang, Y. Wang, J.J. Wang, D.R. Ni, D. Wang, B.L. Xiao, Z.Y. Ma. Achieving superior mechanical properties of selective laser melted AlSi10Mg via direct aging treatment [J]. J. Mater. Sci. Technol., 2022, 108(0): 226-235. |
[4] | Changshu He, Ying Li, Jingxun Wei, Zhiqiang Zhang, Ni Tian, Gaowu Qin, Xiang Zhao. Enhancing the mechanical performance of Al-Zn-Mg alloy builds fabricated via underwater friction stir additive manufacturing and post-processing aging [J]. J. Mater. Sci. Technol., 2022, 108(0): 26-36. |
[5] | Juan Li, Yaqun Xu, Wenlong Xiao, Chaoli Ma, Xu Huang. Development of Ti-Al-Ta-Nb-(Re) near-α high temperature titanium alloy: Microstructure, thermal stability and mechanical properties [J]. J. Mater. Sci. Technol., 2022, 109(0): 1-11. |
[6] | Cheng Li, Guanhong Lei, Jizhao Liu, Awen Liu, C.L. Ren, Hefei Huang. A potential candidate structural material for molten salt reactor: ODS nickel-based alloy [J]. J. Mater. Sci. Technol., 2022, 109(0): 129-139. |
[7] | S. Shuang, Q. Yu, X. Gao, Q.F. He, J.Y. Zhang, S.Q. Shi, Y. Yang. Tuning the microstructure for superb corrosion resistance in eutectic high entropy alloy [J]. J. Mater. Sci. Technol., 2022, 109(0): 197-208. |
[8] | Donghai Li, Binbin Wang, Liangshun Luo, Xuewen Li, Yanjin Xu, BinQiang Li, Diween Hawezy, Liang Wang, Yanqing Su, Jingjie Guo, Hengzhi Fu. Effect of processing parameters on the microstructure and mechanical properties of TiAl/Ti2AlNb laminated composites [J]. J. Mater. Sci. Technol., 2022, 109(0): 228-244. |
[9] | Xuehui Yan, Peter K. Liaw, Yong Zhang. Ultrastrong and ductile BCC high-entropy alloys with low-density via dislocation regulation and nanoprecipitates [J]. J. Mater. Sci. Technol., 2022, 110(0): 109-116. |
[10] | Jianwen Le, Yuanfei Han, Peikun Qiu, Shaopeng Li, Guangfa Huang, Jianwei Mao, Weijie Lu. Insight into the formation mechanism and interaction of matrix/TiB whisker textures and their synergistic effect on property anisotropy in titanium matrix composites [J]. J. Mater. Sci. Technol., 2022, 110(0): 1-13. |
[11] | Xin Liu, Sansan Shuai, Chenglin Huang, Shijun Wu, Tao Hu, Chaoyue Chen, Jiang Wang, Zhongming Ren. Microstructure and mechanical properties of directionally solidified Al-rich Ni3Al-based alloy under static magnetic field [J]. J. Mater. Sci. Technol., 2022, 110(0): 117-127. |
[12] | Dongsen Geng, Haiqing Li, Ziliang Chen, Yu X. Xu, Qimin Wang. Microstructure, oxidation behavior and tribological properties of AlCrN/Cu coatings deposited by a hybrid PVD technique [J]. J. Mater. Sci. Technol., 2022, 100(0): 150-160. |
[13] | Yijing Wang, Enkang Hao, Xiaoqin Zhao, Yun Xue, Yulong An, Huidi Zhou. Effect of microstructure evolution of Ti6Al4V alloy on its cavitation erosion and corrosion resistance in artificial seawater [J]. J. Mater. Sci. Technol., 2022, 100(0): 169-181. |
[14] | Zhen Jiang, Ran Wei, Wenzhou Wang, Mengjia Li, Zhenhua Han, Shuhan Yuan, Kaisheng Zhang, Chen Chen, Tan Wang, Fushan Li. Achieving high strength and ductility in Fe50Mn25Ni10Cr15 medium entropy alloy via Al alloying [J]. J. Mater. Sci. Technol., 2022, 100(0): 20-26. |
[15] | Zhiyuan Liu, Dandan Zhao, Pei Wang, Ming Yan, Can Yang, Zhangwei Chen, Jian Lu, Zhaoping Lu. Additive manufacturing of metals: Microstructure evolution and multistage control [J]. J. Mater. Sci. Technol., 2022, 100(0): 224-236. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||