J. Mater. Sci. Technol. ›› 2022, Vol. 131: 30-47.DOI: 10.1016/j.jmst.2022.05.026
• Review Article • Previous Articles Next Articles
Qiyang Tana, Wyman Zhuangb, Marco Attiab, Richard Djugumb, Mingxing Zhanga,*()
Received:
2022-03-23
Revised:
2022-05-12
Accepted:
2022-05-18
Published:
2022-06-09
Online:
2022-06-09
Contact:
Mingxing Zhang
About author:
*E-mail address:mingxing.zhang@uq.edu.au (M. Zhang)Qiyang Tan, Wyman Zhuang, Marco Attia, Richard Djugum, Mingxing Zhang. Recent progress in additive manufacturing of bulk MAX phase components: A review[J]. J. Mater. Sci. Technol., 2022, 131: 30-47.
Category | Compound |
---|---|
211 | Sc2InC, Ti2CdC, Sc2SnC, Ti2AuN, Ti2GaC, Ti2AlC, Ti2InC, V2AlC, Ti2TlC, V2GaC, Ti2AlN, Cr2GaC, Ti2InN, Ti2GaN, Cr2GaN, V2GaN, Ti2GeC, Ti2PbC, Ti2SnC, V2GeC, Cr2GeC, V2PC, Cr2AlC, V2AsC, Zr2InC, Ti2SC, Zr2TlC, Nb2GaC, Nb2AlC, Nb2InC, Zr2InN, Mo2GaC, Zr2TlN, Zr2PbC, Zr2SnC, Nb2SnC, Nb2AsC, Nb2PC, Zr2SC, Hf2InC, Nb2SC, Hf2TlC, Ta2GaC, Ta2AlC, Hf2SnC, Hf2SnN, Hf2PbC, Hf2SC, Ti2ZnC, Zr2AlC, Ti2ZnN, Nb2CuC, V2ZnC, Mn2GaC, Mo2AuC, (Zr, Nb)2(Al, Sn)C, V2SnC, Nb2SB, Zr2SB, Hf2Sb |
312 | Ti3AlC2, Ti3InC2, Ti3GaC2, V3AlC2, Ti3GeC2, Ti3SiC2, Ti3SnC2, Ti3ZnC2, Ta3AlC2, Zr3AlC2 |
413 | Ti4AlN3, Ti4GaC3, V4AlC3, Ti4SiC3, Nb4AlC3, Ti4GeC3, (Mo,V)4AlC3, Ta4AlC3, |
514 | (Ti0.5Nb0.5)5AlC4, Mo4VAlC4, Ti5Al2C3 |
615 | Ta6AlC5 |
716 | Ti7SnC6 |
Table 1. The known Mn+1AXn phases, sorted by stoichiometry (“211”, “312”, “413”, “514”, “615” and “716”) [18], [19], [20],[29], [30], [31], [32].
Category | Compound |
---|---|
211 | Sc2InC, Ti2CdC, Sc2SnC, Ti2AuN, Ti2GaC, Ti2AlC, Ti2InC, V2AlC, Ti2TlC, V2GaC, Ti2AlN, Cr2GaC, Ti2InN, Ti2GaN, Cr2GaN, V2GaN, Ti2GeC, Ti2PbC, Ti2SnC, V2GeC, Cr2GeC, V2PC, Cr2AlC, V2AsC, Zr2InC, Ti2SC, Zr2TlC, Nb2GaC, Nb2AlC, Nb2InC, Zr2InN, Mo2GaC, Zr2TlN, Zr2PbC, Zr2SnC, Nb2SnC, Nb2AsC, Nb2PC, Zr2SC, Hf2InC, Nb2SC, Hf2TlC, Ta2GaC, Ta2AlC, Hf2SnC, Hf2SnN, Hf2PbC, Hf2SC, Ti2ZnC, Zr2AlC, Ti2ZnN, Nb2CuC, V2ZnC, Mn2GaC, Mo2AuC, (Zr, Nb)2(Al, Sn)C, V2SnC, Nb2SB, Zr2SB, Hf2Sb |
312 | Ti3AlC2, Ti3InC2, Ti3GaC2, V3AlC2, Ti3GeC2, Ti3SiC2, Ti3SnC2, Ti3ZnC2, Ta3AlC2, Zr3AlC2 |
413 | Ti4AlN3, Ti4GaC3, V4AlC3, Ti4SiC3, Nb4AlC3, Ti4GeC3, (Mo,V)4AlC3, Ta4AlC3, |
514 | (Ti0.5Nb0.5)5AlC4, Mo4VAlC4, Ti5Al2C3 |
615 | Ta6AlC5 |
716 | Ti7SnC6 |
Fig. 2. SEM micrographs of HP-sintered MAX phases: (a) Ti3SiC2 and (b) higher-magnification micrograph marked in (a), showing the striated Ti3SiC2 grain; (c) Ti2AlC, with the inset showing the magnified view of the striated Ti2AlC grains; (d) Cr2AlC. Reprinted from Barsoum and El-Raghy [65], Cai et al. [68], and Zhu et al. [69].
Fig. 3. Properties of some sintered 211 and 312 MAX phases: (a) density, (b) electrical conductivity, (c) thermal conductivity, (d) hardness, (e) fracture toughness, and (f) compressive strength [84], [85], [86], [87], [88], [89], [90], [91], [92], with the grid patterns in (d) and (e) representing the value variations.
Fig. 5. Parts morphology at (a) as-printed condition, (b) printed followed by CIP, and (c) printed followed by CIP and sintering, reproduced from Sun et al. [122].
Fig. 6. Microstructural characterization of Ti3SiC2 compound fabricated with the binder jetting-consolidation route: (a) optical micrograph and (b) higher magnification SEM image of the sample fabricated by binder jetting/CIP/Sintering, reproduced from Dcosta et al. [127]; (c) SEM micrograph of the sample fabricated through binder jetting with TiC powder followed by liquid silicon infiltration, reproduced from Nan et al. [118].
MAX phases | Method | σf (MPa) | ρr (%) | H (GPa) | σc (MPa) | KIC (MPa m1/2) | E (GPa) | ρ0 (µΩ m) | Refs. |
---|---|---|---|---|---|---|---|---|---|
Ti3SiC2 | Conventional sintering | 260-600 | ≥ 99 | 4 | 580-1050 | 6.2-16 | 322 | 0.23 | [ |
Binder jetting/CIP/sintering | 390 | 90 | 9 | 1200 | - | - | - | [ | |
Binder jetting/pressing/sintering | 3000 | 98.3 | - | - | - | 286 | - | [ | |
Binder jetting /RMI | 293 | 97.6 | 7.2 | - | 4.56 | - | 0.28 | [ | |
Ti3AlC2 | Conventional sintering | 340-375 | ≥ 99 | 3.5 | 545-760 | 6.4-9.5 | 297 | 0.39 | [ |
Binder jetting /sintering/RMI | 320 | ≥ 98.3 | 2.5 | - | 8.1-9.7 | 184 | - | [ |
Table 2. Properties of MAX phases fabricated by sintering and binder jetting fabrication routes. σf is the flexural strength, ρr denotes the relative density, H is the hardness, σc is the compressive strength, KIC represents the fracture toughness, E is the Young's modulus, and ρ0 is the electrical resistivity.
MAX phases | Method | σf (MPa) | ρr (%) | H (GPa) | σc (MPa) | KIC (MPa m1/2) | E (GPa) | ρ0 (µΩ m) | Refs. |
---|---|---|---|---|---|---|---|---|---|
Ti3SiC2 | Conventional sintering | 260-600 | ≥ 99 | 4 | 580-1050 | 6.2-16 | 322 | 0.23 | [ |
Binder jetting/CIP/sintering | 390 | 90 | 9 | 1200 | - | - | - | [ | |
Binder jetting/pressing/sintering | 3000 | 98.3 | - | - | - | 286 | - | [ | |
Binder jetting /RMI | 293 | 97.6 | 7.2 | - | 4.56 | - | 0.28 | [ | |
Ti3AlC2 | Conventional sintering | 340-375 | ≥ 99 | 3.5 | 545-760 | 6.4-9.5 | 297 | 0.39 | [ |
Binder jetting /sintering/RMI | 320 | ≥ 98.3 | 2.5 | - | 8.1-9.7 | 184 | - | [ |
Fig. 7. Phase contents of the binder jetting/RMI-fabricated Ti3SiC2 sample with respect to the Si content in the RMI process, reproduced from Nan et al. [118].
Fig. 8. (a) Gearwheel CAD model (left) and the binder jetting/sintering/RMI fabricated Ti3AlC2 gearwheel (right), with the dashed circles showing the locations with sharp profiles. (b) SEM micrograph of the Ti3AlC2 sample. Reproduced from Yin et al. [128].
Fig. 9. Schematic diagrams of the fabrication mechanisms of (a) direct-ink-writing and (b) sheet lamination. Reproduced from Solís Pinargote et al. [136].
Fig. 10. Images of the as-printed lattice scaffolds (a) Cr2AlC and (b) Ti2AlC lattice scaffolds; SEM image of top views and cross-sections of the struts in (c, d) Cr2AlC lattice and (e, f) Ti2AlC lattice; cross-sectional SEM micrographs of (g) Cr2AlC strut and (h) Ti2AlC strut. Reproduced from Belmonte et al. [45] and Elsayed et al. [44].
Fig. 11. (a) Comparison of the compressive strength of the 3D-printed (direct-ink-writing/sintering) Cr2AlC and Ti2AlC lattices with the sintered porous MAX phase (solid symbols) and other 3D-printed porous ceramics (hollow symbols) [147], [148], [149], [150], [151], [152], [153], [154], [155], [156]. (b) Images of the Cr2AlC lattices before (left) and after (right) 200 thermal cycles at 1100 °C. (c) SEM image (top-view) of the Cr2AlC struts after the thermal cycling, showing excellent thermal shock resistivity and oxidation resistance at high temperature. Reproduced from Belmonte et al. [45].
Fig. 12. (a) Image of the 3D gear part produced by the fabrication route consisting of sheet lamination, sintering, and RMI, using the mixture of TiC and SiC at the ratio of 30:70 (vol.%) as the feedstock tape. (b-d) SEM micrographs of the final parts fabricated with different TiC to SiC ratios, (b) 30:70 (vol.%), (c) 50:50 (vol.%), and (d) 70:30 (vol.%). Reproduced from Krinitcyn et al. [46].
Fig. 13. Conceptual images of (a) PBF and (b) DED systems; representative examples showing the components fabricated by powder fusion AM techniques: (c) Ti-22Al-25Nb intermetallic with the shape of the turbine blade, reproduced from Zhou et al. [163], (d) Al2O3 with 3D complex shapes, reproduced from Juste et al. [164], (e) ZrO2-Al2O3 ceramic with the shape of the turbine in turbocharger, reproduced from Wilkes et al. [165].
[1] |
T. Zhen, M.W. Barsoum, S.R. Kalidindi, Acta Mater. 53 (2005) 4163-4171.
DOI URL |
[2] |
G. Deysher, C.E. Shuck, K. Hantanasirisakul, N.C. Frey, A.C. Foucher, K. Maleski, A. Sarycheva, V.B. Shenoy, E.A. Stach, B. Anasori, Y. Gogotsi, ACS Nano 14 (2020) 204-217.
DOI URL |
[3] |
L.Y. Zheng, J.M. Wang, X.P. Lu, F.Z. Li, J.Y. Wang, Y.C. Zhou, J. Am. Ceram. Soc. 93 (2010) 3068-3071.
DOI URL |
[4] | J.J. Wang, T.N. Ye, Y.T. Gong, J.Z. Wu, N.X. Miao, T. Tada, H. Hosono, Nat. Com-mun. 10 (2019) 2284. |
[5] |
E. Zapata-Solvas, S.R.G. Christopoulos, N. Ni, D.C. Parfitt, D. Horlait, M.E. Fitz-patrick, A. Chroneos, W.E. Lee, J. Am. Ceram. Soc. 100 (2017) 1377-1387.
DOI URL |
[6] |
M.A. El Saeed, F.A. Deorsola, R.M. Rashad, Int. J. Refract. Met. 35 (2012) 127-131.
DOI URL |
[7] |
D.J. Tallman, B. Anasori, M.W. Barsoum, Mater. Res. Lett. 1 (2013) 115-125.
DOI URL |
[8] |
M. Sundberg, G. Malmqvist, A. Magnusson, T. El-Raghy, Ceram. Int. 30 (2004) 1899-1904.
DOI URL |
[9] | M.W. Barsoum, R. Riedel, I.W. Chen, in: Ceramics Science and Technology, John Wiley & Sons, Inc., Manhattan, 2010, pp. 299-347. |
[10] |
M.W. Barsoum, L.H. Ho-Duc, M. Radovic, T. El-Raghy, J. Electrochem. Soc. 150 (2003) B166.
DOI URL |
[11] |
T. El-Raghy, M.W. Barsoum, A. Zavaliangos, S.R. Kalidindi, J. Am. Ceram. Soc. 82 (1999) 2855-2860.
DOI URL |
[12] |
E. Tabares, A. Jiménez-Morales, S.A. Tsipas, Bol. Soc. Esp. Cerám. Vidr. 60 (2020) 41-52.
DOI URL |
[13] |
P. Finkel, M.W. Barsoum, T. El-Raghy, J. Appl. Phys. 87 (2000) 1701-1703.
DOI URL |
[14] |
O. Berger, Surf. Eng. 36 (2020) 303-325.
DOI |
[15] |
X. Pi, W. Yu, C. Ma, X. Wang, S. Xiong, A. Guitton, Materials 13 (2020) 995.
DOI URL |
[16] |
J. Sarwar, T. Shrouf, A. Srinivasa, H. Gao, M. Radovic, K. Kakosimos, Sol. Energy Mater. Sol. Cells 182 (2018) 76-91.
DOI URL |
[17] |
E. Hoffman, D. Vinson, R. Sindelar, D. Tallman, G. Kohse, M.J.N.E. Barsoum, Nucl. Eng. 244 (2012) 17-24.
DOI URL |
[18] |
P. Eklund, M. Beckers, U. Jansson, H. Högberg, L. Hultman, Thin Solid Films 518 (2010) 1851-1878.
DOI URL |
[19] |
Z.J. Lin, M.J. Zhuo, Y.C. Zhou, M.S. Li, J.Y. Wang, J. Am. Ceram. Soc. 89 (2006) 3765-3769.
DOI URL |
[20] |
J. Zhang, B. Liu, J.Y. Wang, Y.C. Zhou, J. Mater. Res. 24 (2009) 39-49.
DOI URL |
[21] |
J. Gonzalez-Julian, J. Am. Ceram. Soc. 104 (2021) 659-690.
DOI URL |
[22] |
M. Griseri, B. Tunca, S. Huang, M. Dahlqvist, J. Rosén, J. Lu, P.O.Å. Persson, L. Popescu, J. Vleugels, K. Lambrinou, J. Eur. Ceram. Soc. 40 (2020) 1829-1838.
DOI URL |
[23] |
H.M. Ding, Y.B. Li, J. Lu, K. Luo, K. Chen, M. Li, P.O. ˚ A. Persson, L. Hultman, P. Eklund, S.Y. Du, Z.R. Huang, Z.F. Chai, H.J. Wang, P. Huang, Q. Huang, Mater. Res. Lett. 7 (2019) 510-516.
DOI URL |
[24] |
B. Tunca, T. Lapauw, R. Delville, D.R. Neuville, L. Hennet, D. Thiaudière, T. Ouisse, J. Hadermann, J. Vleugels, K. Lambrinou, Inorg. Chem. 58 (2019) 6669-6683.
DOI URL |
[25] |
T. Cabioc’h, P. Eklund, V. Mauchamp, M. Jaouen, J. Eur. Ceram. Soc. 32 (2012) 1803-1811.
DOI URL |
[26] |
Z.M. Liu, L.Y. Zheng, L.C. Sun, Y.H. Qian, J.Y. Wang, M.S. Li, J. Am. Ceram. Soc. 97 (2014) 67-69.
DOI URL |
[27] |
A. Mockute, P.O. ˚A.Persson, F. Magnus, A.S. Ingason, S. Olafsson, L. Hultman, J. Rosen, Phys. Status Solidi RRL 8 (2014) 420-423.
DOI URL |
[28] |
T. Lapauw, B. Tunca, D. Potashnikov, A. Pesach, O. Ozeri, J. Vleugels, K. Lam-brinou, Sci. Rep. 8 (2018) 12801.
DOI URL |
[29] | Q. Xu, Y.C. Zhou, H.M. Zhang, A. Jiang, Q.Z. Tao, J. Lu, J. Rosén, Y.H. Niu, S. Grasso, C.F. Hu, J. Adv. Ceram. 9 (2020) 4 81-4 92. |
[30] | Y.R Qin, Y.C. Zhou, L.F. Fan, Q.G. Feng, S. Grasso, C.F. Hu, J. Alloy. Compd. 878 (2021) 160344. |
[31] | T. Rackl, D. Johrendt, Solid State Sci. 106 (2020) 106316. |
[32] |
N.J. Lane, M. Naguib, J. Lu, L. Hultman, M.W. Barsoum, J. Eur. Ceram. Soc. 32 (2012) 3485-3491.
DOI URL |
[33] |
C. Walter, D.P. Sigumonrong, T. El-Raghy, J.M. Schneider, Thin Solid Films 515 (2006) 389-393.
DOI URL |
[34] |
T. Go, Y.J. Sohn, G. Mauer, R. Vaßen, J. Gonzalez-Julian, J. Eur. Ceram. Soc. 39 (2019) 860-867.
DOI |
[35] |
D. Davis, M. Srivastava, M. Malathi, B.B. Panigrahi, S. Singh, Appl. Surf. Sci. 449 (2018) 295-303.
DOI URL |
[36] |
Z. Zhang, D.M.Y. Lai, S.H. Lim, H.M. Jin, S.J. Wang, J.W. Chai, J.S. Pan, J. Alloy. Compd. 790 (2019) 536-546.
DOI URL |
[37] | Y. Medkour, A. Roumili, D. Maouche, L. Louail, I.M. Low, in: Advances in Science and Technology of M n + 1 AX n Phases, Woodhead Publishing, 2012, pp. 159-175. |
[38] |
C. Salvo, E. Chicardi, C. García-Garrido, J.A. Jiménez, C. Aguilar, J. Usuba, R.V. Mangalaraja, Ceram. Int. 45 (2019) 17793-17799.
DOI |
[39] |
Y.L. Bai, X.D. He, Y.B. Li, C.C. Zhu, S. Zhang, J. Mater. Res. 24 (2009) 2528-2535.
DOI URL |
[40] | C. Magnus, D. Cooper, J. Sharp, W.M. Rainforth, Wear 438-439 (2019) 203013. |
[41] |
Y. Zou, Z.M. Sun, S.J. Tada, H. Hashimoto, Scr. Mater. 55 (2006) 767-770.
DOI URL |
[42] |
N. Atazadeh, M. Saeedi Heydari, H.R. Baharvandi, N. Ehsani, Int. J. Refract. Met. 61 (2016) 67-78.
DOI URL |
[43] |
M. Akhlaghi, S.A. Tayebifard, E. Salahi, M. Shahedi Asl, G. Schmidt, Ceram. Int. 44 (2018) 9671-9678.
DOI URL |
[44] |
H. Elsayed, A. Chmielarz, M. Potoczek, T. Fey, P. Colombo, Addit. Manuf. 28 (2019) 365-372.
DOI |
[45] | M. Belmonte, M. Koller, J.J. Moyano, H. Seiner, P. Miranzo, M.I. Osendi, J. González-Julián, Adv. Mater. Technol. 4 (2019) 1900375. |
[46] |
M. Krinitcyn, Z. Fu, J. Harris, K. Kostikov, G.A. Pribytkov, P. Greil, N. Travitzky, Ceram. Int. 43 (2017) 9241-9245.
DOI URL |
[47] |
D. Oropeza, A.J. Hart, Int. J. Adv. Manuf. Technol. 114 (2021) 3459-3473.
DOI URL |
[48] |
Z.M. Sun, Int. Mater. Rev. 56 (2011) 143-166.
DOI URL |
[49] |
M.W. Barsoum, Prog. Solid State Chem. 28 (2000) 201-281.
DOI URL |
[50] |
Z. Zhang, X.M. Duan, D.C. Jia, Y. Zhou, S. van der Zwaag, J. Eur. Ceram. Soc. 41 (2021) 3851-3878.
DOI URL |
[51] |
X.H. Wang, X.C. Zhou, J. Mater. Sci. Technol. 26 (2010) 385-416.
DOI URL |
[52] |
H. Zhang, T. Hu, X.H. Wang, Y.C. Zhou, J. Mater. Sci. Technol. 38 (2020) 205-220.
DOI |
[53] |
T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, W. Zhang, Prog. Mater. Sci. 92 (2018) 112-224.
DOI URL |
[54] |
Z.W. Chen, Z.Y. Li, J.J. Li, C.B. Liu, C.S. Lao, Y.L. Fu, C.Y. Liu, Y. Li, P. Wang, Y. He, J. Eur. Ceram. Soc. 39 (2019) 661-687.
DOI URL |
[55] |
W.E. Frazier, J. Mater. Eng. Perform. 23 (2014) 1917-1928.
DOI URL |
[56] | D.Y. Zhang, S.J. Sun, D. Qiu, M.A. Gibson, M.S. Dargusch, M. Brandt, M. Qian, M. Easton, Adv. Eng. Mater. 20 (2018) 1700952. |
[57] |
R. Pampuch, J. Lis, L. Stobierski, M. Tymkiewicz, J. Eur. Ceram. Soc. 5 (1989) 283-287.
DOI URL |
[58] |
J. Lis, R. Pampuch, J. Piekarczyk, L. Stobierski, Ceram. Int. 19 (1993) 219-222.
DOI URL |
[59] |
J. Lis, Y. Miyamoto, R. Pampuch, K. Tanihata, Mater. Lett. 22 (1995) 163-168.
DOI URL |
[60] |
J. Morgiel, J. Lis, R. Pampuch, Mater. Lett. 27 (1996) 85-89.
DOI URL |
[61] | A.S. Mukasyan, K.V. Manukyan, Y. Beeran Pottathara, S. Thomas, N. Kalarikkal, Y. Grohens, V. Kokol, in: Nanomaterials Synthesis, Elsevier, Amsterdam, 2019, pp. 85-120. |
[62] |
S. Ramakumar, C. Deviannapoorani, L. Dhivya, L.S. Shankar, R. Murugan, Prog. Mater. Sci. 88 (2017) 325-411.
DOI URL |
[63] | A. Kaletsch, S. Qin, S. Herzog, C. Broeckmann, Addit. Manuf. 47 (2021) 102331. |
[64] |
Z.M. Sun, H. Hashimoto, W.B. Tian, Y. Zou, Int. J. Appl. Ceram. Technol. 7 (2010) 704-718.
DOI URL |
[65] |
M.W. Barsoum, T. El-Raghy, J. Am. Ceram. Soc. 79 (1996) 1953-1956.
DOI URL |
[66] | M. Barsoum, T. El-Raghy, J. Mater. Synth. Process. 5 (1997) 197-216. |
[67] |
N.V. Tzenov, M.W. Barsoum, J. Am. Ceram. Soc. 83 (20 0 0) 825-832.
DOI URL |
[68] |
L.P. Cai, Z.Y. Huang, W.Q. Hu, S.M. Hao, H.X. Zhai, Y. Zhou, J. Adv. Ceram. 6 (2017) 90-99.
DOI URL |
[69] |
J.F. Zhu, H. Jiang, F. Wang, Q. Ma, J. Mater. Res. 29 (2014) 1168-1174.
DOI URL |
[70] |
Y. Zou, Z.M. Sun, H. Hashimoto, S. Tada, J. Alloy. Compd. 456 (2008) 456-460.
DOI URL |
[71] |
M.A. Lagos, C. Pellegrini, I. Agote, N. Azurmendi, J. Barcena, M. Parco, L. Silve-stroni, L. Zoli, D. Sciti, J. Eur. Ceram. Soc. 39 (2019) 2824-2830.
DOI |
[72] |
W.B. Tian, Z.M. Sun, Y.L. Du, H. Hashimoto, Mater. Lett. 62 (2008) 3852-3855.
DOI URL |
[73] |
M. Griseri, B. Tunca, T. Lapauw, S. Huang, L. Popescu, M.W. Barsoum, K. Lam-brinou, J. Vleugels, J. Eur. Ceram. Soc. 39 (2019) 2973-2981.
DOI |
[74] |
J.F. Li, T. Matsuki, R. Watanabe, J. Mater. Sci. 38 (2003) 2661-2666.
DOI URL |
[75] |
Z.M. Sun, S. Yang, H. Hashimoto, S. Tada, T. Abe, Mater. Trans. 45 (2004) 373-375.
DOI URL |
[76] |
X.P. Lu, Y.C. Zhou, Appl. Ceram. Technol. 7 (2010) 744-751.
DOI URL |
[77] |
Z.C. Zhao, H.Y. Liu, X.H. Li, Y. Zhuang, X.X. Zhang, Q.Z. Yan, Ceram. Int. 46 (2020) 14767-14775.
DOI URL |
[78] |
S. Arunajatesan, A.H. Carim, J. Am. Ceram. Soc. 78 (1995) 667-672.
DOI URL |
[79] | J. Haemers, R. Gusmão, Z. Sofer, Small Methods 4 (2020) 1900780. |
[80] |
B.G. Kim, C.W. Nou, S.H. Bae, S.M. Choi, Ceram. Int. 47 (2021) 17471-17475.
DOI URL |
[81] | M.J. Abu, J.J. Mohamed, Z.A. Ahmad, ISRN Ceram. 2012 (2012) 341285. |
[82] |
J.Z. Liu, X. Zuo, Z.Y. Wang, L. Wang, X.C. Wu, P.L. Ke, A.Y. Wang, J. Alloy. Compd. 753 (2018) 11-17.
DOI URL |
[83] |
R. Yembadi, B.B. Panigrahi, Adv. Powder Technol. 28 (2017) 732-739.
DOI URL |
[84] | M.W. Barsoum, MAX Phases: Properties of Machinable Tternary Carbides and Nitrides, John Wiley & Sons, New Jersey, 2013. |
[85] |
J.F. Li, W. Pan, F. Sato, R. Watanabe, Acta Mater. 49 (2001) 937-945.
DOI URL |
[86] |
S.B. Li, J.X. Xie, J.Q. Zhao, L.T. Zhang, Mater. Lett. 57 (2002) 119-123.
DOI URL |
[87] |
N.F. Gao, Y. Miyamoto, D. Zhang, J. Mater. Sci. 34 (1999) 4385-4392.
DOI URL |
[88] |
C.J. Gilbert, D. Bloyer, M. Barsoum, T. El-Raghy, A. Tomsia, R.O. Ritchie, Scr. Mater. 42 (20 0 0) 761-767.
DOI URL |
[89] |
A. Zhou, C.A. Wang, Y. Hunag, J. Mater. Sci. 38 (2003) 3111-3115.
DOI URL |
[90] |
X.H. Wang, Y.C. Zhou, Acta Mater. 50 (2002) 3143-3151.
DOI URL |
[91] |
L. Peng, Scr. Mater. 56 (2007) 729-732.
DOI URL |
[92] |
C.F. Hu, L.F. He, M.Y. Liu, X.H. Wang, J.Y. Wang, M.S. Li, Y.W. Bao, Y.C. Zhou, J. Am. Ceram. Soc. 91 (2008) 4029-4035.
DOI URL |
[93] | D.R. Lide, CRC Handbook of Chemistry and Physics, CRC Press, Boca Raton, 2004. |
[94] | P. Cervenka, L. Massa, Applications of Dimensionless Variables to Scaling in the Infrared, Bethesda, 1995. |
[95] | T.H. Scabarozi, S. Amini, P. Finkel, O.D. Leaffer, J.E. Spanier, M.W. Barsoum, M. Drulis, H. Drulis, W.M. Tambussi, J.D. Hettinger, S.E. Lofland, J. Appl. Phys. 104 (2008) 033502. |
[96] | S. Amini, M.W. Barsoum, T. El-Raghy, J. Am. Ceram. Soc. 90 (2007) 3953-3958. |
[97] | S.R. Kulkarni, R.S. Vennila, N.A. Phatak, S.K. Saxena, C.S. Zha, T. El-Raghy, M.W. Barsoum, W. Luo, R. Ahuja, J. Alloy. Compd. 448 (2008) L1-L4. |
[98] |
N.P. Padture, Nat. Mater. 15 (2016) 804-809.
DOI PMID |
[99] | E.O. Hall, Nature 173 (1954) 948-949. |
[100] |
H.L. Wang, M.H. Hon, Ceram. Int. 25 (1999) 267-271.
DOI URL |
[101] |
D. Casellas, M.M. Nagl, L. Llanes, M. Anglada, J. Mater. Process. Technol. 143-144 (2003) 148-152.
DOI URL |
[102] |
S. Kaur, R.A. Cutler, D.K. Shetty, J. Am. Ceram. Soc. 92 (2009) 179-185.
DOI URL |
[103] |
J.J. Kruzic, Adv. Eng. Mater. 18 (2016) 1308-1331.
DOI URL |
[104] |
S.B. Li, W.B. Yu, H.X. Zhai, G.M. Song, W.G. Sloof, S. van der Zwaag, J. Eur. Ceram. Soc. 31 (2011) 217-224.
DOI URL |
[105] | G.P. Bei, G. Laplanche, V. Gauthier-Brunet, J. Bonneville, S. Dubois, J. Am. Ce-ram. Soc. 96 (2013) 567-576. |
[106] |
N. Hansen, Scr. Mater. 51 (2004) 801-806.
DOI URL |
[107] |
G.M. Song, S.B. Li, C.X. Zhao, W.G. Sloof, S. van der Zwaag, Y.T. Pei, J.T.M. De Hosson, J. Eur. Ceram. Soc. 31 (2011) 855-862.
DOI URL |
[108] |
M.W. Barsoum, T. El-Raghy, Linus U.J.T. Ogbuji, J. Electrochem. Soc. 144 (1997) 2508-2516.
DOI URL |
[109] | S. Amini, A.R. McGhie, M.W. Barsoum, J. Electrochem. Soc. 156 (2009) P101-P106. |
[110] |
S. Chakraborty, T. El-Raghy, M.W. Barsoum, Oxid. Met. 59 (2003) 83-96.
DOI URL |
[111] | N. Birks, G.H. Meier, F.S. Pettit, Introduction to the High-Temperature Oxida-tion of Metals, 2nd ed., Cambridge University Press, Cambridge, New York, 2006. |
[112] | M. Radovic, M. Barsoum, Am. Ceram. Soc. Bull. 92 (2013) 20-27. |
[113] | S. Basu, N. Obando, A. Gowdy, I. Karaman, M. Radovic, J. Electrochem. Soc. 159 (2011) C90-C96. |
[114] |
Z.J. Lin, M.J. Zhuo, Y.C. Zhou, M.S. Li, J.Y. Wang, Scr. Mater. 54 (2006) 1815-1820.
DOI URL |
[115] |
J.W. Byeon, J. Liu, M. Hopkins, W. Fischer, N. Garimella, K.B. Park, M.P. Brady, M. Radovic, T. El-Raghy, Y.H. Sohn, Oxid. Met. 68 (2007) 97-111.
DOI URL |
[116] |
L.Y. Yang, L. Zheng, H.B. Guo, Corros. Sci. 112 (2016) 542-551.
DOI URL |
[117] |
X.H. Wang, Y.C. Zhou, Oxid. Met. 59 (2003) 303-320.
DOI URL |
[118] |
B.Y. Nan, X.W. Yin, L.T. Zhang, L.F. Cheng, J. Am. Ceram. Soc. 94 (2011) 969-972.
DOI URL |
[119] |
M.M.M. Carrijo, H. Lorenz, I. Filbert-Demut, G.M. de Oliveira Barra, D. Hotza, X. Yin, P. Greil, N. Travitzky, Ceram. Int. 42 (2016) 9557-9564.
DOI URL |
[120] |
X.W. Yin, N. Travitzky, P. Greil, J. Am. Ceram. Soc. 90 (2007) 2128-2134.
DOI URL |
[121] | Y. Ma, X. Yin, X. Fan, N. Travitzky, P. Greil, J. Ceram. Sci. Technol. 6 (2015) 87-94. |
[122] |
W. Sun, D.J. Dcosta, F. Lin, T. El-Raghy, J. Mater. Process. Technol. 127 (2002) 343-351.
DOI URL |
[123] | S. Mirzababaei, S. Pasebani, J. Manuf. Mater. Process. 3 (2019) 82. |
[124] |
A. Mostafaei, P. Rodriguez De Vecchis, I. Nettleship, M. Chmielus, Mater. Des. 162 (2019) 375-383.
DOI URL |
[125] |
J. Moon, A.C. Caballero, L. Hozer, Y.M. Chiang, M.J. Cima, Mater. Sci. Eng. A 298 (2001) 110-119.
DOI URL |
[126] | E. Mendoza Jimenez, D. Ding, L. Su, A.R. Joshi, A. Singh, B. Reeja-Jayan, J. Beuth, Addit. Manuf. 30 (2019) 100864. |
[127] |
D.J. Dcosta, W. Sun, F. Lin, T. Ei-Raghy, J. Mater. Process. Technol. 127 (2002) 352-360.
DOI URL |
[128] |
X. Yin, N. Travitzky, P. Greil, Int. J. Appl. Ceram. Technol. 4 (2007) 184-190.
DOI URL |
[129] | X. Yin, N. Travitzky, P. Greil, I.M. Low, Y. Zhou, in: MAX Phases: Microstruc-ture, Properties and Applications, Nova Science Publishers, New York, 2012, pp. 53-72. |
[130] | H.B. Zhang, Y.C. Zhou, Y.W. Bao, M.S. Li, J. Am. Ceram. Soc. 91 (2008) 4 94-4 99. |
[131] |
J.F. Li, F. Sato, R. Watanabe, J. Mater. Sci. Lett. 18 (1999) 1595-1597.
DOI URL |
[132] |
N. Tzenov, M.W. Barsoum, T. El-Raghy, J. Eur. Ceram. Soc. 20 (20 0 0) 801-806.
DOI URL |
[133] |
C. Racault, F. Langlais, R. Naslain, J. Mater. Sci. 29 (1994) 3384-3392.
DOI URL |
[134] |
Y.Z. Ma, X.W. Yin, X.M. Fan, L. Wang, P. Greil, N. Travitzky, Int. J. Appl. Ceram. Technol. 12 (2015) 71-80.
DOI URL |
[135] |
X. Yin, K.X. Chen, H.P. Zhou, X.S. Ning, J. Am. Ceram. Soc. 93 (2010) 2182-2187.
DOI URL |
[136] |
N.W. Solís Pinargote, A. Smirnov, N. Peretyagin, A. Seleznev, P. Peretyagin, Nanomaterials 10 (2020) 1300.
DOI URL |
[137] | O. Abdulhameed, A. Al-Ahmari, W. Ameen, S.H. Mian, Adv. Mech. Eng. 11 (2019) 1-27. |
[138] | T. Obikawa, M. Yoshino, J. Shinozuka, J. Mater, Process. Technol. 89 (1999) 171-176. |
[139] |
S.H. Huang, P. Liu, A. Mokasdar, L. Hou, Int. J. Adv. Manuf. Technol. 67 (2013) 1191-1203.
DOI URL |
[140] |
S. Kumar, P. Bhushan, M. Pandey, S. Bhattacharya, J. Micromanuf. 2 (2019) 175-197.
DOI URL |
[141] |
J.C. Wang, H. Dommati, S.J. Hsieh, Int. J. Adv. Manuf. Technol. 103 (2019) 2627-2647.
DOI URL |
[142] |
Y. Zhang, X. He, S. Du, J. Zhang, Int. J. Adv. Manuf. Technol. 17 (2001) 531-534.
DOI URL |
[143] |
H. Elsayed, P. Colombo, E. Bernardo, J. Eur. Ceram. Soc. 37 (2017) 4187-4195.
DOI URL |
[144] |
S. Li, Y.F. Li, Q.W. Wang, K. Miao, X. Liang, Z.L. Lu, D.C. Li, Ceram. Int. 47 (2021) 24340-24347.
DOI URL |
[145] | H. Elsayed, P. Rebesan, G. Giacomello, M. Pasetto, C. Gardin, L. Ferroni, B. Za-van, L. Biasetto, Mater. Sci. Eng. C 103 (2019) 109794. |
[146] | B.G. Mekonnen, G. Bright, A. Walker, D.K. Mandal, C.S. Syan, in: CAD/CAM, Robotics and Factories of the Future, Springer India, New Delhi, 2016, pp. 207-216. |
[147] |
L. Hu, R. Benitez, S. Basu, I. Karaman, M. Radovic, Acta Mater. 60 (2012) 6266-6277.
DOI URL |
[148] |
M. Potoczek, E. Guzi de Moraes, P. Colombo, J. Eur. Ceram. Soc. 35 (2015) 2445-2452.
DOI URL |
[149] |
M. Potoczek, A. Chmielarz, M.D.D.M. Innocentini, I.C.P. da Silva, P. Colombo, B. Winiarska, J. Am. Ceram. Soc. 101 (2018) 5346-5357.
DOI URL |
[150] |
J. Gonzalez-Julian, S. Onrubia, M. Bram, C. Broeckmann, R. Vassen, O. Guillon, J. Am. Ceram. Soc. 101 (2018) 542-552.
DOI URL |
[151] |
A. Gómez-Gómez, J.J. Moyano, B. Román-Manso, M. Belmonte, P. Miranzo, M.I. Osendi, J. Eur. Ceram. Soc. 39 (2019) 688-695.
DOI URL |
[152] |
G. Franchin, L. Wahl, P. Colombo, J. Am. Ceram. Soc. 100 (2017) 4397-4401.
DOI URL |
[153] |
G. Franchin, P. Scanferla, L. Zeffiro, H. Elsayed, A. Baliello, G. Giacomello, M. Pasetto, P. Colombo, J. Eur. Ceram. Soc. 37 (2017) 2481-2489.
DOI URL |
[154] |
L. Goyos-Ball, E. García-Tuñón, E. Fernández-García, R. Díaz, A. Fernández, C. Prado, E. Saiz, R. Torrecillas, J. Eur. Ceram. Soc. 37 (2017) 3151-3158.
DOI URL |
[155] |
C. Minas, D. Carnelli, E. Tervoort, A.R. Studart, Adv. Mater. 28 (2016) 9993-9999.
DOI URL |
[156] |
J. Roleček, L. Pejchalová, F.J. Martínez-Vázquez, P. Miranda González, D. Sala-mon, J. Eur. Ceram. Soc. 39 (2019) 1595-1602.
DOI URL |
[157] |
B. Román-Manso, F.M. Figueiredo, B. Achiaga, R. Barea, D. Pérez-Coll, A. Morelos-Gómez, M. Terrones, M.I. Osendi, M. Belmonte, P. Miranzo, Carbon 100 (2016) 318-328.
DOI URL |
[158] |
Z.Q. Sun, Y. Liang, M.S. Li, Y.C. Zhou, J. Am. Ceram. Soc. 93 (2010) 2591-2597.
DOI URL |
[159] |
C.R. Bowen, T. Thomas, Ceram. Int. 41 (2015) 12178-12185.
DOI URL |
[160] |
A. Kontsos, T. Loutas, V. Kostopoulos, K. Hazeli, B. Anasori, M.W. Barsoum, Acta Mater. 59 (2011) 5716-5727.
DOI URL |
[161] |
K. Sobolev, A. Pazniak, O. Shylenko, V. Komanicky, A. Provino, P. Manfrinetti, D. Peddis, V. Rodionova, Ceram. Int. 47 (2021) 7745-7752.
DOI URL |
[162] |
D. Herzog, V. Seyda, E. Wycisk, C. Emmelmann, Acta Mater. 117 (2016) 371-392.
DOI URL |
[163] |
Y.H. Zhou, W.P. Li, D.W. Wang, L. Zhang, K. Ohara, J. Shen, T. Ebel, M. Yan, Acta Mater. 173 (2019) 117-129.
DOI |
[164] |
E. Juste, F. Petit, V. Lardot, F. Cambier, J. Mater. Res. 29 (2014) 2086-2094.
DOI URL |
[165] |
J. Wilkes, Y.C. Hagedorn, W. Meiners, K. Wissenbach, Rapid Prototyp. J. 19 (2013) 51-57.
DOI URL |
[166] | A.v. Müller, G. Schlick, R. Neu, C. Anstätt, T. Klimkait, J. Lee, B. Pascher, M. Schmitt, C. Seidel, Nucl. Mater. Energy 19 (2019) 184-188. |
[167] |
S. Gorsse, C. Hutchinson, M. Gouné, R. Banerjee, Sci. Technol. Adv. Mater 18 (2017) 584-610.
DOI URL |
[168] |
P. Kürnsteiner, M.B. Wilms, A. Weisheit, B. Gault, E.A. Jägle, D. Raabe, Nature 582 (2020) 515-519.
DOI URL |
[169] | Q.Y. Tan, Z.Q. Fan, X.Q. Tang, Y. Yin, G. Li, D.N. Huang, J.Q. Zhang, Y.G. Liu, F. Wang, T. Wu, X.L. Yang, H. Huang, Q. Zhu, M.X. Zhang, Mater. Sci. Eng. A 821 (2021) 141638. |
[170] |
V.K. Balla, S. Bose, A. Bandyopadhyay, Int. J. Appl. Ceram. Technol. 5 (2008) 234-242.
DOI URL |
[171] | Q. Liu, Y. Danlos, B. Song, B.C. Zhang, S. Yin, H.L. Liao, J. Mater. Process. Tech-nol. 222 (2015) 61-74. |
[172] | Z.Q. Fan, Y.T. Zhao, M.Y. Lu, H. Huang, Int. J. Adv. Manuf. Technol. 105 (2019) 4 491-4 498. |
[173] |
Z.Q. Fan, Y.T. Zhao, Q.Y. Tan, B.W. Yu, M.X. Zhang, H. Huang, Scr. Mater. 178 (2020) 274-280.
DOI URL |
[174] |
Z.Q. Fan, Y.T. Zhao, Q.Y. Tan, N. Mo, M.X. Zhang, M.Y. Lu, H. Huang, Acta Mater. 170 (2019) 24-37.
DOI URL |
[175] |
H.F. Liu, H.J. Su, Z.L. Shen, D. Zhao, Y. Liu, Y.N. Guo, H.T. Guo, M. Guo, K.Y. Xie, J. Zhang, L. Liu, H.Z. Fu, J. Eur. Ceram. Soc. 41 (2021) 3547-3558.
DOI URL |
[176] |
H.F. Liu, H.J. Su, Z.L. Shen, D. Zhao, Y. Liu, Y.N. Guo, M. Guo, J. Zhang, L. Liu, H.Z. Fu, J. Mater. Sci. Technol. 85 (2021) 218-223.
DOI URL |
[177] |
L. Thijs, K. Kempen, J.P. Kruth, J. Van Humbeeck, Acta Mater. 61 (2013) 1809-1819.
DOI URL |
[178] |
W. Xu, E.W. Lui, A. Pateras, M. Qian, M. Brandt, Acta Mater. 125 (2017) 390-400.
DOI URL |
[179] |
Y.M. Wang, T. Voisin, J.T. McKeown, J. Ye, N.P. Calta, Z. Li, Z. Zeng, Y. Zhang, W. Chen, T.T. Roehling, R.T. Ott, M.K. Santala, Philip J. Depond, M.J. Matthews, A.V. Hamza, T. Zhu, Nat. Mater. 17 (2017) 63.
DOI URL |
[180] | A.V. Müller, G. Schlick, R. Neu, C. Anstätt, T. Klimkait, J. Lee, B. Pascher, M. Schmitt, S. Seidel, Nucl. Mater. Energy 19 (2019) 184-188. |
[181] |
H. Shao, T.T. Liu, K.D. Zhang, C.D. Zhang, S.X. Jiang, Z.W. Xiong, W.H. Liao, Adv. Appl. Ceram. 119 (2020) 158-165.
DOI URL |
[1] | Xiang Li, Haijun Su, Dong Dong, Di Zhao, Yuan Liu, Zhonglin Shen, Hao Jiang, Yinuo Guo, Haifang Liu, Guangrao Fan, Wenchao Yang, Taiwen Huang, Jun Zhang, Lin Liu, Hengzhi Fu. Enhanced comprehensive properties of stereolithography 3D printed alumina ceramic cores with high porosities by a powder gradation design [J]. J. Mater. Sci. Technol., 2022, 131(0): 264-275. |
[2] | Wen Zhang, Lei Chen, Chenguang Xu, Xuming Lv, Yujin Wang, Jiahu Ouyang, Yu Zhou. Grain growth kinetics and densification mechanism of (TiZrHfVNbTa)C high-entropy ceramic under pressureless sintering [J]. J. Mater. Sci. Technol., 2022, 110(0): 57-64. |
[3] | Zhongyou Que, Zichen Wei, Xingyu Li, Lin Zhang, Yanhao Dong, Mingli Qin, Junjun Yang, Xuanhui Qu, Ju Li. Pressureless two-step sintering of ultrafine-grained refractory metals: Tungsten-rhenium and molybdenum [J]. J. Mater. Sci. Technol., 2022, 126(0): 203-214. |
[4] | Bao Weizong, Chen Jie, Xie Guoqiang. Optimized strength and conductivity of multi-scale copper alloy/metallic glass composites tuned by a one-step spark plasma sintering (SPS) process [J]. J. Mater. Sci. Technol., 2022, 128(0): 22-30. |
[5] | Iva Milisavljevic, Guangran Zhang, Yiquan Wu. Solid-state single-crystal growth of YAG and Nd: YAG by spark plasma sintering [J]. J. Mater. Sci. Technol., 2022, 106(0): 118-127. |
[6] | J. Christudasjustus, C.S. Witharamage, Ganesh Walunj, T. Borkar, R.K. Gupta. The influence of spark plasma sintering temperatures on the microstructure, hardness, and elastic modulus of the nanocrystalline Al-xV alloys produced by high-energy ball milling [J]. J. Mater. Sci. Technol., 2022, 122(0): 68-76. |
[7] | Haibo Zhang, Metin Örnek, Simanta Lahkar, Shuangxi Song, Xiaodong Wang, Richard A. Haber, Kolan Madhav Reddy. Enhanced densification and mechanical properties of β-boron by in-situ formed boron-rich oxide [J]. J. Mater. Sci. Technol., 2022, 99(0): 148-160. |
[8] | Qiaolei Li, Xiaolong An, Jingjing Liang, Yongsheng Liu, Kehui Hu, Zhigang Lu, Xinyan Yue, Jinguo Li, Yizhou Zhou, Xiaofeng Sun. Balancing flexural strength and porosity in DLP-3D printing Al2O3 cores for hollow turbine blades [J]. J. Mater. Sci. Technol., 2022, 104(0): 19-32. |
[9] | Wei Luo, Yi Liu, Chuangye Wang, Dan Zhao, Xiaoyan Yuan, Jianfeng Zhu, Lei Wang, Shouwu Guo. Sacrificial template synthesis of (V0.8Ti0.1Cr0.1)2AlC and carbon fiber@(V0.8Ti0.1Cr0.1)2AlC microrods for efficient microwave absorption [J]. J. Mater. Sci. Technol., 2022, 111(0): 236-244. |
[10] | Kun Li, Luxin Liang, Peng Du, Zeyun Cai, Tao Xiang, Hiroyasu Kanetaka, Hong Wu, Guoqiang Xie. Mechanical properties and corrosion resistance of powder metallurgical Mg-Zn-Ca/Fe bulk metal glass composites for biomedical application [J]. J. Mater. Sci. Technol., 2022, 103(0): 73-83. |
[11] | Yan Zhang, Chengjie Lu, Yun Dong, Min Zhou, Jiandang Liu, Hongjun Zhang, Bangjiao Ye, ZhengMing Sun. Insights into the dual-roles of alloying elements in the growth of Sn whiskers [J]. J. Mater. Sci. Technol., 2022, 117(0): 65-71. |
[12] | Weiwei Xiao, Na Ni, Xiaohui Fan, Xiaofeng Zhao, Yingzheng Liu, Ping Xiao. Ambient flash sintering of reduced graphene oxide/zirconia composites: Role of reduced graphene oxide [J]. J. Mater. Sci. Technol., 2021, 60(0): 70-76. |
[13] | Weiqiang Hu, Tao Sun, Chenxi Liu, Liming Yu, Tansir Ahamad, Zongqing Ma. Refined microstructure and enhanced mechanical properties in Mo-Y2O3 alloys prepared by freeze-drying method and subsequent low temperature sintering [J]. J. Mater. Sci. Technol., 2021, 88(0): 36-44. |
[14] | Shuaihang Qiu, Mingliang Li, Gang Shao, Hailong Wang, Jinpeng Zhu, Wen Liu, Bingbing Fan, Hongliang Xu, Hongxia Lu, Yanchun Zhou, Rui Zhang. (Ca,Sr,Ba)ZrO3: A promising entropy-stabilized ceramic for titanium alloys smelting [J]. J. Mater. Sci. Technol., 2021, 65(0): 82-88. |
[15] | Tao Xiang, Zeyun Cai, Peng Du, Kun Li, Zongwei Zhang, Guoqiang Xie. Dual phase equal-atomic NbTaTiZr high-entropy alloy with ultra-fine grain and excellent mechanical properties fabricated by spark plasma sintering [J]. J. Mater. Sci. Technol., 2021, 90(0): 150-158. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||