J. Mater. Sci. Technol. ›› 2022, Vol. 131: 48-59.DOI: 10.1016/j.jmst.2022.04.051
• Research Article • Previous Articles Next Articles
Huafang Lia,b,*(), Yan Huanga, Xiaojing Jia, Cuie Wenc, Lu-Ning Wanga,b,*(
)
Received:
2021-12-17
Revised:
2022-04-03
Accepted:
2022-04-17
Published:
2022-06-08
Online:
2022-06-08
Contact:
Huafang Li,Lu-Ning Wang
About author:
luning.wang@ustb.edu.cn (L.-N. Wang)Huafang Li, Yan Huang, Xiaojing Ji, Cuie Wen, Lu-Ning Wang. Fatigue and corrosion fatigue behaviors of biodegradable Zn-Li and Zn-Cu-Li under physiological conditions[J]. J. Mater. Sci. Technol., 2022, 131: 48-59.
Alloy | Cu | Li | Zn |
---|---|---|---|
Zn-0.8Li | - | 0.78 | Bal. |
Zn-2Cu-0.8Li | 2.00 | 0.76 | Bal. |
Table 1. Chemical compositions of Zn-0.8Li and Zn-2Cu-0.8Li alloys (wt.%).
Alloy | Cu | Li | Zn |
---|---|---|---|
Zn-0.8Li | - | 0.78 | Bal. |
Zn-2Cu-0.8Li | 2.00 | 0.76 | Bal. |
Alloy | TYS (MPa) | UTS (MPa) | Elongation (%) |
---|---|---|---|
Zn-0.8Li | 420.67±4.04 | 570.33±0.58 | 25.50±2.60 |
Zn-2Cu-0.8Li | 369.67±4.16 | 503.33±2.31 | 42.83±0.58 |
Table 2. Tensile mechanical properties of extruded Zn-0.8Li and Zn-2Cu-0.8Li alloys at ambient temperature.
Alloy | TYS (MPa) | UTS (MPa) | Elongation (%) |
---|---|---|---|
Zn-0.8Li | 420.67±4.04 | 570.33±0.58 | 25.50±2.60 |
Zn-2Cu-0.8Li | 369.67±4.16 | 503.33±2.31 | 42.83±0.58 |
Stress (MPa) | Air (cycles) | SBF (cycles) |
---|---|---|
360 | 4.86/5.52 × 103 | - |
300 | 1.46/2.02 × 104 | - |
250 | 3.34/4.75/4.92 × 104 | 2.07/2.59 × 104 |
200 | 1.88/1.96 × 105 | 3.02/3.33 × 104 |
180 | 2.32/3.04/3.46 × 105 | 4.68/5.14 × 104 |
160 | 3.15/3.28/3.80 × 105 | 3.49/5.35/5.42 × 104 |
140 | 4.16/4.86 × 105 | - |
130 | 6.5/6.5 × 105 | 8.95/1.09/1.24/2.46 × 105 |
90 | - | 3.01/3.14 × 105 |
80 | - | 2.23/4.76//5.46 × 105 |
70 | - | 6.37 × 105 |
65 | - | 6.5 × 105 |
Table 3. Fatigue and corrosion fatigue experimental results for Zn-0.8Li alloy.
Stress (MPa) | Air (cycles) | SBF (cycles) |
---|---|---|
360 | 4.86/5.52 × 103 | - |
300 | 1.46/2.02 × 104 | - |
250 | 3.34/4.75/4.92 × 104 | 2.07/2.59 × 104 |
200 | 1.88/1.96 × 105 | 3.02/3.33 × 104 |
180 | 2.32/3.04/3.46 × 105 | 4.68/5.14 × 104 |
160 | 3.15/3.28/3.80 × 105 | 3.49/5.35/5.42 × 104 |
140 | 4.16/4.86 × 105 | - |
130 | 6.5/6.5 × 105 | 8.95/1.09/1.24/2.46 × 105 |
90 | - | 3.01/3.14 × 105 |
80 | - | 2.23/4.76//5.46 × 105 |
70 | - | 6.37 × 105 |
65 | - | 6.5 × 105 |
Stress (MPa) | Air (cycles) | SBF (cycles) |
---|---|---|
360 | 3.89/5.81 × 103 | - |
300 | 1.20/1.49 × 104 | - |
250 | 2.52/8.46/8.55 × 104 | 1.96/2.42 × 104 |
220 | 1.27/1.91/2.66 × 105 | - |
200 | 2.97/3.09 × 105 | 2.13/3.08 × 104 |
190 | 4.84 × 105 | - |
180 | 6.18/6.5/6.5 × 105 | 3.96/4.07/5.41 × 104 |
160 | - | 5.35/7.26/7.99/9.20 × 104 |
130 | - | 1.02/1.18/1.37 × 105 |
90 | - | 2.04/2.11/3.44 × 105 |
80 | - | 6.5 × 105 |
70 | - | 6.5 × 105 |
Table 4. Fatigue and corrosion fatigue experimental results for Zn-2Cu-0.8Li alloy.
Stress (MPa) | Air (cycles) | SBF (cycles) |
---|---|---|
360 | 3.89/5.81 × 103 | - |
300 | 1.20/1.49 × 104 | - |
250 | 2.52/8.46/8.55 × 104 | 1.96/2.42 × 104 |
220 | 1.27/1.91/2.66 × 105 | - |
200 | 2.97/3.09 × 105 | 2.13/3.08 × 104 |
190 | 4.84 × 105 | - |
180 | 6.18/6.5/6.5 × 105 | 3.96/4.07/5.41 × 104 |
160 | - | 5.35/7.26/7.99/9.20 × 104 |
130 | - | 1.02/1.18/1.37 × 105 |
90 | - | 2.04/2.11/3.44 × 105 |
80 | - | 6.5 × 105 |
70 | - | 6.5 × 105 |
Fig. 7. High-cycle fatigue fracture overall-view fractographic images in air at ambient temperature of (a, c, e) extruded Zn-0.8Li alloy samples: (a) failure at 300 MPa stress with 2.02 × 104 cycles, (c) failure at 250 MPa stress with 4.75 × 104 cycles and (e) failure at 160 MPa stress with 3.28 × 105 cycles; and (b, d, f) extruded Zn-2Cu-0.8Li alloy samples: (b) failure at 300 MPa stress with 1.49 × 104 cycles, (d) failure at 250 MPa stress with 8.55 × 104 cycles and (f) failure at 190 MPa stress with 4.84 × 105 cycles. Three distinct regions, i.e. fatigue crack initiation zone, crack propagation zone, and final overload zone, are labeled A, B, and C, respectively, in images.
Fig. 8. High-cycle fatigue fracture fractographic images of (a) extruded Zn-0.8Li alloy (failure at 250 MPa stress with 4.75 × 104 cycles) and (c) extruded Zn-2Cu-0.8Li alloy (failure at 250 MPa stress with 8.55 × 104 cycles) in air at ambient temperature; (b, d) magnified images taken from the fatigue crack initiation zones and crack propagation zones of the Zn-0.8Li alloy (b) and Zn-2Cu-0.8Li alloy (d).
Fig. 9. High-cycle corrosion fatigue fracture overall-view fractographic images in SBF at 37 °C after removing corrosion products of extruded Zn-0.8Li alloy samples: (a) failure at 250 MPa stress with 2.07 × 104 cycles, (c) failure at 180 MPa stress with 4.68 × 104 cycles and (e) failure at 130 MPa stress with 1.09 × 105 cycles; and extruded Zn-2Cu-0.8Li alloy samples: (b) failure at 250 MPa stress with 2.42 × 104 cycles, (d) failure at 200 MPa stress with 3.08 × 104 cycles and (f) failure at 160 MPa stress with 9.20 × 104 cycles. Three distinct regions, i.e. fatigue crack initiation zone, crack propagation zone, and final overload zone, are labeled A, B, and C, respectively, in images.
Fig. 10. Corrosion fatigue sources of extruded Zn-0.8Li and Zn-2Cu-0.8Li alloy samples at different stresses in SBF at 37 °C: (a-d) corrosion fatigue sources of the extruded Zn-0.8Li failure at 180 MPa with 5.14 × 104 cycles (a, b) and 130 MPa stress with 2.46 × 105 cycles (c, d), respectively; (e-h) corrosion fatigue sources of the extruded Zn-2Cu-0.8Li failure at 200 MPa with 2.13 × 104 cycles (e, f) and 160 MPa stress with 7.26 × 104 cycles (g, h), respectively (without removing corrosion products (a), (c), (e), (g); removing corrosion products (b), (d), (f), (h)).
Fig. 11. Corrosion rate comparison between immersion in static SBF (static immersion) and under cyclic loading in circulating SBF (corrosion fatigue environment in this study) of (a) Zn-0.8Li and (b) Zn-2Cu-0.8Li. *p < 0.05, **p < 0.01.
Material | Mechanical property | Frequency (Hz) | Corrosion fatigue | Fatigue strength in air (MPa) | Fatigue ratio b | Refs. | |||
---|---|---|---|---|---|---|---|---|---|
TYS (MPa) | UTS (MPa) | Elongation (%) | Medium | Corrosion fatigue strength (MPa) | |||||
AM porous iron | 28 | - | - | 15 | r-SBF | 18.2 (N = 3 × 106) | 19.6 (N = 3 × 106) | - | [ |
As-extruded Mg-Zn-Y-Nd | 159 | 229 | 26.7 | 5 | SBF | 50 (N = 3.5 × 106) | 65 (N = 107) | 0.28 | [ |
As-extruded HP-Mg | 121 | 208 | 10.9 | 10 | SBF | 52 (N = 4 × 106) | 89 (N = 4 × 106) | 0.43 | [ |
As-extruded Mg-1Ca | 148 | 276 | 13.8 | 10 | SBF | 70 (N = 4 × 106) | 90 (N = 4 × 106) | 0.33 | [ |
As-extruded Mg-2Zn-0.2Ca | 118 | 211 | 24.4 | 10 | SBF | 68 (N = 4 × 106) | 87 (N = 4 × 106) | 0.41 | [ |
Sand-cast AZ91D a | 105 | 180 | - | 5 | m-SBF | 17 (N = 5 × 105) | 57 (N = 107) | 0.32 | [ |
Die-cast AZ91D | 71 | 171 | 4.3 | 10 | SBF | 20 (N = 106) | 50 (N = 107) | 0.29 | [ |
As-extruded WE43 | 217 | 298 | 21.7 | 10 | SBF | 40 (N = 107) | 110 (N = 107) | 0.37 | [ |
AM porous zinc (SO4) | 11 | - | - | 15 | r-SBF | 8.8 (N = 3 × 106) | 7.7 (N = 3 × 106) | - | [ |
AM porous zinc (SO402) | 6 | - | - | 15 | r-SBF | 4.8 (N = 3 × 106) | 4.2 (N = 3 × 106) | - | [ |
As-extruded Zn-0.8Li | 421 | 570 | 25.5 | 2 | SBF | 65 (N = 6.5 × 105) | 135 (N = 6.5 × 105) | 0.24 | Present work |
As-extruded Zn-2Cu-0.8Li | 370 | 503 | 42.8 | 2 | SBF | 80 (N = 6.5 × 105) | 180 (N = 6.5 × 105) | 0.36 | Present work |
Table 5. Summary of reported fatigue behaviors of biodegradable Zn-based, Mg-based, and Fe-based alloys.
Material | Mechanical property | Frequency (Hz) | Corrosion fatigue | Fatigue strength in air (MPa) | Fatigue ratio b | Refs. | |||
---|---|---|---|---|---|---|---|---|---|
TYS (MPa) | UTS (MPa) | Elongation (%) | Medium | Corrosion fatigue strength (MPa) | |||||
AM porous iron | 28 | - | - | 15 | r-SBF | 18.2 (N = 3 × 106) | 19.6 (N = 3 × 106) | - | [ |
As-extruded Mg-Zn-Y-Nd | 159 | 229 | 26.7 | 5 | SBF | 50 (N = 3.5 × 106) | 65 (N = 107) | 0.28 | [ |
As-extruded HP-Mg | 121 | 208 | 10.9 | 10 | SBF | 52 (N = 4 × 106) | 89 (N = 4 × 106) | 0.43 | [ |
As-extruded Mg-1Ca | 148 | 276 | 13.8 | 10 | SBF | 70 (N = 4 × 106) | 90 (N = 4 × 106) | 0.33 | [ |
As-extruded Mg-2Zn-0.2Ca | 118 | 211 | 24.4 | 10 | SBF | 68 (N = 4 × 106) | 87 (N = 4 × 106) | 0.41 | [ |
Sand-cast AZ91D a | 105 | 180 | - | 5 | m-SBF | 17 (N = 5 × 105) | 57 (N = 107) | 0.32 | [ |
Die-cast AZ91D | 71 | 171 | 4.3 | 10 | SBF | 20 (N = 106) | 50 (N = 107) | 0.29 | [ |
As-extruded WE43 | 217 | 298 | 21.7 | 10 | SBF | 40 (N = 107) | 110 (N = 107) | 0.37 | [ |
AM porous zinc (SO4) | 11 | - | - | 15 | r-SBF | 8.8 (N = 3 × 106) | 7.7 (N = 3 × 106) | - | [ |
AM porous zinc (SO402) | 6 | - | - | 15 | r-SBF | 4.8 (N = 3 × 106) | 4.2 (N = 3 × 106) | - | [ |
As-extruded Zn-0.8Li | 421 | 570 | 25.5 | 2 | SBF | 65 (N = 6.5 × 105) | 135 (N = 6.5 × 105) | 0.24 | Present work |
As-extruded Zn-2Cu-0.8Li | 370 | 503 | 42.8 | 2 | SBF | 80 (N = 6.5 × 105) | 180 (N = 6.5 × 105) | 0.36 | Present work |
Fig. 13. Fatigue strength of as-extruded Zn-0.8Li and Zn-2Cu-0.8Li alloys compared to other previously reported biodegradable alloys tested in air and SBF. Data collected from Refs [32], [33], [34], [40]. r-SBF: revised simulated body fluid; m-SBF: modified simulated body fluid.
Fig. 14. Comparison of fatigue strengths of extruded Zn-0.8Li, Zn-2Cu-0.8Li, and Mg alloys for biomedical application at 5 × 105 cycles tested in air and SBF. Note that uniaxial tension-compression (R = -1) fatigue testing was conducted for extruded Mg-Zn-Y-Nd alloy in Ref. [34] with a frequency of 5 Hz, for extruded HP-Mg, Mg-1Ca, and Mg-2Zn-0.2Ca alloys in Ref. [23] with a frequency of 10 Hz, and for die-cast AZ91D and extruded WE43 alloys in Ref. [13] with a frequency of 10 Hz, and uniaxial tension-compression (R = -1) fatigue testing was conducted for sand-cast AZ91D in Ref. [25] with a frequency of 5 Hz.
Material | RRFS | Refs. |
---|---|---|
As-extruded Mg-Zn-Y-Nd | 13% | [ |
As-extruded HP-Mg | 19% | [ |
As-extruded Mg-1Ca | 22% | [ |
As-extruded Mg-2Zn-0.2Ca | 11% | [ |
Sand-cast AZ91D | 70% | [ |
Die-cast AZ91D | 69% | [ |
As-extruded WE43 | 33% | [ |
As-extruded Zn-0.8Li | 44% | Present work |
As-extruded Zn-2Cu-0.8Li | 51% | Present work |
Table 6. RRFS values of biomedical Zn-based alloys and Mg-based alloys in SBF at the same number of cycles to failure (5 × 105).
Material | RRFS | Refs. |
---|---|---|
As-extruded Mg-Zn-Y-Nd | 13% | [ |
As-extruded HP-Mg | 19% | [ |
As-extruded Mg-1Ca | 22% | [ |
As-extruded Mg-2Zn-0.2Ca | 11% | [ |
Sand-cast AZ91D | 70% | [ |
Die-cast AZ91D | 69% | [ |
As-extruded WE43 | 33% | [ |
As-extruded Zn-0.8Li | 44% | Present work |
As-extruded Zn-2Cu-0.8Li | 51% | Present work |
[1] |
Y. Okazaki, E. Gotoh, Corros. Sci. 50 (2008) 3429-3438.
DOI URL |
[2] |
M. Niinomi, M. Nakai, J. Hieda, Acta Biomater. 8 (2012) 3888-3903.
DOI PMID |
[3] |
A. Biesiekierski, J. Wang, A.H. Gepreel, C. Wen, Acta Biomater. 8 (2012) 1661-1669.
DOI PMID |
[4] |
D. Zhao, F. Witte, F. Lu, J. Wang, J. Li, L. Qin, Biomaterials 112 (2017) 287-302.
DOI URL |
[5] |
D. Hernández-Escobar, S. Champagne, H. Yilmazer, B. Dikici, C.J. Boehlert, H. Hermawan, Acta Biomater. 97 (2019) 1-22.
DOI PMID |
[6] |
P.K. Bowen, J. Drelich, J. Goldman, Adv. Mater. 25 (2013) 2577-2582.
DOI URL |
[7] |
L.J. Liu, Y. Meng, A.A. Volinsky, H.J. Zhang, L.N. Wang, Corros. Sci. 153 (2019) 341-356.
DOI URL |
[8] |
Y. Chen, W. Zhang, M.F. Maitz, M. Chen, H. Zhang, J. Mao, Y. Zhao, N. Huang, G. Wan, Corros. Sci. 111 (2016) 541-555.
DOI URL |
[9] | X.S. Cui, C. Zhou, H.J. Zhang, Mater. Rev. 32 (2018) 192-195. |
[10] | X.J. Dai, X.R. Yang, C. Wang, P. Xu, X. Zhao, Z.T. Yu, Mater. Rev. 32 (2018) 3754-3759. |
[11] | D.R. Bloyer, J.M. Mcnaney, R.M. Cannon, E. Saiz, A.P. Tomsia, R.O. Ritchie, Bio-materials 28 (2007) 4 901-4 911. |
[12] |
L. Choudhary, R.K.S. Raman, Acta Biomater. 8 (2012) 916-923.
DOI PMID |
[13] |
X.N. Gu, W.R. Zhou, Y.F. Zheng, Y. Cheng, S.C. Wei, S.P. Zhong, T.F. Xi, L.J. Chen, Acta Biomater. 6 (2010) 4605-4613.
DOI PMID |
[14] |
M.S. Bhuiyan, Y. Mutoh, T. Murai, S. Iwakami, Int. J. Fatigue 30 (2008) 1756-1765.
DOI URL |
[15] |
S.H. Teoh, Int. J. Fatigue 22 (20 0 0) 825-837.
DOI URL |
[16] |
B.A. James, R.A. Sire, Biomaterials 31 (2010) 181-186.
DOI PMID |
[17] | Z. Li, Z.Z. Shi, Y. Hao, H.F. Li, L.N. Wang, Mater. Sci. Eng. C 114 (2020) 111049. |
[18] |
C. Zhou, H.F. Li, Y.X. Yin, Z.Z. Shi, H.J. Zhang, Acta Biomater. 97 (2019) 657-670.
DOI URL |
[19] | F. Baciu, A. Rusu-Casandra, T.D. Pastram, Mater. Today: Proc 32 (2020) 128-132. |
[20] | J. Xia, J.J. Lewandowski, M.A. Willard, Mater. Sci. Eng. A 770 (2020) 138518. |
[21] |
T. Kokubo, H. Takadama, Biomaterials 27 (2006) 2907-2915.
DOI URL |
[22] | J. Sun, X. Zhang, Z.Z. Shi, X.X. Gao, L.N. Wang, Acta Biomater. 119 (2020) 4 85-4 98. |
[23] |
D. Bian, W.R. Zhou, Y. Liu, N. Li, Y.F. Zheng, Z.L. Sun, Acta Biomater. 41 (2016) 351-360.
DOI URL |
[24] |
Y. Uematsu, K. Tokaji, T. Ohashi, Strength Mater. 40 (2008) 130-133.
DOI URL |
[25] |
S. Jafari, R.K.S. Raman, C.H.J. Davies, Eng. Fract. Mech. 137 (2015) 2-11.
DOI URL |
[26] |
S.M. Yin, F. Yang, X.M. Yang, S.D. Wu, S.X. Li, G.Y. Li, Mater. Sci. Eng. A 494 (20 08)397-40 0.
DOI URL |
[27] |
F. Yang, F. Lv, X.M. Yang, S.X. Li, Q.D. Wang, Mater. Sci. Eng. A 528 (2011) 2231-2238.
DOI URL |
[28] |
J.B. Jordon, J.B. Gibson, M.F. Horstemeyer, H.E. Kadiri, J.C. Baird, A.A. Luo, Mater. Sci. Eng. A 528 (2011) 6 860-6 871.
DOI URL |
[29] |
Z.M. Li, A.A. Luo, Q.G. Wang, H. Zou, J.C. Dai, L.M. Peng, J. Magnes. Alloy. 5 (2017) 1-12.
DOI URL |
[30] |
S.E. Harandi, R.K. Singh Raman, Eng. Fract. Mech. 186 (2017) 134-142.
DOI URL |
[31] | G.N. Li, S.M. Zhu, J.F. Nie, Y.F. Zheng, Z.L. Sun, Bioact. Mater. 6 (2021) 1468-1478. |
[32] |
Y. Li, W. Li, F.S.L. Bobbert, K. Lietaert, J.H. Dong, M.A. Leeflang, J. Zhou, A.A. Zad-poor, Acta Biomater. 106 (2020) 439-449.
DOI PMID |
[33] |
Y. Li, K. Lietaert, W. Li, X.Y. Zhang, M.A. Leeflang, J. Zhou, A.A. Zadpoor, Corros. Sci. 156 (2019) 106-116.
DOI |
[34] |
M.Y. Liu, J.F. Wang, S.J. Zhu, Y.B. Zhang, Y.F. Sun, L.G. Wang, S.K. Guan, J. Magnes. Alloy. 8 (2020) 231-240.
DOI URL |
[35] | R.J. Narayan, Materials for Medical Devices, ASM International, Materials Park, Ohio, 2012. |
[36] | Q. Zhou, M.S. Thesis, University of Hawaii, 2006. |
[37] | H. Jansson, I. Svensson, M.S. Thesis, Chalmers University of Technology, Swe-den, 2012. |
[38] | B.L. Wu, L.H. Song, G.S. Duan, X.H. Du, Y.N. Wang, C. Esling, M.J. Philippe, Mater. Sci. Eng. A 795 (2020) 139675. |
[39] |
C.B. Lim, K.S. Kim, J.B. Seong, Int. J. Fatigue 31 (2009) 501-507.
DOI URL |
[40] |
J. Zhao, L.L. Gao, H. Gao, X. Yuan, X. Chen, Fatigue Fract. Eng. Mater. Struct. 38 (2015) 904-913.
DOI URL |
[1] | Amy X.Y. Guo, Liangjie Cheng, Shuai Zhan, Shouyang Zhang, Wei Xiong, Zihan Wang, Gang Wang, Shan Cecilia Cao. Biomedical applications of the powder‐based 3D printed titanium alloys: A review [J]. J. Mater. Sci. Technol., 2022, 125(0): 252-264. |
[2] | Sheng Ding, Yuanfeng Wang, Jianna Li, Shiguo Chen. Progress and prospects in chitosan derivatives: Modification strategies and medical applications [J]. J. Mater. Sci. Technol., 2021, 89(0): 209-224. |
[3] | Muhammad Akmal, Ahtesham Hussain, Muhammad Afzal, Young Ik Lee, Ho Jin Ryu. Systematic study of (MoTa)xNbTiZr medium- and high-entropy alloys for biomedical implants- In vivo biocompatibility examination [J]. J. Mater. Sci. Technol., 2021, 78(0): 183-191. |
[4] | Jixing Lin, Xian Tong, Kun Wang, Zimu Shi, Yuncang Li, Matthew Dargusch, Cuie Wen. Biodegradable Zn-3Cu and Zn-3Cu-0.2Ti alloys with ultrahigh ductility and antibacterial ability for orthopedic applications [J]. J. Mater. Sci. Technol., 2021, 68(0): 76-90. |
[5] | Gopinathan Janarthanan, Insup Noh. Recent trends in metal ion based hydrogel biomaterials for tissue engineering and other biomedical applications [J]. J. Mater. Sci. Technol., 2021, 63(0): 35-53. |
[6] | Wang C.,Yang H.T.,Li X.,Zheng Y.F.. In Vitro Evaluation of the Feasibility of Commercial Zn Alloys as Biodegradable Metals [J]. J. Mater. Sci. Technol., 2016, 32(9): 909-918. |
[7] | Mijeong Kang, Hyoban Lee, Taejoon Kang, Bongsoo Kim. Synthesis, Properties, and Biological Application of Perfect Crystal Gold Nanowires: A Review [J]. J. Mater. Sci. Technol., 2015, 31(6): 573-580. |
[8] | J. Cheng, B. Liu, Y.H. Wu, Y.F. Zheng. Comparative in vitro Study on Pure Metals (Fe, Mn, Mg, Zn and W) as Biodegradable Metals [J]. J. Mater. Sci. Technol., 2013, 29(7): 619-627. |
[9] | Ling Ren, Ke Yang. Bio-functional Design for Metal Implants, a New Concept for Development of Metallic Biomaterials [J]. J. Mater. Sci. Technol., 2013, 29(11): 1005-1010. |
[10] | Awatef Guidara, Kamel Chaari, Jamel Bouaziz. Effect of Titania Additive on Structural and Mechanical Properties of Alumina{Fluorapatite Composites [J]. J. Mater. Sci. Technol., 2012, 28(12): 1130-1136. |
[11] | Jie WEI, Yubao LI, Yi ZUO, Xueling PENG, Li ZHANG. Development of Biomimetic Needle-like Apatite Nanocrystals by a Simple New Method [J]. J Mater Sci Technol, 2004, 20(06): 665-667. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||