J. Mater. Sci. Technol. ›› 2022, Vol. 125: 252-264.DOI: 10.1016/j.jmst.2021.11.084
• Research Article • Previous Articles
Amy X.Y. Guo, Liangjie Cheng, Shuai Zhan, Shouyang Zhang, Wei Xiong, Zihan Wang(), Gang Wang(
), Shan Cecilia Cao(
)
Received:
2021-10-10
Revised:
2021-11-07
Accepted:
2021-11-16
Published:
2022-04-04
Online:
2022-04-04
Contact:
Zihan Wang,Gang Wang,Shan Cecilia Cao
About author:
scao@shu.edu.cn (S.C. Cao).Amy X.Y. Guo, Liangjie Cheng, Shuai Zhan, Shouyang Zhang, Wei Xiong, Zihan Wang, Gang Wang, Shan Cecilia Cao. Biomedical applications of the powder‐based 3D printed titanium alloys: A review[J]. J. Mater. Sci. Technol., 2022, 125: 252-264.
Fig. 1. (A) Human bone anatomy diagram (Reproduced with permission from Ref. [1]). (B) Schematic diagram of the biomedical application of Ti alloy [6].
Fig. 2. (A) laser and ultrasonic multi-material AM for metals [37]: (A1) powder bed fusion, (A2) directed energy deposition, and (A3) sheet lamination. (B) Adhesive jet AM process [37]: (B1) binder jetting, (B2) material extrusion, and (B3) Post-AM debinding and sintering. (C) Three forms of multi-material extrusion-based AM technology: (C1) Screw. (C2) Pneumatic. (C3) Piston.
Parameter or process | Powder bed fusion with a laser or electron beam | Directed energy deposition using a powder and laser | Directed energy deposition using a wire (electron beam, plasma arc or gas metal arc) |
---|---|---|---|
Atmosphere | Vacuum/argon | Vacuum | Vacuum/argon |
Heat source power [54](W) | 50-1000 (up to 4 beams) | 400-3000 | 1000-5000 (gas metal arc 2000) |
Temperature gradient [55,56] (K m-1) | 106-107 | 102-104 | 101-102 |
Scanning speed [54,56] (mm s-1) | 10-1000 | 6-60 | 5-50 |
Solidification growth rate [54,57] | 10-1-100 | 10-2-10-1 | 10-2-10-1 |
Deposition rate [54,58] (cm3 h-1) | 25-180 | 20-450 | 100 to>1000 |
Build size (mm × mm × mm) | Maximum 800 × 400 × 500 | Maximum 2000 × 1500 × 1000 | Maximum 5000 × 3000 × 500 |
Feedstock diameter (μm) | 15-60 (laser), 45-105 (electron beam) | 15-105 | 900-3000 |
Dimensional accuracy[55,56] (mm) | 0.04-0.20 | 0.20-5 | 1-5 |
Surface roughness [54,55,57,58] (average deviation of surface from its mean height in μm) | 7-30 (laser), 20-50 (electron beam) | 15-60 | 45-200+, surface needs machining |
Cooling rate during solidification [54,58] (K s-1) | 105-107 | 102-104 | 101-102 |
Post process | Heat treatment, hot isostatic pressing, machining | Heat treatment, machining, grinding | Heat treatment, stress relieving, machining |
Application [59,60] | Functional prototyping and engineering functional parts | Prototyping, functional parts, and repairing metal parts and fixtures | Fabricating components with large geometries and moderate structural complexity |
Table 1. Comparison of the similarities and differences between three printing processes.
Parameter or process | Powder bed fusion with a laser or electron beam | Directed energy deposition using a powder and laser | Directed energy deposition using a wire (electron beam, plasma arc or gas metal arc) |
---|---|---|---|
Atmosphere | Vacuum/argon | Vacuum | Vacuum/argon |
Heat source power [54](W) | 50-1000 (up to 4 beams) | 400-3000 | 1000-5000 (gas metal arc 2000) |
Temperature gradient [55,56] (K m-1) | 106-107 | 102-104 | 101-102 |
Scanning speed [54,56] (mm s-1) | 10-1000 | 6-60 | 5-50 |
Solidification growth rate [54,57] | 10-1-100 | 10-2-10-1 | 10-2-10-1 |
Deposition rate [54,58] (cm3 h-1) | 25-180 | 20-450 | 100 to>1000 |
Build size (mm × mm × mm) | Maximum 800 × 400 × 500 | Maximum 2000 × 1500 × 1000 | Maximum 5000 × 3000 × 500 |
Feedstock diameter (μm) | 15-60 (laser), 45-105 (electron beam) | 15-105 | 900-3000 |
Dimensional accuracy[55,56] (mm) | 0.04-0.20 | 0.20-5 | 1-5 |
Surface roughness [54,55,57,58] (average deviation of surface from its mean height in μm) | 7-30 (laser), 20-50 (electron beam) | 15-60 | 45-200+, surface needs machining |
Cooling rate during solidification [54,58] (K s-1) | 105-107 | 102-104 | 101-102 |
Post process | Heat treatment, hot isostatic pressing, machining | Heat treatment, machining, grinding | Heat treatment, stress relieving, machining |
Application [59,60] | Functional prototyping and engineering functional parts | Prototyping, functional parts, and repairing metal parts and fixtures | Fabricating components with large geometries and moderate structural complexity |
Fig. 3. Hybrid hierarchical metamaterials composed of microarchitectures. (A) Designs of different pore sizes and shapes. (B) Topological structure of Ti6Al4V porous biomaterial as bone regeneration based on the minimum surface of the triple period [77,78]: (B1) primitive, (B2) I-WP, (B3) gyroid, and (B4) diamond. 3D Young's modulus surface of the basic lattice [79]: (C1) Crossing-cylinder; (C2) X unit; (C3) Face-centre cubic; (C4) Octet truss.
Fig. 4. Two isotropic lattice structure design and anisotropy control strategies [79]. (A, B) The crossed frustum is combined with the octet truss structure to obtain an isotropic lattice structure. (C) The hierarchical structure is generated by changing the inner and outer diameters to achieve lattice anisotropy control.
Fig. 5. 3 D printing classic microstructure of titanium alloy. (A1, A2) As-DED processed and as-cast of Ti-5Ni alloy, respectively [85]. (B1-B4) SEM micrographs and EBSD maps (IPF-build direction/out of page) of the etched surface of the (B1, B2) as-printed and (B3, B4) heat-treated meta-crystals [86]. EBSD phase, inverse pole figure (IPF), and SEM micrographs of DED-processed Ti-5Ni alloy when heat treated at 760 °C (C1-C3), 800 °C (D1-D3) and 850 °C (E1-E3) [85].
Fig. 6. (A1) Illustration of influence of pore size on cellular scaffolds. Schematics showing (A2) variation of specific surface area for cell growth and vascularization of cellular scaffolds with pore size; and (A3) variation of mechanical strength and permeability of cellular scaffolds with pore size and porosity [94]. (B) Deformation of 16 kinds of meta-crystals under increased compressive strain shown by DIC [86].
Fig. 8. (A) In vivo osteoinductive experiment of porous titanium and temperature-sensitive collagen composite scaffolds prepared by electron beam melting (EBM) technology [98]. (A1) Schematic diagram of composite scaffold preparation and bone tissue regeneration after implantation in rabbits. (A2) Representative 3D reconstructed images of the eTi, cTi, and rhBMP9/cTi groups 6 weeks and 12 weeks after surgery (yellow represents bone tissue, white represents the scaffold in the 3D micro-CT image). (A3) Micro-CT image analysis of BV/TV, Tb.Th, Tb.N and Tb.Sp of each group. (B) Model that leads to the response of cells to the Ti6Al4V-6Cu alloy in GBR [101]. (C) 8 weeks after implantation in the body, the micro-CT image of the porous titanium alloy implant and the quantitative result of the bone fraction in the area of the stent hole [102].
Fig. 9. The application of machine learning in 3D printing technology. (A) ML in the biomedical 3D printing pipeline: from printer to patients [119]. (B) ML inspired isotropic octet-truss lattice structure designs [79]. (C) The contribution of metallurgy, mechanical modeling and machine learning in each specific process of metal 3D printing.
[1] |
J. Scheinpflug, M. Pfeiffenberger, A. Damerau, F. Schwarz, M. Textor, A. Lang, F. Schulze, Genes 9 (2018) 247.
DOI URL |
[2] |
Q. Fu, E. Saiz, M.N. Rahaman, A.P. Tomsia, Mater. Sci. Eng. C. 31 (2011) 1245-1256.
DOI URL |
[3] | B.Q. Le, V. Nurcombe, S.M. Cool, C.A. van Blitterswijk, J. de Boer, V.L.S. La-Pointe, Materials 11 (2017) 14. |
[4] | R. Florencio-Silva, G.R.D. Sasso, E. Sasso-Cerri, M.J. Simoes, P.S. Cerri, Biomed. Res. Int. (2015) 421746. |
[5] | G.M. Calori, E. Mazza, M. Colombo, C. Ripamonti, Injury 42 (2011) S56-S63. |
[6] | T.S. Jang, D. Kim, G. Han, C.B. Yoon, H.D. Jung, Biomed. Res. Int. 10 (2020) 505-516. |
[7] |
F.H. Pollard, P. Woodward, Trans. Faraday Soc. 46 (1950) 190-199.
DOI URL |
[8] |
E. Brandl, A. Schoberth, C. Leyens, Mater. Sci. Eng. A 532 (2012) 295-307.
DOI URL |
[9] |
R.E. Taylor, J. Morreale, J. Am. Ceram. Soc. 47 (1964) 69-73.
DOI URL |
[10] | C. Veiga, J.P. Davim, A.J.R. Loureiro, Rev. Adv. Mater. Sci 34 (2013) 148-164. |
[11] | K. Kothari, R. Radhakrishnan, N.M. Wereley, PrAeS 55 (2012) 1-16. |
[12] |
E. Yılmaz, A. Gökçe, F. Findik, H.Ö. Gulsoy, J. Therm. Anal. Calorim. 134 (2018) 7-14.
DOI URL |
[13] |
E. Yılmaz, F. Kabata ¸s, A. Gökçe, F. Fındık, J. Mater. Eng. Perform. 29 (2020) 6455-6467.
DOI URL |
[14] | N. Aslan, B. Aksakal, F. Findik, J. Mater. Sci. 32 (2021) 80. |
[15] |
E. Yılmaz, A. Gökçe, F. Findik, H. Gulsoy, J. Alloys Compd. 746 (2018) 301-313.
DOI URL |
[16] | H. Lipson, M. Kurman, Fabricated: The New World of 3D Printing, John Wiley and Sons, New York, 2013. |
[17] | S. Rahmati, F. Farahmand, F.. Abbaszadeh. Majlesi J. Electr. Eng. 3 (2010) 11-16. |
[18] | T. Larimian, T. Borkar, Addit. Manuf. Emerging. Mater. (2019) 1-28. |
[19] |
C. Cai, C. Radoslaw, J. Zhang, Q. Yan, S. Wen, B. Song, Y. Shi, Powder Technol 342 (2019) 73-84.
DOI URL |
[20] |
C. Han, Y. Li, Q. Wang, D. Cai, Q. Wei, L. Yang, S. Wen, J. Liu, Y. Shi, Mater. Des. 141 (2018) 256-266.
DOI URL |
[21] |
J.C. Wang, Y.J. Liu, P. Qin, S.X. Liang, T.B. Sercombe, L.C. Zhang, Mater. Sci. Eng. A 760 (2019) 214-224.
DOI URL |
[22] |
T. Long, X. Zhang, Q. Huang, L. Liu, Y. Liu, J. Ren, Y. Yin, D. Wu, H. Wu, Virtual. Phys. Prototyp. 13 (2) (2018) 71-81.
DOI URL |
[23] |
D. Gu, Y.-C. Hagedorn, W. Meiners, K. Wissenbach, R. Poprawe, Surf. Coat. Technol. 205 (2011) 3285-3292.
DOI URL |
[24] |
D. Gu, C. Hong, G. Meng, Metall. Mater. Trans. A 43 (2012) 697-708.
DOI URL |
[25] |
H. Attar, M. Bönisch, M. Calin, L.-C. Zhang, S. Scudino, J. Eckert, Acta Mater. 76 (2014) 13-22.
DOI URL |
[26] |
C. Han, Q. Wang, B. Song, W. Li, Q. Wei, S. Wen, J. Liu, Y. Shi, J. Mech. Behav. Biomed. Mater. 71 (2017) 85-94.
DOI URL |
[27] |
B. Vrancken, L. Thijs, J.P. Kruth, J. Van Humbeeck, Acta Mater. 68 (2014) 150-158.
DOI URL |
[28] |
M. Fischer, D. Joguet, G. Robin, L. Peltier, P. Laheurte, Mater. Sci. Eng. C 62 (2016) 852-859.
DOI URL |
[29] |
S.L. Sing, W.Y. Yeong, F.E. Wiria, J. Alloys Compd. 660 (2016) 461-470.
DOI URL |
[30] |
S. Guo, Y. Lu, S. Wu, L. Liu, M. He, C. Zhao, Y. Gan, J. Lin, J. Luo, X. Xu, J. Lin, Mater. Sci. Eng. C 72 (2017) 631-640.
DOI URL |
[31] |
X. Xu, Y. Lu, S. Li, S. Guo, M. He, K. Luo, J. Lin, Mater. Sci. Eng. C 90 (2018) 198-210.
DOI URL |
[32] |
R. Gorejová, L. Haverová, R. Ori ˇnaková, A. Ori ˇnak, M. Ori ˇnak, J. Mater. Sci. 54 (2019) 1913-1947.
DOI URL |
[33] |
J. He, F.L. He, D.W. Li, Y.L. Liu, Y.Y. Liu, Y.J. Ye, D.C. Yin, RSC Adv. 6 (2016) 112819-112838.
DOI URL |
[34] |
D.-T. Chou, D. Wells, D. Hong, B. Lee, H. Kuhn, P.N. Kumta, Acta Biomater. 9 (2013) 8593-8603.
DOI URL |
[35] |
D. Zhao, F. Witte, F. Lu, J. Wang, J. Li, L. Qin, Biomaterials 112 (2017) 287-302.
DOI URL |
[36] | Standard Terminology for Additive Manufacturing Technologies, ASTM Int., 2012. |
[37] |
N.E. Putra, M.J. Mirzaali, I. Apachitei, J. Zhou, A.A. Zadpoor, Acta Biomater. 109 (2020) 1-20.
DOI PMID |
[38] | T. Larimian, T. Borkar, in: Additive Manufacturing of Emerging Materials, Springer International Publishing, Cham, 2019, pp. 1-28. |
[39] |
C.J. Shuai, L. Liu, M.C. Zhao, P. Feng, Y.W. Yang, W. Guo, C.D. Gao, F.L. Yuan, J. Mater. Sci. Technol. 34 (10) (2018) 1944-1952.
DOI |
[40] |
T. Long, X.H. Zhang, Q.L. Huang, L. Liu, Y. Liu, J.Y. Ren, Y. Yin, D.K. Wu, H. Wu, Virtual Phys. Prototyp. 13 (2) (2018) 71-81.
DOI URL |
[41] | C.J. Shuai, Y.W. Yang, S.P. Peng, C.D. Gao, P. Feng, J. Chen, Y. Liu, X. Lin, S. Yang, F. L. Yuan, J. Mater. Sci. 28 (9)(2017). |
[42] |
K.W. Wei, X.Y. Zeng, Z.M. Wang, J.F. Deng, M.N. Liu, G. Huang, X.C. Yuan, Mater. Sci. Eng. A 756 (2019) 226-236.
DOI URL |
[43] |
B. Dutta, F.H. Froes, Met. Powder Rep. 72 (2) (2017) 96-106.
DOI URL |
[44] |
D.T. Chou, D. Wells, D. Hong, B. Lee, H. Kuhn, P.N. Kumta, Acta Biomater. 9 (2013) 8593-8603.
DOI URL |
[45] |
D.H. Hong, D.T. Chou, O.I. Velikokhatnyi, A. Roy, B. Lee, I. Swink, I. Issaev, H.A. Kuhn, P.N. Kumta, Acta Biomater. 45 (2016) 375-386.
DOI URL |
[46] | A.E. Jakus, A.L. Rutz, S.W. Jordan, A. Kannan, S.M. Mitchell, C. Yun, K.D. Koube, S. C. Yoo, H.E. Whiteley, C.P. Richter, R.D. Galiano, W.K. Hsu, S.R. Stock, E.L. Hsu, R.N. Shah, Sci. Transl. Med. 8 (2016) 358. |
[47] |
A.E. Jakus, S.L. Taylor, N.R. Geisendorfer, D.C. Dunand, R.N. Shah, Adv. Funct. Mater. 25 (2015) 6985-6995.
DOI URL |
[48] |
H.S. Ma, T. Li, Z.G. Huan, M. Zhang, Z.Z. Yang, J.W. Wang, J. Chang, C.T. Wu, NPG Asia Mater. 10 (2018) 31-44.
DOI URL |
[49] | X. Su, T. Wang, S. Guo, Regen. Ther. 16 (2021) 63-72. |
[50] | Q. Hamid, J. Snyder, C. Wang, M. Timmer, J. Hammer, S. Guceri, W. Sun, Biofabrication 3 (2011) 034109. |
[51] |
C.W. Fedore, L.Y.L. Tse, H.K. Nam, K.L. Barton, N.E. Hatch, Orthod. Craniofac. Res. 20 (2017) 12-17.
DOI URL |
[52] | P. Rastogi, B. Kandasubramanian, Biofabrication 11 (2019) 042001. |
[53] | M. Xu, Y. Li, H. Suo, Y. Yan, L. Liu, Q. Wang, Y. Ge, Y. Xu, Biofabrication 2 (2010) 025002. |
[54] | R. Shrinivas Mahale, V. Shamanth, K. Hemanth, S.K. Nithin, P.C. Sharath, R. Shashanka, A. Patil, D. Shetty, Mater. Today 54 (2022) 228-233. |
[55] |
T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, W. Zhang, Prog. Mater. Sci. 92 (2018) 112-224.
DOI URL |
[56] |
T. Mukherjee, T. DebRoy, Appl. Mater. Today 14 (2019) 59-65.
DOI |
[57] |
T. DebRoy, T. Mukherjee, J.O. Milewski, J.W. Elmer, B. Ribic, J.J. Blecher, W. Zhang, Nat. Mater. 18 (2019) 1026-1032.
DOI PMID |
[58] |
J. Donoghue, A.A. Antonysamy, F. Martina, P.A. Colegrove, S.W. Williams, P.B. Prangnell, Mater. Charact. 114 (2016) 103-114.
DOI URL |
[59] | Y. Zhang, W. Jarosinski, Y.-G. Jung, J. Zhang, in: Additive Manufacturing, Butterworth-Heinemann, Oxford, 2018, pp. 39-51. |
[60] |
S. Pattanayak, S.K. Sahoo, CIRP J. Manuf. Sci. Technol. 33 (2021) 398-442.
DOI URL |
[61] |
L.D. Bobbio, R.A. Otis, J.P. Borgonia, R.P. Dillon, A.A. Shapiro, Z.-K. Liu, A. M. Beese, Acta Mater. 127 (2017) 133-142.
DOI URL |
[62] |
S. Mereddy, M.J. Bermingham, D. Kent, A. Dehghan-Manshadi, D.H. StJohn, M. S. Dargusch, JOM 70 (2018) 1670-1676.
DOI URL |
[63] |
M.J. Bermingham, D.H. StJohn, J. Krynen, S. Tedman-Jones, M.S. Dargusch, Acta Mater. 168 (2019) 261-274.
DOI |
[64] |
C.J. Todaro, M.A. Easton, D. Qiu, D. Zhang, M.J. Bermingham, E.W. Lui, M. Brandt, D.H. StJohn, M. Qian, Nat. Commun. 11 (2020) 142.
DOI PMID |
[65] | W. Tillmann, C. Schaak, J. Nellesen, M. Schaper, M.E. Aydinöz, K.P. Hoyer, Addit. Manuf. 13 (2017) 93-102. |
[66] |
B. AlMangour, D. Grzesiak, J.-M. Yang, J. Mater. Process. Technol. 244 (2017) 344-353.
DOI URL |
[67] |
M. Khomutov, P. Potapkin, V. Cheverikin, P. Petrovskiy, A. Travyanov, I. Logachev, A. Sova, I. Smurov, Intermetallics 120 (2020) 106766.
DOI URL |
[68] | X. Lu, X. Lin, M. Chiumenti, M. Cervera, Y. Hu, X. Ji, L. Ma, H. Yang, W. Huang, Addit. Manuf. 26 (2019) 166-179. |
[69] |
I.D. Learmonth, C. Young, C. Rorabeck, Lancet 370 (2007) 1508-1519.
PMID |
[70] |
A. Butscher, M. Bohner, S. Hofmann, L. Gauckler, R. Muller, Acta Biomater. 7 (2011) 907-920.
DOI PMID |
[71] |
K. Alvarez, H. Nakajima, Materials 2 (2009) 790-832.
DOI URL |
[72] | J. Banhart, Prog. Mater. Sci. 46 (2001) 553-559. |
[73] | G.H. Billstrom, A.W. Blom, S. Larsson, A.D. Beswick, Injury 44 (2013) S28-S33. |
[74] |
S.L. Wu, X.M. Liu, K.W.K. Yeung, C.S. Liu, X.J. Yang, Mater. Sci. Eng. R 80 (2014) 1-36.
DOI URL |
[75] | L.R. Meza, A.J. Zelhofer, N. Clarke, A.J. Mateos, D.M. Kochmann, J.R. Greer, Proc. Natl. Acad. Sci. U.S.A. 112 (2015) 11502-11507. |
[76] |
J.Scott Hollister, Nat. Mater. 4 (2005) 518-524.
DOI PMID |
[77] |
S. Van Bael, Y.C. Chai, S. Truscello, M. Moesen, G. Kerckhofs, H. Van Oosterwyck, I.P. Kruth, J. Schrooten, Acta Biomater. 8 (2012) 2824-2834.
DOI PMID |
[78] |
F.S.L. Bobbert, K. Lietaert, A.A. Eftekhari, B. Pouran, S.M. Ahmadi, H. Weinans, A.A. Zadpoor, Acta Biomater 53 (2017) 572-584.
DOI PMID |
[79] |
J. Feng, B. Liu, Z. Lin, J. Fu, Mater. Des. 203 (2021) 109595.
DOI URL |
[80] | G. Dong, Y. Tang, Y.F. Zhao, J. Manuf. Sci. Technol. 141 (2019) 011005. |
[81] |
J. Kang, E. Dong, D. Li, S. Dong, C. Zhang, L. Wang, Mater. Des. 191 (2020) 108608.
DOI URL |
[82] |
D. Qi, H. Yu, M. Liu, H. Huang, S. Xu, Y. Xia, G. Qian, W. Wu, Int. J. Mech. Sci. 163 (2019) 105091.
DOI URL |
[83] |
P. Lohmuller, J. Favre, S. Kenzari, B. Piotrowski, L. Peltier, P. Laheurte, Mater. Des. 182 (2019) 108059.
DOI URL |
[84] |
J. Feng, B. Liu, Z. Lin, J. Fu, Mater. Des. 210 (2021) 110050.
DOI URL |
[85] |
P.L. Narayana, J.H. Kim, S. Lee, J.W. Won, C.H. Park, J.T. Yeom, N.S. Reddy, J.K. Hong, Scr. Mater. 200 (2021) 113918.
DOI URL |
[86] |
J. Lertthanasarn, C. Liu, M.S. Pham, Mater. Sci. Eng. A 818 (2021) 141436.
DOI URL |
[87] |
X. Yuan, M.B. Kim, C.Y. Kang, Mater. Charact. 60 (2009) 1289-1297.
DOI URL |
[88] |
X.J. Wang, S.Q. Xu, S.W. Zhou, W. Xu, M. Leary, P. Choong, M. Qian, M. Brandt, Y. M. Xie, Biomaterials 83 (2016) 127-141.
DOI URL |
[89] |
N. Taniguchi, S. Fujibayashi, M. Takemoto, K. Sasaki, B. Otsuki, T. Nakamura, T. Matsushita, T. Kokubo, S. Matsuda, Mater. Sci. Eng. C 59 (2016) 690-701.
DOI URL |
[90] |
A. Braem, A. Chaudhari, M.V. Cardoso, J. Schrooten, J. Duyck, J. Vleugels, Acta Biomater. 10 (2014) 986-995.
DOI URL |
[91] |
F. Bai, Z. Wang, J.X. Lu, J.A. Liu, G.Y. Chen, R. Lv, J. Wang, K.L. Lin, J.K. Zhang, X. Huang, Tissue. Eng. Part A 16 (2010) 3791-3803.
DOI URL |
[92] |
A.I. Itälä, H.O. Ylänen, C. Ekholm, K.H. Karlsson, H.T. Aro, J. Biomed. Mater. Res. 58 (2001) 679-683.
DOI URL |
[93] |
C. Liu, J. Lertthanasarn, M.S. Pham, Nat. Commun. 12 (2021) 4600.
DOI URL |
[94] |
X.P. Tan, Y.J. Tan, C.S.L. Chow, S.B. Tor, W.Y. Yeong, Mater. Sci. Eng. C 76 (2017) 1328-1343.
DOI URL |
[95] |
S. Gorsse, C. Hutchinson, M. Gouné, R. Banerjee, Sci. Technol. Adv. Mater. 18 (2017) 584-610.
DOI URL |
[96] |
O.A. Quintana, W. Tong, JOM 69 (2017) 2693-2697.
DOI URL |
[97] |
W. Mo´ cko, L. Kruszka, A. Brodecki, EPJ Web Conf. 94 (2015) 01011.
DOI URL |
[98] |
Z. Zhu, X. Li, Y. Li, L. Zhu, C. Zhu, Z. Che, L. Huang, Mater. Des. 208 (2021) 109882.
DOI URL |
[99] |
H. Schliephake, C. Boetel, A. Foerster, B. Schwenzer, J. Reichert, D. Scharnweber, Biomaterials 33 (2012) 1315-1322.
DOI PMID |
[100] |
Y.H. Youn, S.J. Lee, G.R. Choi, H.R. Lee, D. Lee, D.N. Heo, B.-S. Kim, J.B. Bang, Y.-S. Hwang, V.M. Correlo, R.L. Reis, S.G. Im, I.K. Kwon, Mater. Sci. Eng. C 100 (2019) 949-958.
DOI URL |
[101] |
X.C. Xu, Y.J. Lu, S.M. Li, S. Guo, M.J. He, K. Luo, J.X. Lin, Mater. Sci. Eng. C 90 (2018) 198-210.
DOI URL |
[102] | C. Yin, T. Zhang, Q. Wei, H. Cai, Y. Cheng, Y. Tian, H. Leng, C. Wang, S. Feng, Z. Liu, Bioact. Mater. 7 (2022) 26-38. |
[103] |
M.C. Bottino, V. Thomas, G. Schmidt, Y.K. Vohra, T.M.G. Chu, M.J. Kowolik, G. M. Janowski, Dent. Mater. 28 (2012) 703-721.
DOI PMID |
[104] |
P. Proussaefs, J. Lozada, J. Oral. Implantol. 32 (2006) 237-247.
PMID |
[105] | M.R. dal Polo, P.P. Poli, D. Rancitelli, M. Beretta, C. Maiorana, Medicina. Oral Patologia. Oral Y. Cirugia. Bucal. 19 (2014) E639-E646. |
[106] |
C.Y. Chu, J. Deng, X.C. Sun, Y.L. Qu, Y. Man, Tissue. Eng. Part B-Rev. 23 (2017) 421-435.
DOI URL |
[107] |
I. Elgali, O. Omar, C. Dahlin, P. Thomsen, Eur. J. Oral Sci. 125 (2017) 315-337.
DOI URL |
[108] |
C.Y. Chu, J. Deng, L. Xiang, Y.Y. Wu, X.W. Wei, Y.L. Qu, Y. Man, Mater. Sci. Eng. C 67 (2016) 386-394.
DOI URL |
[109] | G. Sam, B.R.M. Pillai, J. Clin. Diagnost. Res. 8 (2014) 14-17. |
[110] |
Q. Wang, L. Ren, X.P. Li, S.Y. Zhang, T.B. Sercombe, K. Yang, Mater. Sci. Eng. C 68 (2016) 519-522.
DOI URL |
[111] |
Y.J. Lu, L. Ren, S.Q. Wu, C.G. Yang, W.L. Lin, S.L. Xiao, Y. Yang, K. Yang, J.X. Lin, Powder Technol. 325 (2018) 289-300.
DOI URL |
[112] |
E.A. Abou Neel, I. Ahmed, J. Pratten, S.N. Nazhat, J.C. Knowles, Biomaterials 26 (2005) 2247-2254.
PMID |
[113] |
C.T. Wu, Y.H. Zhou, M.C. Xu, P.P. Han, L. Chen, J. Chang, Y. Xiao, Biomaterials 34 (2013) 422-433.
DOI URL |
[114] | L. Ren, H.M. Wong, C.H. Yan, K.W.K. Yeung, K. Yang, J. Biomed. 103 (2015) 1433-1444. |
[115] |
C.G. Fraga, Mol. Aspects Med. 26 (2005) 235-244.
DOI URL |
[116] |
Y.J. Kang, Pharmacol. Ther. 129 (2011) 321-331.
DOI URL |
[117] |
X. Qi, G. Chen, Y. Li, X. Cheng, C. Li, Engineering 5 (2019) 721-729.
DOI URL |
[118] |
T. Kotsiopoulos, P. Sarigiannidis, D. Ioannidis, D. Tzovaras, Comput. Sci. Rev. 40 (2021) 100341.
DOI URL |
[119] |
M. Elbadawi, L.E. McCoubrey, F.K.H. Gavins, J.J. Ong, A. Goyanes, S. Gaisford, A.W. Basit, Trends Pharmacol. Sci. 42 (2021) 745-757.
DOI PMID |
[120] |
V. Manvatkar, A. De, T. DebRoy, J. Appl. Phys. 116 (2014) 124905.
DOI URL |
[121] |
W. Ou, T. Mukherjee, G.L. Knapp, Y. Wei, T. DebRoy, Int. J. Heat Mass Transf. 127 (2018) 1084-1094.
DOI URL |
[122] |
B. Zhang, P. Jaiswal, R. Rai, P. Guerrier, G. Baggs, Rapid Prototyp. J. 25 (2019) 530-540.
DOI URL |
[123] |
K. Aoyagi, H. Wang, H. Sudo, A. Chiba, Addit. Manuf. 27 (2019) 353-362.
DOI |
[124] |
Y. Wang, R. Blache, P. Zheng, X. Xu, J. Mech. Des. 140 (2018) 051701.
DOI URL |
[125] |
Y. Du, T. Mukherjee, T. DebRoy, NPJ Comput. Mater. 4 (2020) 73-80.
DOI URL |
[126] |
M.I. Jordan, T.M. Mitchell, Science 349 (2015) 255-260.
DOI PMID |
[127] | B. Li, B. Hou, W. Yu, X. Lu, C. Yang, Front. Ecol. Environ. 18 (2017) 86-96. |
[1] | Gopinathan Janarthanan, Insup Noh. Recent trends in metal ion based hydrogel biomaterials for tissue engineering and other biomedical applications [J]. J. Mater. Sci. Technol., 2021, 63(0): 35-53. |
[2] | Sheng Ding, Yuanfeng Wang, Jianna Li, Shiguo Chen. Progress and prospects in chitosan derivatives: Modification strategies and medical applications [J]. J. Mater. Sci. Technol., 2021, 89(0): 209-224. |
[3] | Muhammad Akmal, Ahtesham Hussain, Muhammad Afzal, Young Ik Lee, Ho Jin Ryu. Systematic study of (MoTa)xNbTiZr medium- and high-entropy alloys for biomedical implants- In vivo biocompatibility examination [J]. J. Mater. Sci. Technol., 2021, 78(0): 183-191. |
[4] | Mijeong Kang, Hyoban Lee, Taejoon Kang, Bongsoo Kim. Synthesis, Properties, and Biological Application of Perfect Crystal Gold Nanowires: A Review [J]. J. Mater. Sci. Technol., 2015, 31(6): 573-580. |
[5] | Ling Ren, Ke Yang. Bio-functional Design for Metal Implants, a New Concept for Development of Metallic Biomaterials [J]. J. Mater. Sci. Technol., 2013, 29(11): 1005-1010. |
[6] | Awatef Guidara, Kamel Chaari, Jamel Bouaziz. Effect of Titania Additive on Structural and Mechanical Properties of Alumina{Fluorapatite Composites [J]. J. Mater. Sci. Technol., 2012, 28(12): 1130-1136. |
[7] | Jie WEI, Yubao LI, Yi ZUO, Xueling PENG, Li ZHANG. Development of Biomimetic Needle-like Apatite Nanocrystals by a Simple New Method [J]. J Mater Sci Technol, 2004, 20(06): 665-667. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||