J. Mater. Sci. Technol. ›› 2022, Vol. 131: 264-275.DOI: 10.1016/j.jmst.2022.04.040
• Research Article • Previous Articles Next Articles
Xiang Lia, Haijun Sua,b,*(), Dong Donga, Di Zhaoa, Yuan Liua, Zhonglin Shena,b, Hao Jianga, Yinuo Guoa,b, Haifang Liua, Guangrao Fana, Wenchao Yanga, Taiwen Huanga, Jun Zhanga, Lin Liua, Hengzhi Fua
Received:
2022-01-12
Revised:
2022-04-11
Accepted:
2022-04-18
Published:
2022-05-28
Online:
2022-05-28
Contact:
Haijun Su
About author:
*State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072, China. E-mail address: shjnpu@nwpu.edu.cn (H. Su)Xiang Li, Haijun Su, Dong Dong, Di Zhao, Yuan Liu, Zhonglin Shen, Hao Jiang, Yinuo Guo, Haifang Liu, Guangrao Fan, Wenchao Yang, Taiwen Huang, Jun Zhang, Lin Liu, Hengzhi Fu. Enhanced comprehensive properties of stereolithography 3D printed alumina ceramic cores with high porosities by a powder gradation design[J]. J. Mater. Sci. Technol., 2022, 131: 264-275.
Sample | Sintering temperature (°C) | Powders mass ratio | Fixed parameters | ||
---|---|---|---|---|---|
Coarse | Medium | Fine | |||
A | 1450 | 2 | 1 | 1 | Scan speed: 2500 mm/s; Cured depth: 200 μm; Layer thickness: 50 μm. |
A1 | 1550 | 2 | 1 | 1 | |
A2 | 1600 | 2 | 1 | 1 | |
B | 1450 | 1 | 1 | 1 | |
B1 | 1550 | 1 | 1 | 1 | |
B2 | 1600 | 1 | 1 | 1 | |
C | 1450 | 1 | 2 | 1 | |
C1 | 1550 | 1 | 2 | 1 | |
C2 | 1600 | 1 | 2 | 1 | |
D | 1450 | 1 | 1 | 2 | |
D1 | 1550 | 1 | 1 | 2 | |
D2 | 1600 | 1 | 1 | 2 |
Table 1. The main process parameters of the SLA 3D printed alumina ceramic cores.
Sample | Sintering temperature (°C) | Powders mass ratio | Fixed parameters | ||
---|---|---|---|---|---|
Coarse | Medium | Fine | |||
A | 1450 | 2 | 1 | 1 | Scan speed: 2500 mm/s; Cured depth: 200 μm; Layer thickness: 50 μm. |
A1 | 1550 | 2 | 1 | 1 | |
A2 | 1600 | 2 | 1 | 1 | |
B | 1450 | 1 | 1 | 1 | |
B1 | 1550 | 1 | 1 | 1 | |
B2 | 1600 | 1 | 1 | 1 | |
C | 1450 | 1 | 2 | 1 | |
C1 | 1550 | 1 | 2 | 1 | |
C2 | 1600 | 1 | 2 | 1 | |
D | 1450 | 1 | 1 | 2 | |
D1 | 1550 | 1 | 1 | 2 | |
D2 | 1600 | 1 | 1 | 2 |
Fig. 2. Schematic diagram of SLA 3D printed alumina ceramic cores: (a) sintered sample for testing linear shrinkage, open porosity, and flexural strength; (b) sintered sample for high-temperature deflection test; (c) core model for the hollow blade of a turbine engine; (d) sintered ceramic core prepared by SLA 3D printing.
Fig. 4. The effect of particle size gradation proportions on linear shrinkage in X, Y, and Z directions of SLA 3D printed alumina ceramic cores sintered at different temperatures: (a) 1450 °C; (b) 1550 °C; (c) 1600 °C.
Fig. 5. The effect of sintering temperature on linear shrinkage in X, Y, and Z directions of SLA 3D printed alumina ceramic cores using different particle size gradation proportions: (a) sample A of 2:1:1; (b) sample B of 1:1:1; (c) sample C of 1:2:1; (d) sample D of 1:1:2.
Fig. 7. Relationships of open porosity (a), water absorption (b), and relative density (c) with sintering temperature and particle size gradation proportions in sintered alumina ceramic cores by SLA 3D printing.
Fig. 9. The microstructures of larger grains in sintered ceramic cores prepared by SLA 3D printing: (a) bonding with fine powders; (b) change of surface morphology.
Fig. 10. The microstructures of small grains in sintered ceramic cores prepared by SLA 3D printing: (a) the sintering neck of sample A at 1450 °C; (b) the sintering neck of sample D at 1450 °C; the grain growth formation of sample D sintering at 1550 °C (c) and 1600 °C (d), respectively.
Fig. 11. Crack propagation during the fracture process of sintered ceramic cores prepared by SLA 3D printing: (a) the crack originates from the surface; (b) the deflections of crack and intergranular fracture of coarse particles.
Fig. 12. Fracture microstructures of larger grains in the sintered ceramic cores prepared by SLA 3D printing: (a-d), (a1-d1), (a2-d2) the sintering temperatures of ceramic cores at 1450 °C, 1550 °C and 1600 °C, respectively; (a-a2), (b-b2), (c-c2), (d-d2) sintered ceramic core samples A, B, C, and D, respectively.
Fig. 13. Fracture microstructures of small grains in the sintered ceramic cores prepared by SLA 3D printing: (a-d), (a1-d1), (a2-d2) the sintering temperatures of ceramic cores at 1450 °C, 1550 °C, and 1600 °C, respectively; (a-a2), (b-b2), (c-c2), (d-d2) sintered ceramic core samples A, B, C, and D, respectively.
Fig. 16. The effect of sintering temperature on the high-temperature deflection of SLA 3D printed ceramic cores with different particle size gradation proportions.
[1] | J.E. Kanyo, S. Schaffoner, R.S. Uwanyuze, K.S. Leary, J. Eur. Ceram. Soc. 40 (2020) 4 955-4 973. |
[2] |
N. Li, S. Huang, G. Zhang, R. Qin, W. Liu, H. Xiong, G. Shi, J. Blackburn, J. Mater. Sci. Technol. 35 (2019) 242-269.
DOI URL |
[3] |
Y. Dong, K. Bu, Y. Dou, D. Zhang, J. Mater. Process. Technol. 211 (2011) 2123-2131.
DOI URL |
[4] | J.J. Liang, Q.H. Lin, X. Zhang, T. Jin, Y.Z. Zhou, X.F. Sun, B.G. Choi, I.S. Kim, J.H. Do, C.Y. Jo, J. Mater. Sci. Technol. 33 (2017) 204-209. |
[5] |
A. Kazemi, M.A. Faghihi-Sani, H.R. Alizadeh, J. Eur. Ceram. Soc. 33 (2013) 3397-3402.
DOI URL |
[6] |
B. Ozkan, F. Sameni, F. Bianchi, H. Zarezadeh, S. Karmel, D.S. Engstrom, E. Sabet, J. Eur. Ceram. Soc. 42 (2022) 658-671.
DOI URL |
[7] |
Z. Chen, Z. Li, J. Li, C. Liu, C. Lao, Y. Fu, C. Liu, Y. Li, P. Wang, Y. He, J. Eur. Ceram. Soc. 39 (2019) 661-687.
DOI URL |
[8] |
J.W. Halloran, Ann. Rev. Mater. Res. 46 (2016) 19-40.
DOI URL |
[9] |
C. Minas, D. Carnelli, E. Tervoort, A.R. Studart, Adv. Mater. 28 (2016) 9993-9999.
DOI URL |
[10] |
A. Zocca, C.M. Gomes, A. Staude, E. Bernardo, J. Günster, P. Colombo, J. Mater. Res. 28 (2013) 2243-2252.
DOI URL |
[11] | A. Zocca, H. Elsayed, E. Bernardo, C.M. Gomes, M.A. Lopez-Heredia, C. Knabe, P. Colombo, J. Günster, Biofabrication 7 (2015) 025008. |
[12] |
B. Utela, D. Storti, R. Anderson, M. Ganter, J. Manuf. Process. 10 (2008) 96-104.
DOI URL |
[13] |
E. Juste, F. Petit, V. Lardot, F. Cambier, J. Mater. Res. 29 (2014) 2086-2094.
DOI URL |
[14] |
J. Wilkes, Y.C. Hagedorn, W. Meiners, K. Wissenbach, Rapid Prototyp. J. 19 (2013) 51-57.
DOI URL |
[15] |
I. Shishkovsky, I. Yadroitsev, P. Bertrand, I. Smurov, Appl. Surf. Sci. 254 (2007) 966-970.
DOI URL |
[16] |
A. Chen, M. Li, J. Xu, C. Lou, J. Wu, L. Cheng, Y. Shi, C. Li, J. Eur. Ceram. Soc. 38 (2018) 4553-4559.
DOI URL |
[17] |
H. Tang, M. Chiu, H. Yen, J. Eur. Ceram. Soc. 31 (2011) 1383-1388.
DOI URL |
[18] | H. Li, Y. Liu, Y. Liu, Q. Zeng, J. Wang, K. Hu, Z. Lu, J. Liang, J. Eur. Ceram. Soc. 40 (2019) 4 825-4 836. |
[19] | J. Rotger, Incast 6 (2008) 21. |
[20] | G.T.M. Chu, G.A. Brady, W. Miao, J.W. Halloran, MRS Online Proc. Libr. 542 (1998) 119-123. |
[21] |
J.W. Halloran, Br. Ceram. Trans. 98 (1999) 299-303.
DOI URL |
[22] |
C.J. Bae, J.W. Halloran, Int. J. Appl. Ceram. Technol. 8 (2011) 1255-1262.
DOI URL |
[23] |
C.J. Bae, J.W. Halloran, Int. J. Appl. Ceram. Technol. 8 (2011) 1289-1295.
DOI URL |
[24] |
C.J. Bae, D. Kim, J.W. Halloran, J. Eur. Ceram. Soc. 39 (2019) 618-623.
DOI URL |
[25] |
Q. Li, X. An, J. Liang, Y. Liu, K. Hu, Z. Lu, X. Yue, J. Li, Y. Zhou, X. Sun, J. Mater. Sci. Technol. 104 (2022) 19-32.
DOI URL |
[26] |
X. Wang, Y. Zhou, L. Zhou, X. Xu, S. Niu, X. Li, X. Chen, J. Eur. Ceram. Soc. 41 (2021) 4650-4657.
DOI URL |
[27] |
K. Zhang, R. He, G. Ding, X. Bai, D. Fang, Ceram. Int. 47 (2021) 2303-2310.
DOI URL |
[28] |
J.A. Lewis, Ann. Rev. Mater. Sci. 27 (1997) 147-173.
DOI URL |
[29] |
K. Wang, M. Qiu, C. Jiao, J. Gu, D. Xie, C. Wang, X. Tang, Z. Wei, L. Shen, Ceram. Int. 46 (2020) 2438-2446.
DOI URL |
[30] |
F. Wakai, J. Am. Ceram. Soc. 89 (2006) 1471-1484.
DOI URL |
[31] |
R.K. Bordia, S.J.L. Kang, E.A. Olevsky, J. Am. Ceram. Soc. 100 (2017) 2314-2352.
DOI URL |
[32] | S. Hampshire, Int. Mater. Rev. 17 (2003) 55-56. |
[33] |
S.S. Ray, H. Dommati, J.C. Wang, S.S. Chen, Ceram. Int. 46 (2020) 12480-12488.
DOI URL |
[34] |
W. Liu, H. Wu, Z. Tian, Y. Li, Z. Zhao, M. Huang, X. Deng, Z. Xie, S. Wu, J. Am. Ceram. Soc. 102 (2019) 2257-2262.
DOI URL |
[35] |
H. Li, Y. Liu, Y. Liu, Q. Zeng, J. Liang, J. Eur. Ceram. Soc. 41 (2021) 2938-2947.
DOI URL |
[36] |
X. Li, K. Hu, Z. Lu, J. Eur. Ceram. Soc. 39 (2019) 2503-2509.
DOI URL |
[37] |
C.J. Bae, J.W. Halloran, J. Eur. Ceram. Soc. 39 (2019) 4299-4306.
DOI URL |
[38] |
K. Zhang, Q. Meng, N. Cai, Z. Qu, R. He, Ceram. Int. 47 (2021) 24353-24359.
DOI URL |
[39] |
D. An, W. Liu, Z. Xie, H. Li, X. Luo, H. Wu, M. Huang, J. Liang, Z. Tian, R. He, J. Am. Ceram. Soc. 102 (2019) 2263-2271.
DOI URL |
[40] |
M. Saadaoui, F. Khaldoun, J. Adrien, H. Reveron, J. Chevalier, J. Eur. Ceram. Soc. 40 (2020) 3200-3207.
DOI URL |
[41] |
H. Mei, R. Zhao, Y. Xia, J. Du, X. Wang, L. Cheng, J. Alloys Compd. 797 (2019) 786-796.
DOI URL |
[42] |
Z. Bin, L. Wang, G. Yang, Y. Zhou, E. Wang, Appl. Mech. Mater. 79 (2011) 177-181.
DOI URL |
[43] | H. Li, Y. Liu, Y. Liu, K. Hu, Z. Lu, J. Liang, Acta Metall. Sin.-Engl. Lett. 33 (2020) 204-214. |
[44] |
M. Shen, W. Qin, B. Xing, W. Zhao, S. Gao, Y. Sun, T. Jiao, Z. Zhao, J. Eur. Ceram. Soc. 41 (2021) 1481-1489.
DOI URL |
[45] |
M.F. Ashby, Philos. Trans. R. Soc. A 364 (2006) 15-30.
DOI URL |
[46] |
J. Yu, Y. Wang, F. Zhou, L. Wang, Z. Pan, Appl. Surf. Sci. 431 (2018) 112-121.
DOI URL |
[47] |
K. Li, W. Jiang, S. Wang, J. Xiao, L. Lou, J. Alloys Compd. 763 (2018) 781-790.
DOI URL |
[48] |
G. Zhao, K. Hu, Q. Feng, Z. Lu, Ceram. Int. 47 (2021) 17719-17725.
DOI URL |
[49] |
W.R. Cannon, T.G. Langdon, J. Mater. Sci. 23 (1988) 1-20.
DOI URL |
[1] | Jinguo Li, Xiaolong An, Jingjing Liang, Yizhou Zhou, Xiaofeng Sun. Recent advances in the stereolithographic three-dimensional printing of ceramic cores: Challenges and prospects [J]. J. Mater. Sci. Technol., 2022, 117(0): 79-98. |
[2] | X.L. An, J.J. Liang, J.G. Li, J.W. Chen, Y.Z. Zhou, X.F. Sun. Sample selection for models to represent ceramic cores fabricated by stereolithography three-dimensional printing [J]. J. Mater. Sci. Technol., 2022, 121(0): 117-123. |
[3] | Qiaolei Li, Xiaolong An, Jingjing Liang, Yongsheng Liu, Kehui Hu, Zhigang Lu, Xinyan Yue, Jinguo Li, Yizhou Zhou, Xiaofeng Sun. Balancing flexural strength and porosity in DLP-3D printing Al2O3 cores for hollow turbine blades [J]. J. Mater. Sci. Technol., 2022, 104(0): 19-32. |
[4] | W. Zheng, J.M. Wu, S. Chen, K.B. Yu, J. Zhang, Y.S. Shi. Improved mechanical properties of SiC fiber reinforced silica-based ceramic cores fabricated by stereolithography [J]. J. Mater. Sci. Technol., 2022, 116(0): 161-168. |
[5] | Yuan Yu, Nannan Xu, Shengyu Zhu, Zhuhui Qiao, Jianbin Zhang, Jun Yang, Weimin Liu. A novel Cu-doped high entropy alloy with excellent comprehensive performances for marine application [J]. J. Mater. Sci. Technol., 2021, 69(0): 48-59. |
[6] | Cong Peng, Yang Liu, Hui Liu, Shuyuan Zhang, Chunguang Bai, Yizao Wan, Ling Ren, Ke Yang. Optimization of annealing treatment and comprehensive properties of Cu-containing Ti6Al4V-xCu alloys [J]. J. Mater. Sci. Technol., 2019, 35(10): 2121-2131. |
[7] | Liang J.J,Lin Q.H,Zhang X,Jin T,Zhou Y.Z,Sun X.F,Choi B.G,Kim I.S,Do J.H,Jo C.Y. Effects of Alumina on Cristobalite Crystallization and Properties of Silica-Based Ceramic Cores [J]. J. Mater. Sci. Technol., 2017, 33(2): 204-209. |
[8] | Tenglong Zhu, Zhibin Yang, Minfang Han. Evaluation of La0.7Ca0.3Cr0.95Zn0.05O3-δ-Gd0.1Ce0.9O2-δ Dual-phase Material and its Potential Application in Oxygen Transport Membrane [J]. J. Mater. Sci. Technol., 2014, 30(10): 954-958. |
[9] | Mi Yan,Xigui Cui,Lianqing Yu,Tianyu Ma. Reduction of Sensitivity to Sintering Temperature for Nd-Fe-B Magnets through Zr and Nb Additions [J]. J Mater Sci Technol, 2009, 25(05): 629-632. |
[10] | Baoshan LI, Zhigang ZHU, Guorong LI, Aili DING. Microstructure and Electromechanical Properties in PMnN-PZT Ceramics Sintered at Different Temperatures [J]. J Mater Sci Technol, 2005, 21(03): 386-390. |
[11] | Yongxue GAN Pei YI Changqi CHEN (C.Q.Chen) Dept.of Mater.Sci.Eng.,Beijing University of Aeronautics and Astronautics,Beijing 100083,China. Effect of Sintering Temperature on Microwave Absorbing Behaviour of Mn-Zn Ferrite [J]. J Mater Sci Technol, 1993, 9(5): 379-381. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||