J. Mater. Sci. Technol. ›› 2019, Vol. 35 ›› Issue (10): 2121-2131.DOI: 10.1016/j.jmst.2019.05.020
• Orginal Article • Next Articles
Cong Pengabc, Yang Liub, Hui Liuab, Shuyuan Zhangb, Chunguang Baib, Yizao Wanc, Ling Renb*(), Ke Yangb*(
)
Received:
2018-12-25
Revised:
2019-03-14
Accepted:
2019-04-30
Online:
2019-10-05
Published:
2019-08-28
Contact:
Ren Ling,Yang Ke
Cong Peng, Yang Liu, Hui Liu, Shuyuan Zhang, Chunguang Bai, Yizao Wan, Ling Ren, Ke Yang. Optimization of annealing treatment and comprehensive properties of Cu-containing Ti6Al4V-xCu alloys[J]. J. Mater. Sci. Technol., 2019, 35(10): 2121-2131.
Alloy | Al | V | Cu | Fe | C | N | O | H | Ti |
---|---|---|---|---|---|---|---|---|---|
Ti6Al4V-4.5Cu | 5.75 | 3.78 | 4.46 | 0.12 | 0.012 | 0.002 | 0.10 | 0.002 | |
Ti6Al4V-6Cu | 5.70 | 3.78 | 6.02 | 0.1 | 0.011 | 0.002 | 0.09 | 0.002 | Bal. |
Ti6Al4V-7.5Cu | 5.64 | 3.70 | 7.65 | 0.11 | 0.009 | 0.002 | 0.10 | 0.002 |
Table 1 Chemical compositions of Ti6Al4V-xCu alloys (wt%).
Alloy | Al | V | Cu | Fe | C | N | O | H | Ti |
---|---|---|---|---|---|---|---|---|---|
Ti6Al4V-4.5Cu | 5.75 | 3.78 | 4.46 | 0.12 | 0.012 | 0.002 | 0.10 | 0.002 | |
Ti6Al4V-6Cu | 5.70 | 3.78 | 6.02 | 0.1 | 0.011 | 0.002 | 0.09 | 0.002 | Bal. |
Ti6Al4V-7.5Cu | 5.64 | 3.70 | 7.65 | 0.11 | 0.009 | 0.002 | 0.10 | 0.002 |
Fig. 1. Optical microstructures of hot-processed Ti6Al4V-xCu alloys and corresponding differential thermal analysis (DTA) graphs: (a) Ti6Al4V-4.5Cu alloy; (b) Ti6Al4V-6Cu alloy; (c) Ti6Al4V-7.5Cu alloy.
Fig. 2. SEM microstructures of Ti6Al4V-xCu alloys annealed at different temperatures: (a) 4.5Cu-720; (b) 4.5Cu-740; (c) 4.5Cu-760; (d) 6Cu-720; (e) 6Cu-740; (f) 6Cu-760; (g) 7.5Cu-720; (h) 7.5Cu-740; (i) 7.5Cu-760.
Fig. 3. (a) XRD patterns of 4.5Cu-720, 6Cu-740 and 7.5Cu-760 samples, (b) calculated volume fractions of different phases in Ti6Al4V-xCu alloys annealed at 720 °C, 740 °C and 760 °C, (c) TEM bright images and (d) selected diffraction patterns of Ti2Cu phase in 6Cu-740 sample.
phase | Al | V | Cu | Ti | ||
---|---|---|---|---|---|---|
Point 1 | Ti2Cu | 0.8 | 0.1 | 40.6 | Bal. | |
Point 2 | β | 2.8 | 13.1 | 8.6 | ||
Point 3 | α | 6.8 | 1.7 | 3.2 |
Table 2 Chemical compositions of different phases in 6Cu-740 sample shown in Fig. 3(c) (wt%).
phase | Al | V | Cu | Ti | ||
---|---|---|---|---|---|---|
Point 1 | Ti2Cu | 0.8 | 0.1 | 40.6 | Bal. | |
Point 2 | β | 2.8 | 13.1 | 8.6 | ||
Point 3 | α | 6.8 | 1.7 | 3.2 |
Fig. 4. Engineering tensile stress-strain curves of annealed (a) Ti6Al4V-4.5Cu, (b) Ti6Al4V-6Cu and (c) Ti6Al4V-7.5Cu alloys and (d) mechanical properties of different samples.
Fig. 5. Variations of friction coefficients vs. sliding time (a), average friction coefficients (b), weight loss (c), and wear area and the maximum wear depth of scars (d) for samples of Ti6Al4V, 4.5Cu-720, 6Cu-740 and 7.5Cu-760.
Fig. 7. SEM images of wear scars on (a) Ti6Al4V, (b) 4.5Cu-720, (c) 6Cu-740 and (d) 7.5Cu-760 and their corresponding magnified graphs in (a1), (b1), (c1) and (d1), respectively.
Fig. 8. (a) Typical potentiodynamic polarization curves, (b) Bode plots, (c) Nyquist diagrams and (d) equivalent electrical circuit used for fitting EIS data, while Rs, R1, Q1, R2 and Q2 are solution resistance, charge-transfer resistance, CPE of interface of electrolyte/passive film/substrate, passive layer resistance, CPE of the passive layer, respectively.
Ecorr (mV) | Icorr (nA) | Ep (V) | Ip (μA) | |
---|---|---|---|---|
Ti6Al4V | -364 ± 4 | 168 ± 1.9 | 1.41 ± 0.02 | 1.82 ± 0.01 |
4.5Cu-720 | -358 ± 6 | 33.3 ± 1.8 | 1.30 ± 0.02 | 1.83 ± 0.02 |
6Cu-740 | -392 ± 5 | 55.2 ± 2.3 | 1.29 ± 0.01 | 1.83 ± 0.02 |
7.5Cu-760 | -410 ± 4 | 144 ± 2.1 | 1.28 ± 0.02 | 1.84 ± 0.01 |
Table 3 Electrochemical parameters obtained from potentiodynamic polarization curves.
Ecorr (mV) | Icorr (nA) | Ep (V) | Ip (μA) | |
---|---|---|---|---|
Ti6Al4V | -364 ± 4 | 168 ± 1.9 | 1.41 ± 0.02 | 1.82 ± 0.01 |
4.5Cu-720 | -358 ± 6 | 33.3 ± 1.8 | 1.30 ± 0.02 | 1.83 ± 0.02 |
6Cu-740 | -392 ± 5 | 55.2 ± 2.3 | 1.29 ± 0.01 | 1.83 ± 0.02 |
7.5Cu-760 | -410 ± 4 | 144 ± 2.1 | 1.28 ± 0.02 | 1.84 ± 0.01 |
Rs (Ω cm2) | R1 (Ω cm2) | R2 (Ω cm2) | Rp (kΩ cm2) | Q1 (Ω-1 cm-2) | n1 | Q2 (Ω-1 cm-2) | n2 | Error of fit | |
---|---|---|---|---|---|---|---|---|---|
Ti6Al4V | 19.9 | 7.3 × 103 | 325 × 103 | 332 | 108 × 10-3 | 0.94 | 22 × 10-6 | 0.93 | 0.9 × 10-3 |
4.5Cu-720 | 11.1 | 1.5 × 106 | 15.5 | 1500 | 19 × 10-6 | 0.93 | 10 × 10-6 | 0.94 | 0.8 × 10-3 |
6Cu-740 | 23.1 | 530 × 103 | 588 × 103 | 1118 | 45.35 × 10-6 | 0.95 | 20.32 × 10-6 | 0.93 | 1.4 × 10-3 |
7.5Cu-760 | 17.2 | 532 × 103 | 577 × 103 | 1109 | 20 × 10-6 | 0.93 | 96 × 10-3 | 0.96 | 1.3 × 10-3 |
Table 4 Electrical parameters obtained by fitting EIS data.
Rs (Ω cm2) | R1 (Ω cm2) | R2 (Ω cm2) | Rp (kΩ cm2) | Q1 (Ω-1 cm-2) | n1 | Q2 (Ω-1 cm-2) | n2 | Error of fit | |
---|---|---|---|---|---|---|---|---|---|
Ti6Al4V | 19.9 | 7.3 × 103 | 325 × 103 | 332 | 108 × 10-3 | 0.94 | 22 × 10-6 | 0.93 | 0.9 × 10-3 |
4.5Cu-720 | 11.1 | 1.5 × 106 | 15.5 | 1500 | 19 × 10-6 | 0.93 | 10 × 10-6 | 0.94 | 0.8 × 10-3 |
6Cu-740 | 23.1 | 530 × 103 | 588 × 103 | 1118 | 45.35 × 10-6 | 0.95 | 20.32 × 10-6 | 0.93 | 1.4 × 10-3 |
7.5Cu-760 | 17.2 | 532 × 103 | 577 × 103 | 1109 | 20 × 10-6 | 0.93 | 96 × 10-3 | 0.96 | 1.3 × 10-3 |
Fig. 9. Typical photographs of S. aureus colonization after culturing with samples of (a) Ti6Al4V, (b) 4.5-720, (c) 6-740, (d) 8-760, (e) calculated antibacterial rate of Cu-containing alloys and (f) absorbance of cells that cultured on different alloys for 1, 3 and 7 days.
|
[1] | Enkang Hao, Yulong An, Xia Liu, Yijing Wang, Huidi Zhou, Fengyuan Yan. Effect of annealing treatment on microstructures, mechanical properties and cavitation erosion performance of high velocity oxy-fuel sprayed NiCoCrAlYTa coating [J]. J. Mater. Sci. Technol., 2020, 53(0): 19-31. |
[2] | Ming-Song Chen, Zong-Huai Zou, Y.C. Lin, Hong-Bin Li, Guan-Qiang Wang. Formation mechanism of large grains inside annealed microstructure of GH4169 superalloy by cellular automation method [J]. J. Mater. Sci. Technol., 2019, 35(7): 1403-1411. |
[3] | Wei Yuan, Wentao Hou, Shujun Li, Yulin Hao, Rui Yang, Lai-Chang Zhang, Yue Zhu. Heat treatment enhancing the compressive fatigue properties of open-cellular Ti-6Al-4V alloy prototypes fabricated by electron beam melting [J]. J. Mater. Sci. Technol., 2018, 34(7): 1127-1131. |
[4] | Sandeep K.S. Patel, Khemchand Dewangan, N.S. Gajbhiye. Synthesis and Room Temperature d0 Ferromagnetic Properties of α-MoO3 Nanofibers [J]. J. Mater. Sci. Technol., 2015, 31(5): 453-457. |
[5] | Y.Q. Chang, P.W. Wang, R.H. Tang, Q.L. Sun, Y. Long. Synthesis and Room Temperature Ferromagnetism of Flower-shaped Mn Doped ZnO Nanostructures [J]. J Mater Sci Technol, 2011, 27(6): 513-517. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||