J. Mater. Sci. Technol. ›› 2022, Vol. 128: 22-30.DOI: 10.1016/j.jmst.2022.04.024
• Research Article • Previous Articles Next Articles
Bao Weizonga,1, Chen Jiea,1, Xie Guoqianga,b,*()
Received:
2022-02-15
Revised:
2022-04-02
Accepted:
2022-04-16
Published:
2022-11-20
Online:
2022-11-22
Contact:
Xie Guoqiang
About author:
*E-mail address: xieguoqiang@hit.edu.cn (G. Xie).Bao Weizong, Chen Jie, Xie Guoqiang. Optimized strength and conductivity of multi-scale copper alloy/metallic glass composites tuned by a one-step spark plasma sintering (SPS) process[J]. J. Mater. Sci. Technol., 2022, 128: 22-30.
Fig. 2. Surface morphologies of (a) CuZrAl metallic glass powders, (b) CuCrZr alloy powders, and (c) composite powders; (d) ccorresponding XRD patterns.
Fig. 3. SEM micrographs of BCMGCs fabricated at different sintering pressures of (a) 100 MPa, (b) 300 MPa, and (c) 500 MPa; (d) EDS results of (c); (e) EBSD patterns of CuCrZr phase at 500 MPa; (f) grain size distribution of (e).
Sintering pressure (MPa) | 100 | 200 | 300 | 400 | 500 |
---|---|---|---|---|---|
Density (g/cm3) | 7.254 ± 0.044 | 7.912 ± 0.019 | 8.291 ± 0.021 | 8.332 ± 0.014 | 8.341 ± 0.011 |
Table 1. Density of BCMGCs fabricated at different sintering pressures.
Sintering pressure (MPa) | 100 | 200 | 300 | 400 | 500 |
---|---|---|---|---|---|
Density (g/cm3) | 7.254 ± 0.044 | 7.912 ± 0.019 | 8.291 ± 0.021 | 8.332 ± 0.014 | 8.341 ± 0.011 |
Fig. 5. (a) Engineering stress-strain curves of BCMGCs fabricated at different sintering pressures, (b) variation of electrical conductivity of BCMGCs with sintering pressures.
Fig. 7. (a) TEM image of the interface morphology of the BCMGCs sintered at 693 K; HRTEM image of (b) CuCrZr alloy phase and (c) CuZrAl metallic glass phase; (e) TEM image of the interface morphology and (f) precipitates of the BCMGCs sintered at 723 K. (e-1) SAED pattern corresponding to CuCrZr alloy phase, (e-2) CuZrAl metallic glass phase, and (f-1) precipitate phase.
Fig. 8. (a) Engineering stress-strain curves of BCMGCs sintered at different temperatures, (b) variation of electrical conductivity of BCMGCs with sintering temperatures.
Pressure optimization | Temperature optimization | ||||
---|---|---|---|---|---|
Pressure (MPa) | Grain size (nm) | Dislocation density (1014 m-2) | Temperature (K) | Grain size (nm) | Dislocation density (1014 m-2) |
100 | 562 | 1.11 | 693 | 392 | 0.53 |
200 | 460 | 0.74 | 703 | 403 | 0.57 |
300 | 402 | 0.57 | 713 | 409 | 0.59 |
400 | 394 | 0.54 | 723 | 441 | 0.68 |
500 | 377 | 0.49 | 733 | 451 | 0.71 |
Table 2. Grain size and dislocation density of BCMGCs fabricated at different sintering parameters.
Pressure optimization | Temperature optimization | ||||
---|---|---|---|---|---|
Pressure (MPa) | Grain size (nm) | Dislocation density (1014 m-2) | Temperature (K) | Grain size (nm) | Dislocation density (1014 m-2) |
100 | 562 | 1.11 | 693 | 392 | 0.53 |
200 | 460 | 0.74 | 703 | 403 | 0.57 |
300 | 402 | 0.57 | 713 | 409 | 0.59 |
400 | 394 | 0.54 | 723 | 441 | 0.68 |
500 | 377 | 0.49 | 733 | 451 | 0.71 |
Fig. 10. Fracture surface micrographs, EDS analysis, and interfacial microstructure evolution schematic diagram of the BCMGCs specimens fabricated at different sintering pressures: (a-c) 100 MPa, (d-f) 300 MPa, (g-i) 500 MPa.
Fig. 11. (a) TEM image of the BCMGCs sintered at 723 K and 500 MPa; (b) corresponding interfacial microstructure evolution before and after fracture; SEM images of the fracture morphology for the BCMGCs specimens sintered at (c) 693 K and (d) 723 K.
[1] | Z.Q. Guo, H.R. Geng, B.C. Sun, Adv. Mat. Res. 97-101 (2010) 1730-1735. |
[2] |
H.Y. Yang, Y.Q. Bu, J.M. Wu, Y.T. Fang, J.B. Liu, Mater. Charact. 176 (2021) 111099.
DOI URL |
[3] |
F.L. Wang, Y.P. Li, X.Y. Wang, Y. Koizumi, Y. Kenta, A. Chiba, J. Alloy. Compd. 657 (2016) 122-132.
DOI URL |
[4] |
X.L. Liu, Z.B. Cai, Q. Xiao, M.X. Shen, W.B. Yang, D.Y. Chen, Int. J. Mech. Sci. 184 (2020) 105703.
DOI URL |
[5] |
X.H. Zhang, Y. Zhang, B.H. Tian, Y.L. Jia, Y. Liu, K.X. Song, A. A. Volinsky, H.H. Xue, Nanotechnol. Rev. 8 (2019) 128-135.
DOI URL |
[6] |
V. Mamedov, Powder Metall. 45 (2002) 322-328.
DOI URL |
[7] | R. Orrù, R. Licheri, A. M. Locci, A. Cincotti, G. Cao, Mater. Sci. Eng. A 63 (2009) 127-287. |
[8] | G.Q. Xie, J. Powder Metall. Min. 2 (2013) e109. |
[9] | Z. Shen, H. Peng, M. Nygren, Adv. Mater. 15 (2003) 10 06-10 09. |
[10] |
X.J. Chen, K.A. Khor, S.H. Chan, Mater. Sci. Eng. A 335 (2002) 246-252.
DOI URL |
[11] |
N. Ray, B. Kempf, G. Wiehl, T. Mützel, F. Heringhaus, L. Froyen, K. Vanmeensel, J. Vleugels, Mater. Des. 121 (2017) 262-271.
DOI URL |
[12] |
T.L. Ngai, W. Zheng, Y.Y. Li, Prog. Nat. Sci. 23 (2013) 70-76.
DOI URL |
[13] |
L.L. Cai, P. Li, P. Wang, Q. Luo, P.C. Zhai, Q.J. Zhang, J. Electron. Mater. 47 (2018) 2591-2599.
DOI URL |
[14] | J. Mirazimi, P. Abachi, K. Purazrang, Acta Metall. Sin.-Engl. Lett. 29 (2016) 1169-1176. |
[15] |
F. Balima, A. Largeteau, Scr. Mater. 158 (2019) 20-23.
DOI URL |
[16] |
A. Wagner, B. Ratzker, S. Kalabukhov, Kolusheva S, M. Sokol, N. Frage, Ceram. Int. 45 (2019) 12279-12284.
DOI URL |
[17] |
X.H. Guo, K.X. Song, W. Xua, G.H. Li, Z.L. Zhang, Mater. Sci. Technol. 36 (2020) 1685-1694.
DOI URL |
[18] |
D.S. Zhou, W. Zeng, D.L. Zhang, J. Alloy. Compd. 682 (2016) 590-593.
DOI URL |
[19] |
S.Y. Qian, Z.H. Xu, H.N. Xie, C.S. Shi, N.Q. Zhao, C.N. He, E.Z. Liu, Appl. Surf. Sci. 533 (2020) 147489.
DOI URL |
[20] |
P. Yang, X. You, J.H. Yi, D. Fang, R. Bao, T. Shen, Y.C. Liu, J.M. Tao, C.J. Li, S.L. Tan, S. D. Guo, J. Alloy. Compd. 752 (2018) 431-439.
DOI URL |
[21] |
F.L. Wang, Y.P. Li, X.Y. Wang, Y. Koizumi, Y. Kenta, A. Chiba, J. Alloy. Compd. 657 (2016) 122-132.
DOI URL |
[22] |
H. Zhang, H.G. Zhang, L.X. Li, J. Mater. Process. Technol. 209 (2009) 2892-2896.
DOI URL |
[23] |
Z.W. Huang, Z.W. Wu, X. Cheng, Z.W. Zhang, G.Q. Xie, J. Alloy. Compd. 841 (2020) 155723.
DOI URL |
[24] |
W.Z. Bao, H. Yan, J. Chen, G.Q. Xie, Mater. Sci. Eng. A 825 (2021) 141919.
DOI URL |
[25] | L.M. Tham, M. Gupta, L. Cheng, Acta Mater 49 (2001) 3243-3253. |
[26] | G. Wu, C. Liu, A. Brognara, M. Ghidelli, D. Raabe, Z.M. Li, Mater. Today 51 (2021) 6-14. |
[27] |
M.X. Zhang, P.M. Kelly, Prog. Mater. Sci. 54 (2009) 1101-1170.
DOI URL |
[28] |
F. Balima, A. Largeteau, Scr. Mater. 158 (2019) 20-23.
DOI URL |
[29] |
I. Lahiri, S. Bhargava, Powder Technol. 189 (2009) 433-438.
DOI URL |
[30] |
V. Bata, E.V. Pereloma, Acta Mater. 52 (2003) 657-665.
DOI URL |
[31] |
W. Zeng, J.W. Xie, D.S. Zhou, Z.Q. Fu, D.L. Zhang, E.J. Lavernia, J. Alloy. Compd. 745 (2018) 55-62.
DOI URL |
[32] |
R. Alizadeh, J. Lorca, Acta Mater. 186 (2020) 475-486.
DOI URL |
[33] |
N. Hansen, B. Ralph, Acta Metall. 30 (1982) 411-417.
DOI URL |
[34] |
M.Y. Murashkin, I. Sabirov, X. Sauvage, R.Z. Valiev, J. Mater. Sci. 51 (2016) 33-49.
DOI URL |
[35] |
H.P. Ding, X.Q. Bao, Z. Jamili-Shirvan, J.S. Jin, L. Deng, K.F. Yao, P. Gong, X. Y. Wang, Mater. Des. 210 (2021) 110108.
DOI URL |
[36] |
Z.Z. Chen, Z.Q. Tan, G. Ji, G.L. Fan, D. Schryvers, Q.B. Ouyang, Z.Q. Li, Adv. Eng. Mater. 17 (2015) 1076-1084.
DOI URL |
[37] |
S.L. Zhu, G.Q. Xie, H. Wang, X.J. Yang, Z.D. Cui, A. Inoue, J. Alloy. Compd. 586 (2014) 155-158.
DOI URL |
[38] |
J. Chen, B.H. Li, W.Z. Bao, Z.Y. Cai, G.Q. Xie, J. Alloy. Compd. 902 (2022) 163849.
DOI URL |
[39] |
D.D. Zhang, X.Y. He, Y. Liu, F. Bai, J.G. Wang, J. Mater. Res. Technol. 10 (2021) 453-459.
DOI URL |
[40] | T.M. Vidyuk, D.V. Dudina, M.A. Korchagin, A.I. Gavrilov, A.V. Ukhina, U.E. Bu- lanova, M.A. Legan, A.N. Novoselov, M.A. Esikov, A.G. Anisimov, Surf. Interfaces 27 (2021) 101445. |
[41] |
D.D. Zhang, F. Bai, Y. Wang, J.G. Wang, W.Q. Wang, Materials (Basel) 10 (2017) 919.
DOI URL |
[42] |
D.V. Dudina, T.F. Grigoreva, V.I. Kvashnin, E.T. Devyatkina, S.V. Vosmerikov, A. V. Ukhina, A. N. Novoselov, M.A. Legan, M.A. Esikov, Y.L. Lukyanov, A.G. Anisi- mov, S.A. Kovaleva, N.Z. Lyakhov, Mater. Lett. 312 (2022) 131671.
DOI URL |
[43] |
Z. Li, Q. Lei, S.H. Li, L.R. Shen, Mater. Rev. 29 (2015) 1-5.
DOI URL |
[44] |
D.D. Zhang, F. Bai, L.P. Sun, Y. Wang, J.G. Wang, Materials (Basel) 10 (2017) 499.
DOI URL |
[45] | D.D. Zhang, X.Y. He, H. Zhao, Y.L. Gao, Mater. Res. Technol. 38 (2022) 5-11. |
[1] | Joseph A. Otte, Jin Zou, Matthew S. Dargusch. High strength and ductility of titanium matrix composites by nanoscale design in selective laser melting [J]. J. Mater. Sci. Technol., 2022, 118(0): 114-127. |
[2] | Jiantao Fan, Liming Fu, Yanle Sun, Feng Xu, Yi Ding, Mao Wen, Aidang Shan. Unveiling the precipitation behavior and mechanical properties of Co-free Ni47-xFe30Cr12Mn8AlxTi3 high-entropy alloys [J]. J. Mater. Sci. Technol., 2022, 118(0): 25-34. |
[3] | Jiahui Li, Yvonne Durandet, Xiaodong Huang, Guangyong Sun, Dong Ruan. Additively manufactured fiber-reinforced composites: A review of mechanical behavior and opportunities [J]. J. Mater. Sci. Technol., 2022, 119(0): 219-244. |
[4] | Hanchen Feng, Lei Cai, Linfeng Wang, Xiaodan Zhang, Feng Fang. Microstructure and strength in ultrastrong cold-drawn medium carbon steel [J]. J. Mater. Sci. Technol., 2022, 97(0): 89-100. |
[5] | Shiyu Wu, Dongxu Qiao, Haitao Zhang, Junwei Miao, Hongliang Zhao, Jun Wang, Yiping Lu, Tongmin Wang, Tingju Li. Microstructure and mechanical properties of CxHf0.25NbTaW0.5 refractory high-entropy alloys at room and high temperatures [J]. J. Mater. Sci. Technol., 2022, 97(0): 229-238. |
[6] | Tianci Xie, Hui Shi, Hongbin Wang, Qun Luo, Qian Li, Kuo-Chih Chou. Thermodynamic prediction of thermal diffusivity and thermal conductivity in Mg-Zn-La/Ce system [J]. J. Mater. Sci. Technol., 2022, 97(0): 147-155. |
[7] | Ruifeng Dong, Xiaoyang Zhang, Chenhui Li, Yuhong Zhao, Jinzhong Tian, Li Wu, Hua Hou. Correlation between the mechanical properties and the 〈110〉 texture in a hot-rolled near β titanium alloy [J]. J. Mater. Sci. Technol., 2022, 97(0): 165-168. |
[8] | Pengyu Wen, Bin Hu, Jiansheng Han, Haiwen Luo. A strong and ductile medium Mn steel manufactured via ultrafast heating process [J]. J. Mater. Sci. Technol., 2022, 97(0): 54-68. |
[9] | Hongfeng Dong, Baozhong Li, BoBo Liu, Yang Zhang, Lei Sun, Kun Luo, Yingju Wu, Mengdong Ma, Bing Liu, Wentao Hu, Julong He, Dongli Yu, Bo Xu, Zhisheng Zhao, Yongjun Tian. Extraordinary high-temperature mechanical properties in binder-free nanopolycrystalline WC ceramic [J]. J. Mater. Sci. Technol., 2022, 97(0): 169-175. |
[10] | Lulu Guo, Lina Zhang, Joel Andersson, Olanrewaju Ojo. Additive manufacturing of 18% nickel maraging steels: Defect, structure and mechanical properties: A review [J]. J. Mater. Sci. Technol., 2022, 120(0): 227-252. |
[11] | J. Fu, H. Li, X. Song, M.W. Fu. Multi-scale defects in powder-based additively manufactured metals and alloys [J]. J. Mater. Sci. Technol., 2022, 122(0): 165-199. |
[12] | J. Christudasjustus, C.S. Witharamage, Ganesh Walunj, T. Borkar, R.K. Gupta. The influence of spark plasma sintering temperatures on the microstructure, hardness, and elastic modulus of the nanocrystalline Al-xV alloys produced by high-energy ball milling [J]. J. Mater. Sci. Technol., 2022, 122(0): 68-76. |
[13] | Yingmei Tan, Ruirun Chen, Hongze Fang, Yangli Liu, Hongzhi Cui, Yanqing Su, Jingjie Guo, Hengzhi Fu. Enhanced strength and ductility in Ti46Al4Nb1Mo alloys via boron addition [J]. J. Mater. Sci. Technol., 2022, 102(0): 16-23. |
[14] | Jingbo Gao, Yuting Jin, Yongqiang Fan, Dake Xu, Lei Meng, Cong Wang, Yuanping Yu, Deliang Zhang, Fuhui Wang. Fabricating antibacterial CoCrCuFeNi high-entropy alloy via selective laser melting and in-situ alloying [J]. J. Mater. Sci. Technol., 2022, 102(0): 159-165. |
[15] | Haoming Pang, Zhenbang Xu, Longjiang Shen, Jun Li, Junshuo Zhang, Zhiyuan Li, Shouhu Xuan, Xinglong Gong. The dynamic compressive properties of magnetorheological plastomers: enhanced magnetic-induced stresses by non-magnetic particles [J]. J. Mater. Sci. Technol., 2022, 102(0): 195-203. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||