J. Mater. Sci. Technol. ›› 2022, Vol. 128: 10-21.DOI: 10.1016/j.jmst.2022.03.026
• Research Article • Previous Articles Next Articles
Li Kuna,b,*(), Ma Ruijina, Zhang Minga, Chen Wena, Li Xiaobina,*(
), Z.Zhang Davida,b,c, Tang Qiana,b,*(
), E.Murr Lawrenced,e, Li Jinfengf, Cao Huajuna
Received:
2021-11-30
Revised:
2022-03-10
Accepted:
2022-03-13
Published:
2022-11-20
Online:
2022-11-22
Contact:
Li Kun,Li Xiaobin,Tang Qian
About author:
tqcqu@cqu.edu.cn (Q. Tang).Li Kun, Ma Ruijin, Zhang Ming, Chen Wen, Li Xiaobin, Z.Zhang David, Tang Qian, E.Murr Lawrence, Li Jinfeng, Cao Huajun. Hybrid post-processing effects of magnetic abrasive finishing and heat treatment on surface integrity and mechanical properties of additively manufactured Inconel 718 superalloys[J]. J. Mater. Sci. Technol., 2022, 128: 10-21.
Fig. 1. Building process of Inconel 718. (a) LPBF printing system, (b) dimensions of tensile specimen according to ASTM E8 standard, and (c) printed samples of cubes and tensile bars.
Fig. 2. Thermodynamic predictions for Inconel 718 using the Thermo-Calc software: (a) phase fraction vs temperature using the equilibrium model and (b) nonequilibrium simulation using the Scheil-Gulliver model.
Parameter | Condition |
---|---|
Finished sample | Inconel 718 cubes and ASTM E8 tensile bars |
Magnetic particle | G25 steel grit: 0.9 g |
Magnetic abrasive | 120 µm friable wheel grit with 0 wt.% Uncoated diamond abrasive: 0.4 g |
Lubricant | Water-soluble barreling compound: 0.5 mL (0.025 mL/min) |
Clearance | 2 mm |
Magnet | Nd-Fe-B magnet: Φ12.7 × 12.7 mm |
Magnetic flux density | 596 mT |
Magnet feed | Feed rate: 1 mm/s, travel distance: 80 mm |
Magnet revolution | 600 r/min |
Total finishing time | 180 min |
Table 1. MAF experimental condition.
Parameter | Condition |
---|---|
Finished sample | Inconel 718 cubes and ASTM E8 tensile bars |
Magnetic particle | G25 steel grit: 0.9 g |
Magnetic abrasive | 120 µm friable wheel grit with 0 wt.% Uncoated diamond abrasive: 0.4 g |
Lubricant | Water-soluble barreling compound: 0.5 mL (0.025 mL/min) |
Clearance | 2 mm |
Magnet | Nd-Fe-B magnet: Φ12.7 × 12.7 mm |
Magnetic flux density | 596 mT |
Magnet feed | Feed rate: 1 mm/s, travel distance: 80 mm |
Magnet revolution | 600 r/min |
Total finishing time | 180 min |
Fig. 6. Microstructure morphologies of LPBF-produced Inconel 718 with different post-heat treatments: (a) as-printed (AP) sample, (b) as-printed sample after homogenization (AP+H), (c) as-printed sample after homogenization and aging (AP+H+A), (c3) TEM morphology of precipitates in the AP+H+A sample, and (c4) selective area diffraction pattern of (c3) (a1-c1: EBSD IPF analysis, a2-c2: SEM observation).
Fig. 7. Surface morphologies of the samples with different post-processing conditions: (a) Sequence of H+A+MAF and (b) sequence of H+MAF+A (H—homogenization, A—aging, MAF—magnetic abrasive finishing).
Sample | YS (MPa) | UTS (MPa) | εt (%) | UOT (MJ/m) | Ra | Rz |
---|---|---|---|---|---|---|
AP | 737 ± 5 | 1052 ± 8 | 27.6 ± 0.5 | 237.3 | 2.8 ± 0.3 | 11.4 ± 0.8 |
H+A | 1140 ± 6 | 1306 ± 5 | 14.2 ± 0.7 | 175.9 | 2.7 ± 0.3 | 11.4 ± 0.9 |
H+A+MAF | 1151 ± 5 | 1339 ± 6 | 19.5 ± 0.6 | 254.3 | 0.13 ± 0.08 | 1.1 ± 0.3 |
H+MAF+A | 1147 ± 4 | 1334 ± 5 | 22.9 ± 0.8 | 290.4 | 0.18 ± 0.05 | 1.3 ± 0.4 |
Wrought Std. [ | 1034 | 1241 | 15 | - | - | - |
Table 2. Mechanical properties and printed-side surface roughness of the samples with different conditions.
Sample | YS (MPa) | UTS (MPa) | εt (%) | UOT (MJ/m) | Ra | Rz |
---|---|---|---|---|---|---|
AP | 737 ± 5 | 1052 ± 8 | 27.6 ± 0.5 | 237.3 | 2.8 ± 0.3 | 11.4 ± 0.8 |
H+A | 1140 ± 6 | 1306 ± 5 | 14.2 ± 0.7 | 175.9 | 2.7 ± 0.3 | 11.4 ± 0.9 |
H+A+MAF | 1151 ± 5 | 1339 ± 6 | 19.5 ± 0.6 | 254.3 | 0.13 ± 0.08 | 1.1 ± 0.3 |
H+MAF+A | 1147 ± 4 | 1334 ± 5 | 22.9 ± 0.8 | 290.4 | 0.18 ± 0.05 | 1.3 ± 0.4 |
Wrought Std. [ | 1034 | 1241 | 15 | - | - | - |
Fig. 14. Microstructure and hardness distribution from the top to the center along the thickness direction of the samples under different heat-treated and MAF conditions: (a-c) orientation maps from EBSD observations, (d-f) the corresponding GOS maps from EBSD observations, (g) hardness evolution from the sample surface.
Sample | Grain size (µm) | GB density (m-1) | Peak GOS (°) | Average GOS (°) |
---|---|---|---|---|
H+A | 85.4 ± 12.5 | 8.9 × 104 | 6.07 | 0.25 |
H+A+MAF | 64.3 ± 12.2 | 13.4 × 104 | 8.66 | 2.6 |
H+MAF+A | 32.6 ± 8.4 | 29.8 × 104 | 9.2 | 3.8 |
Table 3. Grain characteristics extracted from the EBSD results.
Sample | Grain size (µm) | GB density (m-1) | Peak GOS (°) | Average GOS (°) |
---|---|---|---|---|
H+A | 85.4 ± 12.5 | 8.9 × 104 | 6.07 | 0.25 |
H+A+MAF | 64.3 ± 12.2 | 13.4 × 104 | 8.66 | 2.6 |
H+MAF+A | 32.6 ± 8.4 | 29.8 × 104 | 9.2 | 3.8 |
Fig. 15. Fracture morphologies from the top to the center along the thickness direction of the samples under different heat-treated and MAF conditions: (a) H+A sample, (b) H+A+MAF sample, (c) H+MAF+A sample (0: overall morphology at low magnification, 1 and 2: facture morphology in the top zone, 3 and 4: facture morphology in the center zone).
[1] |
L. Zhou, A. Mehta, B. McWilliams, K. Cho, Y. Sohn, J. Mater. Sci. Technol. 35 (2019) 1153-1164.
DOI |
[2] |
H.H. Yang, J.J. Yang, W.P. Huang, G.Y. Jing, Z.M. Wang, X.Y. Zeng, J. Mater. Sci. Technol. 35 (2019) 1925-1930.
DOI URL |
[3] |
F. Theska, A. Stanojevic, B. Oberwinkler, S.P. Ringer, S. Primig, Acta Mater. 156 (2018) 116-124.
DOI URL |
[4] |
D.G. Ahn, K.W. Byun, M.C. Kang, J. Mater. Sci. Technol. 26 (2010) 362-366.
DOI URL |
[5] |
J.C. Outeiro, J.C. Pina, R. M’Saoubi, F. Pusavec, I.S. Jawahir, CIRP Ann. Manuf. Technol. 57 (2008) 77-80.
DOI URL |
[6] |
D. Herzog, V. Seyda, E. Wycisk, C. Emmelmann, Acta Mater. 117 (2016) 371-392.
DOI URL |
[7] |
D.D. Gu, W. Meiners, K. Wissenbach, R. Poprawe, Int. Mater. Rev. 57 (2012) 133-164.
DOI URL |
[8] |
C.Y. Yap, C.K. Chua, Z.L. Dong, Z.H. Liu, D.Q. Zhang, L.E. Loh, S.L. Sing, Appl. Phys. Rev. 2 (2015) 041101.
DOI URL |
[9] |
K.N. Amato, S.M. Gaytan, L.E. Murr, E. Martinez, P.W. Shindo, J. Hernandez, S. Collins, F. Medina, Acta Mater. 60 (2012) 2229-2239.
DOI URL |
[10] |
H.Y. Wan, W.K. Yang, L.Y. Wang, Z.J. Zhou, C.P. Li, G.F. Chen, L.M. Lei, G.P. Zhang, J. Mater. Sci. Technol. 97 (2022) 239-253.
DOI |
[11] |
H.Y. Wan, Z.J. Zhou, C.P. Li, G.F. Chen, G.P. Zhang, J. Mater. Sci. Technol. 34 (2018) 1799-1804.
DOI |
[12] |
H.H. Yang, G.Y. Jing, P.A. Gao, Z.M. Wang, X.Y. Li, J. Mater. Sci. Technol. 51 (2020) 137-150.
DOI URL |
[13] | G.E. Bean, D.B. Witkin, T.D. McLouth, D.N. Patel, R.J. Zaldivar, Addit. Manuf. 22 (2018) 207-215. |
[14] | D. Lesyk, S. Martínez, V. Dzhemelinkyi, A. Lamikiz, I. Karabegovi ´ c, in: New Technologies, Development and Application III, Springer, Cambridge, 2020, pp. 267-275. |
[15] | X. Peng, L.B. Kong, J.Y. Fuh, H. Wang, J. Manuf. Mater. Process. 5 (2021) 38. |
[16] |
E. Yasa, J.P. Kruth, J. Deckers, CIRP Ann. Manuf. Technol. 60 (2011) 263-266.
DOI URL |
[17] | P.Y. Wu, H. Yamaguchi, Procedia Manuf. 26 (2018) 394-402. |
[18] |
X.B. Yu, X. Lin, F.C. Liu, L.L. Wang, Y. Tang, J.C. Li, S.Y. Zhang, W.D. Huang, Mater. Sci. Eng. A 798 (2020) 140092.
DOI URL |
[19] | S. Goel, A. Sittiho, I. Charit, U. Klement, S. Joshi, Addit. Manuf. 28 (2019) 727-737. |
[20] |
S. Raghavan, B.C. Zhang, P. Wang, C.N. Sun, M. L.S.R. Nai, T. Li, J. Wei, Mater. Manuf. Process. 32 (2017) 1588-1595.
DOI URL |
[21] |
S.G.K. Manikandan, D. Sivakumar, K. Prasad Rao, M. Kamaraj, Mater. Charact. 100 (2015) 192-206.
DOI URL |
[22] |
A. Strondl, R. Fischer, G. Frommeyer, A. Schneider, Mater. Sci. Eng. A 480 (2008) 138-147.
DOI URL |
[23] |
X. Huang, M.C. Chaturvedi, N.L. Richards, Metall. Mater. Trans. A 27 (1996) 785-790.
DOI URL |
[24] | J. Schneider, B. Lund, M. Fullen, Addit. Manuf. 21 (2018) 248-254. |
[25] |
R. Jiang, A. Mostafaei, J. Pauza, C. Kantzos, A.D. Rollett, Mater. Sci. Eng. A 755 (2019) 170-180.
DOI URL |
[26] |
W.P. Huang, J.J. Yang, H.H. Yang, G.Y. Jing, Z.M. Wang, X.Y. Zeng, Mater. Sci. Eng. A 750 (2019) 98-107.
DOI URL |
[27] | L. Hackel, J.R. Rankin, A. Rubenchik, W.E. King, M. Matthews, Addit. Manuf. 24 (2018) 67-75. |
[28] | S. Marimuthu, A. Triantaphyllou, M. Antar, D. Wimpenny, H. Morton, M. Beard, Int. J. Mach. Tools Manuf. 95 (2015) 97-104. |
[29] | A.N. Jinoop, S.K. Subbu, C.P. Paul, I.A. Palani, Int. J. Precis. Eng. Manuf. 20 (2019) 1621-1628. |
[30] | J. Zhang, W.G. Tai, H. Wang, A.S. Kumar, W.F. Lu, J.Y.H. Fuh,in:Proceedings of the 18th International Conference of the European Society for Precision Engineering and Nanotechnology, Venice, Italy, 2018 June 04-08. |
[31] | C. Qian, Z.H. Fan, Y.B. Tian, Y.H. Liu, J.G. Han, J.H. Wang, Int. J. Precis. Eng. Manuf. 112 (2021) 619-634. |
[32] | H. Yamaguchi, T. Shinmura, Wear 225 (1999) 246-255. |
[33] |
H. Yamaguchi, T. Shinmura, Precis. Eng. 28 (2004) 135-142.
DOI URL |
[34] |
J. Guo, J.M. Bai, K. Liu, J. Wei, Mater. Des. 138 (2018) 39-45.
DOI URL |
[35] | W.H. Liu, Y. Chen, W.L. Li, H.Y. Zhang, Y. Ding, B. Han, Surf. Technol. 50 (2021) 47-61. |
[36] |
J. Zhang, A. Chaudhari, H. Wang, J. Manuf. Process. 45 (2019) 710-719.
DOI URL |
[37] |
H. Yamaguchi, O. Fergani, P.Y. Wu, CIRP Ann. Manuf. Technol. 66 (2017) 305-308.
DOI URL |
[38] |
D.Y. Deng, R.L. Peng, H. Brodin, J. Moverare, Mater. Sci. Eng. A 713 (2018) 294-306.
DOI URL |
[39] |
E. Chlebus, K. Gruber, B. Ku ´ znicka, J. Kurzac, T. Kurzynowski, Mater. Sci. Eng. A 639 (2015) 647-655.
DOI URL |
[40] | Y.H. Zhao, K. Li, M. Gargani, W. Xiong, Addit. Manuf. 36 (2020) 101404. |
[41] |
S.A. Whitehead, A. C. Shearer, D.C. Watts, N.H.F. Wilson, J. Oral Rehabil. 22 (1995) 421-427.
PMID |
[42] | R. Brodmann, G. Thurn, Wear 109 (1986) 1-13. |
[43] | J.H. Kim, D.H. Kim, S.I. Moon, Mater. Sci. Eng. A 387 (2004) 381-384. |
[44] |
K. Li, B. Yu, R.D.K. Misra, G. Han, S. Liu, C.J. Shang, Mater. Sci. Eng. A 715 (2018) 174-185.
DOI URL |
[45] |
D.Y. Zhang, Z. Feng, C.J. Wang, W.D. Wang, Z. Liu, W. Niu, Mater. Sci. Eng. A 724 (2018) 357-367.
DOI URL |
[46] | Y.H. Zhao, N. Sargent, K. Li, W. Xiong, Materialia 13 (2020) 100835. |
[47] | Y. Kimura, S. Suejima, H. Goto, S. Takaki, ISIJ Int. 40 (2000) S174-S178. |
[48] |
C.R. Hutchinson, H.S. Zurob, C.W. Sinclair, Y.J.M. Brechet, Scr. Mater. 59 (2008) 635-637.
DOI URL |
[49] | S. A. E. Aerospace,Aerospace material specification: AMS 5662, SAE Interna- tional, 2009. |
[50] | https://www.specialmetals.com/documents/technical-bulletins/inconel/inconel-alloy-718.pdf. |
[51] |
X. Chen, J. Yan, A.M. Karlsson, Mater. Sci. Eng. A 416 (2006) 139-149.
DOI URL |
[52] |
L. Xie, Y. Wen, K. Zhan, L.Q. Wang, C.H. Jiang, V. Ji, J. Alloy. Compd. 666 (2016) 65-70.
DOI URL |
[53] |
A. Hadadzadeh, F. Mokdad, M.A. Wells, D.L. Chen, Mater. Sci. Eng. A 709 (2018) 285-289.
DOI URL |
[54] | S. Cheong, H. Weiland, Mater. Sci. Forum 558-559 (2007) 153-158. |
[55] |
N. Allain-Bonasso, F. Wagner, S. Berbenni, D.P. Field, Mater. Sci. Eng. A 548 (2012) 56-63.
DOI URL |
[1] | Holden Hyer, Le Zhou, Sharon Park, Thinh Huynh, Abhishek Mehta, Saket Thapliyal, Rajiv S. Mishra, Yongho Sohn. Elimination of extraordinarily high cracking susceptibility of aluminum alloy fabricated by laser powder bed fusion [J]. J. Mater. Sci. Technol., 2022, 103(0): 50-58. |
[2] | J.C. Wang, Y.J. Liu, S.X. Liang, Y.S. Zhang, L.Q. Wang, T.B. Sercombe, L.C. Zhang. Comparison of microstructure and mechanical behavior of Ti-35Nb manufactured by laser powder bed fusion from elemental powder mixture and prealloyed powder [J]. J. Mater. Sci. Technol., 2022, 105(0): 1-16. |
[3] | Wei Juene Chong, Shirley Shen, Yuncang Li, Adrian Trinchi, Dejana Pejak, Ilias (Louis) Kyratzis, Antonella Sola, Cuie Wen. Additive manufacturing of antibacterial PLA-ZnO nanocomposites: Benefits, limitations and open challenges [J]. J. Mater. Sci. Technol., 2022, 111(0): 120-151. |
[4] | Gwanghyo Choi, Won Seok Choi, Yoon Sun Lee, Dahye Kim, Ji Hyun Sung, Seungjun An, Chang-Seok Oh, Amine Hattal, Madjid Djemai, Brigitte Bacroix, Guy Dirras, Pyuck-Pa Choi. Decomposition behavior of yttria-stabilized zirconia and its effect on directed energy deposited Ti-based composite material [J]. J. Mater. Sci. Technol., 2022, 112(0): 138-150. |
[5] | Luqing Cui, Dunyong Deng, Fuqing Jiang, Ru Lin Peng, Tongzheng Xin, Reza Taherzadeh Mousavian, Zhiqing Yang, Johan Moverare. Superior low cycle fatigue property from cell structures in additively manufactured 316L stainless steel [J]. J. Mater. Sci. Technol., 2022, 111(0): 268-278. |
[6] | Yanfang Wang, Xin Lin, Nan Kang, Zihong Wang, Yuxi Liu, Weidong Huang. Influence of post-heat treatment on the microstructure and mechanical properties of Al-Cu-Mg-Zr alloy manufactured by selective laser melting [J]. J. Mater. Sci. Technol., 2022, 111(0): 35-48. |
[7] | Nihan Chen, Chunlin He, Siping Pang. Additive manufacturing of energetic materials: Tailoring energetic performance via printing [J]. J. Mater. Sci. Technol., 2022, 127(0): 29-47. |
[8] | H.Y. Wan, W.K. Yang, L.Y. Wang, Z.J. Zhou, C.P. Li, G.F. Chen, L.M. Lei, G.P. Zhang. Toward qualification of additively manufactured metal parts: Tensile and fatigue properties of selective laser melted Inconel 718 evaluated using miniature specimens [J]. J. Mater. Sci. Technol., 2022, 97(0): 239-253. |
[9] | Yuan Zhang, Shan Fu, Lei Yang, Gaowu Qin, Erlin Zhang. A nano-structured TiO2/CuO/Cu2O coating on Ti-Cu alloy with dual function of antibacterial ability and osteogenic activity [J]. J. Mater. Sci. Technol., 2022, 97(0): 201-212. |
[10] | Apratim Chakraborty, Reza Tangestani, Rasim Batmaz, Waqas Muhammad, Philippe Plamondon, Andrew Wessman, Lang Yuan, Étienne Martin. In-process failure analysis of thin-wall structures made by laser powder bed fusion additive manufacturing [J]. J. Mater. Sci. Technol., 2022, 98(0): 233-243. |
[11] | AmalShaji Karapuzha, Darren Fraser, Yuman Zhu, Xinhua Wu, Aijun Huang. Effect of solution heat treatment and hot isostatic pressing on the microstructure and mechanical properties of Hastelloy X manufactured by electron beam powder bed fusion [J]. J. Mater. Sci. Technol., 2022, 98(0): 99-117. |
[12] | Qingjie Li, Dandan Qin, Yunzhuo Lu, Xuemei Zhu, Xing Lu. Laser additive manufacturing of ductile Fe-based bulk metallic glass composite [J]. J. Mater. Sci. Technol., 2022, 121(0): 148-153. |
[13] | Young-Kyun Kim, Kee-Ahn Lee. Effect of carrier gas species on the microstructure and compressive deformation behaviors of ultra-strong pure copper manufactured by cold spray additive manufacturing [J]. J. Mater. Sci. Technol., 2022, 97(0): 264-271. |
[14] | H. Zhang, Y. Wang, J.J. Wang, D.R. Ni, D. Wang, B.L. Xiao, Z.Y. Ma. Achieving superior mechanical properties of selective laser melted AlSi10Mg via direct aging treatment [J]. J. Mater. Sci. Technol., 2022, 108(0): 226-235. |
[15] | Changshu He, Ying Li, Jingxun Wei, Zhiqiang Zhang, Ni Tian, Gaowu Qin, Xiang Zhao. Enhancing the mechanical performance of Al-Zn-Mg alloy builds fabricated via underwater friction stir additive manufacturing and post-processing aging [J]. J. Mater. Sci. Technol., 2022, 108(0): 26-36. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||