J. Mater. Sci. Technol. ›› 2022, Vol. 128: 1-9.DOI: 10.1016/j.jmst.2022.02.056
• Research Article • Next Articles
Zhang N.B.a, Xu J.b, Feng Z.D.b, Sun Y.F.a, Huang J.Y.b, Zhao X.J.a, Yao X.H.c, Chen S.b,*(), Lu L.a,*(
), Luo S.N.a
Received:
2021-11-08
Revised:
2022-02-22
Accepted:
2022-02-23
Published:
2022-11-20
Online:
2022-11-22
Contact:
Chen S.,Lu L.
About author:
llu@swjtu.edu.cn (L. Lu).Zhang N.B., Xu J., Feng Z.D., Sun Y.F., Huang J.Y., Zhao X.J., Yao X.H., Chen S., Lu L., Luo S.N.. Shock compression and spallation damage of high-entropy alloy Al0.1CoCrFeNi[J]. J. Mater. Sci. Technol., 2022, 128: 1-9.
Fig. 1. XRD and EBSD characterizations of the as-cast Al0.1CoCrFeNi high-entropy alloy. (a) XRD diffraction curve showing the FCC structure. (b) Inverse pole figure (IPF) map.
Fig. 2. Schematic setup for (a) Hugoniot equation of state experiments and (b) spallation-recovery experiments. 1: polycarbonate sabot; 2: flyer plate; 3: magnet induction system; 4: driver; 5: Al0.1CoCrFeNi high-entropy alloy sample; 6: sample holder; 7: optical fibers connected to a LDV; 8: recess for release waves; 9: lens; 10: momentum trap ring; 11: thin turning mirror; 12: soft materials.
Shot | ds | uimp | up1 | us1 | σHEL | up2 | us2 | σH |
---|---|---|---|---|---|---|---|---|
No. | (mm) | (km s−1) | (km s−1) | (km s−1) | (GPa) | (km s−1) | (km s−1) | (GPa) |
EOS-1 | 3.049(2) | 0.313(1) | 0.013(1) | 6.221(8) | 0.631(6) | 0.152(1) | 4.787(8) | 5.977(12) |
EOS-2 | 3.040(2) | 0.408(1) | 0.013(1) | 6.126(7) | 0.639(6) | 0.199(1) | 4.850(8) | 7.881(16) |
EOS-3 | 3.045(2) | 0.501(1) | 0.012(1) | 6.143(7) | 0.598(6) | 0.245(1) | 4.950(9) | 9.859(20) |
EOS-4 | 3.046(2) | 0.616(1) | 0.012(1) | 6.117(7) | 0.596(6) | 0.302(1) | 5.020(9) | 12.303(25) |
EOS-5 | 3.053(2) | 0.714(1) | 0.013(1) | 6.124(7) | 0.619(6) | 0.351(1) | 5.100(9) | 14.495(29) |
EOS-6 | 3.042(2) | 0.806(1) | 0.016(1) | 6.016(7) | 0.770(8) | 0.398(1) | 5.128(9) | 16.524(33) |
EOS-7 | 3.051(2) | 0.929(1) | 0.016(1) | 6.137(7) | 0.796(8) | 0.458(1) | 5.271(10) | 19.499(39) |
Table 1. Summary of experimental parameters and results for the Hugoniot equation of state experiments. ds: sample thickness; uimp: impact velocity; up1: elastic shock particle velocity; us1: elastic shock wave velocity; σHEL: the Hugoniot elastic limit stress; up2: plastic shock particle velocity; us2: plastic shock velocity; σH: peak shock stress. Numbers in parentheses denote uncertainties in the last 1 or 2 digits.
Shot | ds | uimp | up1 | us1 | σHEL | up2 | us2 | σH |
---|---|---|---|---|---|---|---|---|
No. | (mm) | (km s−1) | (km s−1) | (km s−1) | (GPa) | (km s−1) | (km s−1) | (GPa) |
EOS-1 | 3.049(2) | 0.313(1) | 0.013(1) | 6.221(8) | 0.631(6) | 0.152(1) | 4.787(8) | 5.977(12) |
EOS-2 | 3.040(2) | 0.408(1) | 0.013(1) | 6.126(7) | 0.639(6) | 0.199(1) | 4.850(8) | 7.881(16) |
EOS-3 | 3.045(2) | 0.501(1) | 0.012(1) | 6.143(7) | 0.598(6) | 0.245(1) | 4.950(9) | 9.859(20) |
EOS-4 | 3.046(2) | 0.616(1) | 0.012(1) | 6.117(7) | 0.596(6) | 0.302(1) | 5.020(9) | 12.303(25) |
EOS-5 | 3.053(2) | 0.714(1) | 0.013(1) | 6.124(7) | 0.619(6) | 0.351(1) | 5.100(9) | 14.495(29) |
EOS-6 | 3.042(2) | 0.806(1) | 0.016(1) | 6.016(7) | 0.770(8) | 0.398(1) | 5.128(9) | 16.524(33) |
EOS-7 | 3.051(2) | 0.929(1) | 0.016(1) | 6.137(7) | 0.796(8) | 0.458(1) | 5.271(10) | 19.499(39) |
Fig. 3. Shock velocity versus particle velocity plot (us-up) for the Al0.1CoCrFeNi high-entropy alloy. The solid and dashed lines denote linear fitting to the experimental data and the calculation with the mixture method, respectively. CB is the bulk sound velocity at ambient condition.
Shot | df | ds | uimp | σH | σsp | ar | |
---|---|---|---|---|---|---|---|
No. | (mm) | (mm) | (m s−1) | (GPa) | (105 s−1) | (GPa) | (105 s−2) |
Spall-1 | 1.000 | 1.980 | 208 | 4.094 | 0.940 | 3.256 | - |
Spall-2 | 1.000 | 1.986 | 307 | 6.056 | 1.554 | 3.635 | 8.897 |
Spall-3 | 1.003 | 1.980 | 410 | 8.162 | 1.735 | 3.534 | 6.287 |
Spall-4 | 0.997 | 1.987 | 511 | 10.294 | 2.025 | 3.735 | 5.207 |
Spall-5 | 0.990 | 2.008 | 612 | 12.487 | 2.470 | 3.844 | 19.983 |
Spall-6 | 1.006 | 1.998 | 762 | 15.845 | 2.774 | 4.040 | 17.440 |
Table 2. Summary of experimental parameters and results for the spallation-recovery experiments. df: flyer plate thickness; ds: sample thickness; uimp: impact velocity; σH: peak shock stress; $\dot{\varepsilon }$: tensile strain rate; σsp: spall strength; ar: re-acceleration.
Shot | df | ds | uimp | σH | σsp | ar | |
---|---|---|---|---|---|---|---|
No. | (mm) | (mm) | (m s−1) | (GPa) | (105 s−1) | (GPa) | (105 s−2) |
Spall-1 | 1.000 | 1.980 | 208 | 4.094 | 0.940 | 3.256 | - |
Spall-2 | 1.000 | 1.986 | 307 | 6.056 | 1.554 | 3.635 | 8.897 |
Spall-3 | 1.003 | 1.980 | 410 | 8.162 | 1.735 | 3.534 | 6.287 |
Spall-4 | 0.997 | 1.987 | 511 | 10.294 | 2.025 | 3.735 | 5.207 |
Spall-5 | 0.990 | 2.008 | 612 | 12.487 | 2.470 | 3.844 | 19.983 |
Spall-6 | 1.006 | 1.998 | 762 | 15.845 | 2.774 | 4.040 | 17.440 |
Fig. 6. Spall strength comparison between the Al0.1CoCrFeNi HEA (this work) and other HEAs and common structural materials. HRQ: hot-rolling quenched Fe50Mn30Co10Cr10 HEA (Ref. [38]); CRQ: cold-rolling quenched Fe50Mn30Co10Cr10 HEA (Ref. [38]); FeCrMnNi HEA (Ref. [40]); 316L: stainless steel (Ref. [59]); 2169: stainless steel (Ref. [60]); 304: stainless steel (Ref. [61]).
Fig. 7. TEM bright-field images of the postmortem samples for (a-c) uimp = 307 m s?1, (d-f) 511 m s?1, and (g-i) 762 m s?1. Insets: the selected area electron diffraction (SAED) patterns or the fast Fourier transform image (zone axis [110]). Subscripts M and T represent the matrix and twins, respectively.
Fig. 9. EBSD characterization of two representative spallation regions for shot Spall-2. (a) and (c) IPF maps, and (b) and (d) corresponding KAM maps. Shock direction: top to bottom.
Fig. 10. Statistical analysis of voids for shots Spall-1 (uimp = 208 m s?1) and Spall-2 (uimp = 307 m s?1). (a) Distributions of the normalized distance from a void center to its nearest GB. (b) Histograms of average equivalent void diameter as a function of normalized distance. Inter and intra refer to intergranular and intragranular voids, respectively.
Fig. 11. (a) Distributions of the original GBs and the GBs related to intragranular voids. (b) Distribution of the fraction of the GBs with intragranular voids among all the GBs with misorientation angle θ.
[1] |
Z.Z. Li, S.T. Zhao, R.O. Ritchie, M.A. Meyers, Prog. Mater. Sci. 102 (2019) 296-345.
DOI URL |
[2] |
J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Adv. Eng. Mater. 6 (2004) 299-303.
DOI URL |
[3] | B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Mater. Sci. Eng. A 375 (2004) 213-218. |
[4] |
Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Prog. Mater. Sci. 61 (2014) 1-93.
DOI URL |
[5] |
D.B. Miracle, O.N. Senkov, Acta Mater. 122 (2017) 448-511.
DOI URL |
[6] |
W.D. Li, D. Xie, D.Y. Li, Y. Zhang, Y.F. Gao, P.K. Liaw, Prog. Mater. Sci. 118 (2021) 100777.
DOI URL |
[7] |
Z.B. Yang, S. Lu, Y.Z. Tian, Z.J. Gu, J. Sun, L. Vitos, J. Mater. Sci. Technol. 99 (2022) 161-168.
DOI URL |
[8] | B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, Science 345 (2014) 1153-1158. |
[9] |
Y. Deng, C.C. Tasan, K.G. Pradeep, H. Springer, A. Kostka, D. Raabe, Acta Mater. 94 (2015) 124-133.
DOI URL |
[10] | M.J. Yao, K.G. Pradeep, C.C. Tasan, D. Raabe, Scr. Mater. 72 (2014) 5-8. |
[11] |
G. Laplanche, A. Kostka, C. Reinhart, J. Hunfeld, G. Eggeler, E.P. George, Acta Mater. 128 (2017) 292-303.
DOI URL |
[12] |
G. Laplanche, A. Kostka, O. Horst, G. Eggeler, E.P. George, Acta Mater. 118 (2016) 152-163.
DOI URL |
[13] |
K.J. Lu, A. Chauhan, D. Litvinov, A.S. Tirunilai, J. Freudenberger, M.H. Kauff- mann, J. Aktaa, J. Mater. Sci. Technol. 100 (2022) 237-245.
DOI URL |
[14] |
H.F. Zhang, H.L. Yan, H. Yu, Z.W. Ji, Q.M. Hu, N. Jia, J. Mater. Sci. Technol. 48 (2020) 146-155.
DOI |
[15] |
Z.B. An, S.C. Mao, Y.N. Liu, H. Zhou, Y.D. Zhai, Z.Y. Tian, C.X. Liu, Z. Zhang, X.D. Han, J. Mater. Sci. Technol. 92 (2021) 195-207.
DOI URL |
[16] |
T.A. Listyawan, H. Lee, N. Park, U. Lee, J. Mater. Sci. Technol. 57 (2020) 123-130.
DOI URL |
[17] |
S.Q Xia, M.C. Gao, Y. Zhang, Mater. Chem. Phys. 210 (2018) 213-221.
DOI URL |
[18] |
Z.Y. Lyu, X.S. Fan, C.H. Lee, S.Y. Wang, R. Feng, P.K. Liaw, J. Mater. Res. 33 (2018) 2998-3010.
DOI URL |
[19] |
J.X. Hou, J.W. Qiao, J.H. Lian, P.K. Liaw, Mater. Sci. Eng. A 804 (2021) 140752.
DOI URL |
[20] |
S.W. Wu, L. Xu, X.D. Ma, Y.F. Jia, Y.K. Mu, Y.D. Jia, G. Wang, C.T. Liu, Mater. Sci. Eng. A 805 (2021) 140523.
DOI URL |
[21] | S.W. Wu, G. Wang, Q. Wang, Y.D. Jia, J. Yi, Q.QJ. Zhai, J.B. Liu, B.A. Sun, H.J. Chu, J. Shen, P.K. Liu, T.Y. Zhang, Acta Mater. 165 (2019) 4 4 4-458. |
[22] |
G. Chen, J.W. Qiao, Z.M. Jiao, D. Zhao, T.W. Zhang, S.G. Ma, Z.H. Wang, Scr. Mater. 167 (2019) 95-100.
DOI URL |
[23] |
M. Komarasamy, N. Kumar, Z. Tang, R.S. Mishra, P.K. Liaw, Mater. Res. Lett. 3 (2015) 30-34.
DOI URL |
[24] |
S.W. Wu, G. Wang, J. Yi, Y.D. Jia, I. Hussain, Q.J. Zhai, P.K. Liaw, Mater. Res. Lett. 5 (2017) 276-283.
DOI URL |
[25] |
J. Yang, J.W. Qiao, S.G. Ma, G.Y. Wu, D. Zhao, Z.H. Wang, J. Alloy Compd. 795 (2019) 269-274.
DOI |
[26] |
D. Choudhuri, M. Komarasamy, V. Ageh, R. Mishra, Mater. Chem. Phys. 217 (2018) 308-314.
DOI URL |
[27] |
S.Q. Xia, Y. Zhang, Mater. Sci. Eng. A 733 (2018) 408-413.
DOI URL |
[28] |
J.B. Liu, C.X. Chen, Y.Q. Xu, S.W. Wu, G. Wang, H.T. Wang, Y.T. Fang, L. Meng, Scr. Mater. 137 (2017) 9-12.
DOI URL |
[29] |
X.D. Xu, P. Liu, Z. Tang, A. Hirata, S.X. Song, T.G. Nieh, P.K. Liaw, C.T. Liu, M. W. Chen, Acta Mater. 144 (2018) 107-115.
DOI URL |
[30] |
N. Kumar, Q. Ying, X. Nie, R.S. Mishra, Z. Tang, P.K. Liaw, R.E. Brennan, K.J. Do- herty, K.C. Cho, Mater. Des. 86 (2015) 598-602.
DOI URL |
[31] |
K. Jiang, T.F. Ren, G.B. Shan, T. Ye, L.Y. Chen, C.X. Wang, F. Zhao, J.G. Li, T. Suo, Mater. Sci. Eng. A 797 (2020) 140125.
DOI URL |
[32] |
F. He, S.L. Wei, J.L. Cann, Z.J. Wang, J.C. Wang, C.C. Tasan, Acta Mater. 220 (2021) 117314.
DOI URL |
[33] |
F. He, Z.S. Yang, S.F. Liu, D. Chen, W.T. Lin, T. Yang, D.X. Wei, Z.J. Wang, J. C. Wang, J.J. Kai, Int. J. Plast. 144 (2021) 103022.
DOI URL |
[34] |
Z. Li, S. Zhao, H. Diao, P.K. Liaw, M.A. Meyers, Sci. Rep. 7 (2017) 1-8.
DOI URL |
[35] | S. Muskeri, D. Choudhuri, P.A. Jannotti, B.E. Schuster, J.T. Lloyd, R.S. Mishra, S. Mukherjee, Adv. Eng. Mater. 22 (2020) 20 0 0124. |
[36] |
Z.J. Jiang, J.Y. He, H.Y. Wang, H.S. Zhang, Z.P. Lu, L.H. Dai, Mater. Res. Lett. 4 (2016) 226-232.
DOI URL |
[37] |
L. Davison, R.A. Graham, Phys. Rep. 55 (1979) 255-379.
DOI URL |
[38] |
Y. Yang, S.J. Yang, H.M. Wang, J. Alloy Compd. 851 (2021) 156883.
DOI URL |
[39] |
Y. Yang, S.J. Yang, H.M. Wang, Mater. Sci. Eng. A 802 (2021) 140440.
DOI URL |
[40] |
M.C. Hawkins, S.A. Thomas, R.S. Hixon, J. Gigax, N. Li, C. Liu, J.A. Valdez, S. Fensin, Mater. Sci. Eng. A 840 (2021) 142906.
DOI URL |
[41] |
D.H. Chung, D.J. Silversmith, B.B. Chick, Rev. Sci. Instrum. 40 (1969) 718-720.
DOI URL |
[42] | J.M. Brown, R.G. McQueen, J. Geophys. Res. 91 (1986) 7485-7494. |
[43] | O.T. Strand, D. Goosman, C. Martinez, T. Whitworth, W. Kuhlow, Sci. Instrum. 77 (2006) 083108. |
[44] | N.K. Bourne, G.T. Gray,Proc. R. Soc. A 461 (2005) 3297-3312. |
[45] |
R. Vignjevic, K. Hughes, T. De Vuyst, N. Djordjevic, J.C. Campbell, M. Stojkovic, O. Gulavani, S. Hiermaier, Int. J. Impact Eng. 77 (2015) 16-29.
DOI URL |
[46] |
D.H. Dolan, Rev. Sci. Instrum. 81 (2010) 053905.
DOI URL |
[47] |
A.C. Mitchell, W.J. Nellis, J. Appl. Phys. 52 (1981) 3363-3374.
DOI URL |
[48] | S.P. Marsh, LASL Shock Hugoniot Data, 5, University of California Press, Califor- nia, 1980. |
[49] | M.A. Meyers, Dynamic Behavior of Materials, John Wiley & Sons, New Jersey, 1994. |
[50] |
J.M. Brown, J.N. Fritz, R.S. Hixson, J. Appl. Phys. 88 (20 0 0) 5496-5498.
DOI URL |
[51] |
J. Tan, L. Lu, H.Y. Li, X.H. Xiao, Z. Li, S.N. Luo, Mater. Sci. Eng. A 742 (2019) 532-539.
DOI URL |
[52] |
C. Li, K. Yang, X.C. Tang, L. Lu, S.N. Luo, Mater. Sci. Eng. A 754 (2019) 461-469.
DOI URL |
[53] | T. Antoun, D.R. Curran, L. Seaman, G.I. Kanel, S.V. Razorenov, A.V. Utkin, Spall Fracture, Springer Science & Business Media, New York, 2003. |
[54] |
G.I. Kanel, Int. J. Fract. 163 (2010) 173-191.
DOI URL |
[55] | G.V. Stepanov, Prob. Prochn. 8 (1976) 66-70. |
[56] |
Y. Cai, H.A. Wu, S.N. Luo, J. Appl. Phys. 121 (2017) 105901.
DOI URL |
[57] |
B. Arman, S.N. Luo, T.C. Germann, T. C¸ a˘ gın, Phys. Rev. B 81 (2010) 144201.
DOI URL |
[58] | G.I. Kanel, A.V. Utkin,AIP Conf. Proc. 370 (1996) 4 87-4 90. |
[59] |
G.T. Gray-III, N.K. Bourne, B.L. Henrie, J. Appl. Phys. 101 (2007) 093507.
DOI URL |
[60] | G. Whiteman, P.T. Keightley, J.C.F. Millett, J. Dyn. Behav. Mater. 2 (2016) 337-346. |
[61] |
L. Ma, J.Y. Liu, C. Li, Z.Y. Zhong, L. Lu, S.N. Luo, Mater. Char. 153 (2019) 294-303.
DOI URL |
[62] |
Y. Huang, J.W. Hutchinson, V. Tvergaard, J. Mech. Phys. Solids 39 (1991) 223-241.
DOI URL |
[63] |
T.W. Wright, K.T. Ramesh, J. Mech. Phys. Solids 56 (2008) 336-359.
DOI URL |
[64] |
J. Wilkerson, Int. J. Plast. 95 (2017) 21-42.
DOI URL |
[65] | Z.M. Li, K.G. Pradeep, Y. Deng, D. Raabe, C.C. Tasan, Nature 534 (2016) 227-230. |
[66] |
S.J. Fensin, J. Escobedo Diaz, C. Brandl, E.K. Cerreta, G.T. Gray-III, T.C. Germann, S. M. Valone, Acta Mater. 64 (2014) 113-122.
DOI URL |
[67] |
W.R. Jian, Z.C. Xie, S.Z. Xu, Y.Q. Su, X.H. Yao, I.J. Beyerlein, Acta Mater. 199 (2020) 352-369.
DOI URL |
[68] |
Z.C. Xie, W.R. Jian, S.Z. Xu, I.J. Beyerlein, X.Q. Zhang, Z.H. Wang, X.H. Yao, Acta Mater. 221 (2021) 117380.
DOI URL |
[69] | M. Shtremel, Russ. Metall. 2014 ( 2014) 251-255. |
[70] |
W. Mills, Int. Mater. Rev. 42 (1997) 45-82.
DOI URL |
[71] |
R. Feng, S.L. Li, X.D. Zhu, Q. Ao, J. Alloy Compd. 646 (2015) 787-793.
DOI URL |
[72] |
X.Z. Gao, Y.P. Lu, B. Zhang, N.N. Liang, G.Z. Wu, G. Sha, J.Z. Liu, Y.H. Zhao, Acta Mater. 141 (2017) 59-66.
DOI URL |
[73] |
J.Y. He, Q. Wang, H.S. Zhang, L.H. Dai, T. Mukai, Y. Wu, X.J. Liu, H. Wang, T.G. Nieh, Z.P. Lu, Sci. Bull. 63 (2018) 362-368.
DOI URL |
[74] |
J.M. Park, J. Moon, J.W. Bae, M.J. Jang, J. Park, S. Lee, H.S. Kim, Mater. Sci. Eng. A 719 (2018) 155-163.
DOI URL |
[75] |
Z.H. Zeng, X.Z. Li, C. Li, L. Lu, H. Zhang, S.N. Luo, Mater. Sci. Eng. A 751 (2019) 332-339.
DOI URL |
[76] |
W. Visser, H. Ghonem, Mater. Sci. Eng. A 687 (2017) 28-38.
DOI URL |
[77] |
K. Yang, C. Li, X.J. Zhao, Y.X. Liang, S.N. Luo, Y. Cai, J. Alloy Compd. 881 (2021) 160421.
DOI URL |
[78] |
N.B. Zhang, Q. Liu, K. Yang, C. Li, Y. Cai, S.N. Luo, X.H. Yao, S. Chen, Int. J. Mech. Sci. 213 (2022) 106858.
DOI URL |
[79] | S.T. Zhao, Z.Z. Li, C.Y. Zhu, W. Yang, Z.R. Zhang, D.E. Armstrong, P.S. Grant, R.O. Ritchie, M.A. Meyers, Sci. Adv. 7 (2021) 3108-3137. |
[80] | M. Cheng, C. Li, M.X. Tang, L. Lu, Z. Li, S.N. Luo, Acta Mater 148 (2018) 38-48. |
[81] | A. Papoulis, S.U. Pillai, Probability, Random Variables and Stochastic Processes, forth ed., McGraw-Hill, New York, 2002. |
[82] |
J.P. Escobedo, E.K. Cerreta, D.D. Koller, C.P. Trujillo, C.A. Bronkhorst, Philos. Mag. 93 (2013) 833-846.
DOI URL |
[1] | Wei Li, Hanyang Liu, Peihua Yin, Wei Yan, Wei Wang, Yiyin Shan, Ke Yang. Special tetrahedral twins in a cryogenically deformed CoCrFeNi high-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 100(0): 129-136. |
[2] | Seungmi Kwak, Jaehwang Kim, Hongsheng Ding, Xuesong Xu, Ruirun Chen, Jingjie Guo, Hengzhi Fu. Using multiple regression analysis to predict directionally solidified TiAl mechanical property [J]. J. Mater. Sci. Technol., 2022, 104(0): 285-291. |
[3] | Mehmet R. Abul, Robert F. Cochrane, Andrew M. Mullis. Microstructural development and mechanical properties of drop tube atomized Al-2.85 wt% Fe [J]. J. Mater. Sci. Technol., 2022, 104(0): 41-51. |
[4] | Shengfeng Zhou, Min Xie, Changyi Wu, Yanliang Yi, Dongchu Chen, Lai-Chang Zhang. Selective laser melting of bulk immiscible alloy with enhanced strength: Heterogeneous microstructure and deformation mechanisms [J]. J. Mater. Sci. Technol., 2022, 104(0): 81-87. |
[5] | Jun Hwan Moon, Seunghyun Kim, Taesoon Kim, Yoo Sang Jeon, Yanghee Kim, Jae-Pyoung Ahn, Young Keun Kim. Electrical resistivity evolution in electrodeposited Ru and Ru-Co nanowires [J]. J. Mater. Sci. Technol., 2022, 105(0): 17-25. |
[6] | J.C. Wang, Y.J. Liu, S.X. Liang, Y.S. Zhang, L.Q. Wang, T.B. Sercombe, L.C. Zhang. Comparison of microstructure and mechanical behavior of Ti-35Nb manufactured by laser powder bed fusion from elemental powder mixture and prealloyed powder [J]. J. Mater. Sci. Technol., 2022, 105(0): 1-16. |
[7] | Yu Lu, Richard Turner, Jeffery Brooks, Hector Basoalto. A study of process-induced grain structures during steady state and non-steady state electron-beam welding of a titanium alloy [J]. J. Mater. Sci. Technol., 2022, 113(0): 117-127. |
[8] | Jun Wang, Yao Lu, Fanghui Jia, Wenzhen Xia, Fei Lin, Jian Han, Ruichao Wang, Zengxi Pan, Huijun Li, Zhengyi Jiang. Effects of inter-layer remelting frequency on the microstructure evolution and mechanical properties of equimolar CoCrFeNiMn high entropy alloys during in-situ powder-bed arc additive manufacturing (PBAAM) process [J]. J. Mater. Sci. Technol., 2022, 113(0): 90-104. |
[9] | Wei Zhang, Zhichao Ma, Chaofan Li, Chaowei Guo, Dongni Liu, Hongwei Zhao, Luquan Ren. Micro/nano-mechanical behaviors of individual FCC, BCC and FCC/BCC interphase in a high-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 114(0): 102-110. |
[10] | Yijing Wang, Enkang Hao, Xiaoqin Zhao, Yun Xue, Yulong An, Huidi Zhou. Effect of microstructure evolution of Ti6Al4V alloy on its cavitation erosion and corrosion resistance in artificial seawater [J]. J. Mater. Sci. Technol., 2022, 100(0): 169-181. |
[11] | Zhen Jiang, Ran Wei, Wenzhou Wang, Mengjia Li, Zhenhua Han, Shuhan Yuan, Kaisheng Zhang, Chen Chen, Tan Wang, Fushan Li. Achieving high strength and ductility in Fe50Mn25Ni10Cr15 medium entropy alloy via Al alloying [J]. J. Mater. Sci. Technol., 2022, 100(0): 20-26. |
[12] | Zhiyuan Liu, Dandan Zhao, Pei Wang, Ming Yan, Can Yang, Zhangwei Chen, Jian Lu, Zhaoping Lu. Additive manufacturing of metals: Microstructure evolution and multistage control [J]. J. Mater. Sci. Technol., 2022, 100(0): 224-236. |
[13] | Kaiju Lu, Ankur Chauhan, Dimitri Litvinov, Aditya Srinivasan Tirunilai, Jens Freudenberger, Alexander Kauffmann, Martin Heilmaier, Jarir Aktaa. Micro-mechanical deformation behavior of CoCrFeMnNi high-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 100(0): 237-245. |
[14] | W.T. Lin, G.M. Yeli, G. Wang, J.H. Lin, S.J. Zhao, D. Chen, S.F. Liu, F.L. Meng, Y.R. Li, F. He, Y. Lu, J.J. Kai. He-enhanced heterogeneity of radiation-induced segregation in FeNiCoCr high-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 101(0): 226-233. |
[15] | Yue Wu, Xiaofan Zhang, Boyi Wang, Jingxuan Liang, Zipei Zhang, Jiawei Yang, Ximeng Dong, Shuqi Zheng, Huai-zhou Zhao. Decoupling of thermoelectric transport performance of Ag doped and Se alloyed tellurium induced by carrier mobility compensation [J]. J. Mater. Sci. Technol., 2022, 101(0): 71-79. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||