J. Mater. Sci. Technol. ›› 2022, Vol. 131: 14-29.DOI: 10.1016/j.jmst.2022.05.029
• Research Article • Previous Articles Next Articles
Xipeng Taoa,b, Yunling Dua,b, Xinguang Wanga,*(), Jie Menga, Yizhou Zhoua,*(
), Jinguo Lia, Xiaofeng Suna
Received:
2022-02-19
Revised:
2022-05-04
Accepted:
2022-05-19
Published:
2022-06-09
Online:
2022-06-09
Contact:
Xinguang Wang,Yizhou Zhou
About author:
yzzhou@imr.ac.cn (Y. Zhou)Xipeng Tao, Yunling Du, Xinguang Wang, Jie Meng, Yizhou Zhou, Jinguo Li, Xiaofeng Sun. Effect of solution cooling rate on the microstructure and creep deformation mechanism of a rhenium-free second-generation single crystal superalloy[J]. J. Mater. Sci. Technol., 2022, 131: 14-29.
Cr | Co | Al | W | Ta+Mo+Ti | Ni | |
---|---|---|---|---|---|---|
Nominal | 8 | 8 | 5.5 | 8 | 8.5 | Bal. |
Measured | 8.06 | 8.06 | 5.42 | 8.02 | 8.47 | Bal. |
Table 1. Chemical compositions (wt.%) of the experimental alloys.
Cr | Co | Al | W | Ta+Mo+Ti | Ni | |
---|---|---|---|---|---|---|
Nominal | 8 | 8 | 5.5 | 8 | 8.5 | Bal. |
Measured | 8.06 | 8.06 | 5.42 | 8.02 | 8.47 | Bal. |
Fig. 1. Schematic illustration of main experimental procedures in preparation, heat treatment, mechining, testing and analysis of samples (not to scale).
Cooling rate | γʹ morphology | γ′ volume (%) | Average γʹ size (nm) | Lattice misfit (%) | Residual stress |
---|---|---|---|---|---|
WC | Small spherical | 53 | 216 | -0.36 | Very high |
OC | Small spherical +butterfly | 55 | 253 | -0.33 | High |
AC | butterfly | 58 | 284 | -0.31 | Normal |
FC | Large butterfly | 62 | 320 | -0.25 | Low |
Table 2. Primary γ? morphology, volume fraction, size, and lattice misfit as well as residual stress in four as-solutionized samples.
Cooling rate | γʹ morphology | γ′ volume (%) | Average γʹ size (nm) | Lattice misfit (%) | Residual stress |
---|---|---|---|---|---|
WC | Small spherical | 53 | 216 | -0.36 | Very high |
OC | Small spherical +butterfly | 55 | 253 | -0.33 | High |
AC | butterfly | 58 | 284 | -0.31 | Normal |
FC | Large butterfly | 62 | 320 | -0.25 | Low |
Cooling rate | Cube length (nm) | Channel width (nm) | Latticemisfit (%) | Morphology | γ′ volume (%) |
---|---|---|---|---|---|
WC | 325 ± 164 | 67 ± 34 | -0.08 | spherical | 63 |
OC | 387 ± 138 | 71 ± 23 | -0.11 | spherical+cubic | 65 |
AC | 468 ± 185 | 85 ± 63 | -0.23 | cubic | 66 |
FC | 975 ± 201 | 312 ± 56 | -0.14 | cubic | 64 |
Table 3. The γ′ volume fraction, γ/γ′ lattice misfit, dimensions of the primary γ′ phases and the channel widths of samples after various SCRs.
Cooling rate | Cube length (nm) | Channel width (nm) | Latticemisfit (%) | Morphology | γ′ volume (%) |
---|---|---|---|---|---|
WC | 325 ± 164 | 67 ± 34 | -0.08 | spherical | 63 |
OC | 387 ± 138 | 71 ± 23 | -0.11 | spherical+cubic | 65 |
AC | 468 ± 185 | 85 ± 63 | -0.23 | cubic | 66 |
FC | 975 ± 201 | 312 ± 56 | -0.14 | cubic | 64 |
Fig. 5. Typical creep curves of samples at various temperatures and stresses. (a) 800 °C/750 MPa; (b) 1100 °C/137 MPa; (c) comparison of creep life of samples; (d) change of minimum creep rate of samples.
Fig. 7. Deformation features in crept samples at 800 °C/750 MPa. (a) Schematic of the ruptured sample after creep test [26]; (b-e) morphologies of slipping traces; (f-i) cross-sectional microstructures 5 mm away from the fracture surfaces; (b, f) WC sample; (c, g) OC sample; (d, h) AC sample; (e, i) FC sample.
Fig. 9. Longitudinal-section microstructures 5 mm away from the fracture surfaces of samples: (a) WC; (b) OC; (c) AC; (d) FC; (e) changes of the linked number NA in the crept samples; (f, g) changes of the γ channel width and the γ? phase thickness in samples.
Fig. 10. Configuration and density of superdislocations in the samples after creep rupture at 1100 °C/137 MPa: (a) WC, (b) OC, (c) AC, (d) FC; (e-l): STEM image and the corresponding element mappings of the typical secondary γ′ phases.
Fig. 11. Bright-field images of interfacial dislocation networks and secondary γ′ phases in the γ matrix: (a) WC sample, (b) OC sample, (c) AC sample, (d) FC sample.
Samples | Stacking fault energy (mJ/m2) |
---|---|
WC | 233.6 |
OC | 154.2 |
AC | 136.7 |
FC | 190.2 |
Table 4. Stacking fault energy of γ′ phase in various alloys at 800 °C.
Samples | Stacking fault energy (mJ/m2) |
---|---|
WC | 233.6 |
OC | 154.2 |
AC | 136.7 |
FC | 190.2 |
Fig. 13. Magnification images of various types of stacking fault locks and schematic diagrams of formation mechanism in AC sample: (a, c) I-type; (b, d) II-type.
Beam | g | Partial Dislocation-I | Partial Dislocation-II | b |
---|---|---|---|---|
[001] | $\bar{2}00$ | Visible | Visible | $\pm \frac{a}{2}\left[ 1\bar{1}0 \right]$ |
$\bar{2}\bar{2}0$ | Non-visible | Part-visible | ||
[013] | $3\bar{1}0$ | Part-visible | Non-visible | $\pm \frac{a}{2}\left[ 101 \right]$ |
$\bar{1}3\bar{1}$ | Visible | Non-visible |
Table 5. Visibility and invisibility of dislocation segments.
Beam | g | Partial Dislocation-I | Partial Dislocation-II | b |
---|---|---|---|---|
[001] | $\bar{2}00$ | Visible | Visible | $\pm \frac{a}{2}\left[ 1\bar{1}0 \right]$ |
$\bar{2}\bar{2}0$ | Non-visible | Part-visible | ||
[013] | $3\bar{1}0$ | Part-visible | Non-visible | $\pm \frac{a}{2}\left[ 101 \right]$ |
$\bar{1}3\bar{1}$ | Visible | Non-visible |
Fig. 14. TEM images of the interfacial dislocation networks after 1000 h isothermal aging at 1100 °C in: (a) WC; (b) OC; (c) AC; (d) FC. (e) Plot of the lattice misfit in the four samples determined from high-temperature equilibrium and post-crept dislocation network spacing at the corresponding lattice misfit.
[1] | R.C. Reed, The Superalloys:Fundamentals and Applications, Cambridge Univer-sity, Press, 2006. |
[2] |
Y. Huang, X. Wang, C. Cui, Z. Tan, J. Li, Y. Yang, J. Liu, Y. Zhou, X. Sun, J. Mater. Sci. Technol. 69 (2021) 180-187.
DOI URL |
[3] | P. Song, M. Liu, X. Jiang, Y. Feng, J. Wu, G. Zhang, D. Wang, J. Dong, X.Q. Chen, L. Lou, Mater. Des. 197 (2021) 109197. |
[4] | R. Wu, Q. Yin, J. Wang, Q. Mao, X. Zhang, Z. Wen, J. Alloy. Compd. 862 (2021) 158643. |
[5] |
J. Zhang, T. Huang, K. Cao, J. Chen, H. Zong, D. Wang, J. Zhang, L. Liu, J. Mater. Sci. Technol. 75 (2021) 68-77.
DOI URL |
[6] | O.M. Horst, D. Adler, P. Git, H. Wang, J. Streitberger, M. Holtkamp, N. Jons, R.F. Singer, C. Korner, G. Eggeler, Mater. Des. 195 (2020) 108976. |
[7] |
H. Yao, L. Yang, Z. Bao, S. Zhu, F. Wang, Corros. Sci. 147 (2019) 299-312.
DOI URL |
[8] |
C.J. Pierce, A.N. Palazotto, A.H. Rosenberger, Mater. Sci. Eng. A 527 (2010) 7484-7489.
DOI URL |
[9] |
S. Li, J. Li, J. Shi, Y. Peng, X. Peng, X. Sun, F. Jun, J. Xiong, F. Zhang, J. Mater. Sci. Technol. 96 (2022) 140-150.
DOI URL |
[10] | J. Sun, S. Yang, H. Yuan, Mater. Sci. Eng. A 809 (2021) 140918. |
[11] | J.M. Li, J. Jing, J. He, H. Chen, H.B. Guo, Mater. Des. 193 (2020) 108776. |
[12] | X.P. Tao, X.G. Wang, J. Meng, Y.Z. Zhou, Y.H. Yang, J.L. Liu, J.D. Liu, J.G. Li, X.F. Sun, Eng. Fail. Anal. 133 (2022) 105963. |
[13] | J. Cormier, C.A. Gandin, G. Cailletaud, J. Cormier, G. Eggeler, V. Maurel, L. Nazé, in: Nickel Base Single Crystals Across Length Scales, Elsevier, 2022, pp. 193-222. |
[14] |
S. Steuer, Z. Hervier, S. Thabart, C. Castaing, T.M. Pollock, J. Cormier, Mater. Sci. Eng. A 601 (2014) 145-152.
DOI URL |
[15] |
S. Gao, J.S. Hou, K.X. Dong, L.Z. Zhou, Acta Metall. Sin. (Engl. Lett.) 30 (2017) 261-271.
DOI URL |
[16] | J. Li, R. Ding, Q. Guo, C. Li, Y. Liu, Z. Wang, H. Li, C. Liu, Mater. Sci. Eng. A 812 (2021) 141113. |
[17] |
R. Radis, M. Schaffer, M. Albu, G. Kothleitner, P. Poelt, E. Kozeschnik, Acta Mater. 57 (2009) 5739-5747.
DOI URL |
[18] | W.W. Liu, D.Z. Tang, Rare Met. 30 (2011) 396-400. |
[19] | F.R. Nabarro, M.S. Duesbery, Dislocations in Solids, Elsevier, 2002. |
[20] |
K. Kakehi, Mater. Sci. Eng. A 278 (2000) 135-141.
DOI URL |
[21] |
Z. Shi, S. Liu, X. Wang, J. Li, Mater. Sci. Forum 816 (2015) 513-517.
DOI URL |
[22] | C. He, Lin L, T. Huang, W. Yang, J. Zhang, J. Zhang, M. Guo, H. Fu, J. Alloy. Compd. 836 (2020) 155486. |
[23] | W. Song, X.G. Wang, J.G. Li, L.H. Ye, G.C. Hou, Y.H. Yang, J.L. Liu, J.D. Liu, W.L. Pei, Y.Z. Zhou, X.F. Sun, Mater. Sci. Eng. A 772 (2020) 138646. |
[24] | X.P. Tao, X.G. Wang, Y.Z. Zhou, K.J. Tan, J.J. Liang, Y.H. Yang, J.L. Liu, J.D. Liu, J.G. Li, X.F. Sun, Mater. Sci. Eng. A 805 (2021) 140575. |
[25] |
S.G. Tian, Z. Zeng, L. Fushun, C. Zhang, C. Liu, Mater. Sci. Eng. A 543 (2012) 104-109.
DOI URL |
[26] | Y.W. Li, L. Wang, G. Zhang, W. Zheng, L.H. Lou, J. Zhang, Mater. Sci. Eng. A 809 (2021) 140982. |
[27] |
S.G. Tian, X. Ding, Z. Guo, J. Xie, Y. Xue, D. Shu, Mater. Sci. Eng. A 594 (2014) 7-16.
DOI URL |
[28] |
Y. Ru, B. Hu, W.Y. Zhao, H. Zhang, Y.L. Pei, S.S. Li, S.K. Gong, H.B. Xu, Mater. Res. Lett. 9 (2021) 497-506.
DOI URL |
[29] |
Y. Ru, B. Hu, W.Y. Zhao, H. Zhang, Y.L. Pei, S.S. Li, S.K. Gong, H.B. Xu, Mater. Res. Lett. 9 (2021) 497-506.
DOI URL |
[30] |
X.P. Tan, J.L. Liu, T. Jin, Z.Q. Hu, H.U. Hong, B.G. Chio, I.S. Kim, C.Y. Jo, D. Man-gelinck, Mater. Sci. Eng. A 580 (2013) 21-35.
DOI URL |
[31] | Y. Ru, H. Zhang, Y. Pei, Y. Fu, S.S. Li, S.K. Gong, H.B. Xu, Mater. Des. 145 (2018) 185-195. |
[32] | W.S. Xia, X.B. Zhao, Q.Z. Yue, L. Yue, J.W. Wang, Q.Q. Ding, H.B. Bei, Z. Zhang, Acta Mater. 206 (2021) 116653. |
[33] |
S.G. Tian, X.J. Zhu, J. Wu, H.C. Yu, D.L. Shu, B.J. Qian, J. Mater. Sci. Technol. 32 (2016) 790-798.
DOI URL |
[34] | W.C. Yang, P.F. Qu, J.C. Sun, Q.Z. Yue, H.J. Su, J. Zhang, L. Liu, Vacuum 181 (2020) 109682. |
[35] | C.P. Liu, X. Zhang, C.Y. Wang, T. Yu, Y.F. Zhang, H. Li, Z. Zhang, J. Alloy. Compd. 851 (2021) 156777. |
[36] |
V. Sass, U. Glatzel, M. FellerKniepmeier, Acta Mater. 44 (1996) 1967-1977.
DOI URL |
[37] | Z.C. Ge, G. Xie, Y.Z. Lu, D. Wang, L. Wang, W. Zheng, Y.F. He, L.H. Long, J. Zhang, Mater. Sci. Eng. A 831 (2022) 142160. |
[38] |
L.J. Carroll, Q. Feng, T.M. Pollock, Metall. Mater. Trans. A 39 (2008) 1290-1307.
DOI URL |
[39] | Z.H. Tan, X.G. Wang, Y. Chen, Y.M. Li, Y.H. Yang, J.L. Liu, J.D. Liu, J.G. Li, Y.Z. Zhou, X.F. Sun, Mater. Sci. Eng. A 825 (2021) 141906. |
[40] |
G.L. Wang, J.L. Liu, J.D. Liu, X.G. Wang, Y.Z. Zhou, X.D. Sun, H.F. Zhang, T. Jin, Mater. Des. 130 (2017) 131-139.
DOI URL |
[41] |
C. Yuan, J.T. Guo, H.C. Yang, S.H. Wang, Scr. Mater. 39 (1998) 991-997.
DOI URL |
[42] |
S. Xiang, S. Mao, W. Hua, Y. Liu, J. Zhang, Z. Shen, H. Long, H. Zhang, X. Wang, Z. Zhang, X. Han, Acta Mater. 116 (2016) 343-353.
DOI URL |
[1] | Shiwei Li, Jinglong Li, Junmiao Shi, Yu Peng, Xuan Peng, Xianjun Sun, Feng Jin, Jiangtao Xiong, Fusheng Zhang. Microstructure and mechanical properties of transient liquid phase bonding DD5 single-crystal superalloy to CrCoNi-based medium-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 96(0): 140-150. |
[2] | Jingjing Pan, Jingyang Wang. Temperature-mediated supramolecular assemblies give rise to hierarchical boron nitride nano-ribbon networks with different micro-topology [J]. J. Mater. Sci. Technol., 2022, 96(0): 160-166. |
[3] | Jinshuo Zhang, Guohua Wu, Liang Zhang, Xiaolong Zhang, Chunchang Shi, Xin Tong. Addressing the strength-ductility trade-off in a cast Al-Li-Cu alloy—Synergistic effect of Sc-alloying and optimized artificial ageing scheme [J]. J. Mater. Sci. Technol., 2022, 96(0): 212-225. |
[4] | Luqing Cui, Cheng-Han Yu, Shuang Jiang, Xiaoyu Sun, Ru Lin Peng, Jan-Erik Lundgren, Johan Moverare. A new approach for determining GND and SSD densities based on indentation size effect: An application to additive-manufactured Hastelloy X [J]. J. Mater. Sci. Technol., 2022, 96(0): 295-307. |
[5] | Lin He, Shiwei Wu, Anping Dong, Haibin Tang, Dafan Du, Guoliang Zhu, Baode Sun, Wentao Yan. Selective laser melting of dense and crack-free AlCoCrFeNi2.1 eutectic high entropy alloy: Synergizing strength and ductility [J]. J. Mater. Sci. Technol., 2022, 117(0): 133-145. |
[6] | M.S. Moyle, N. Haghdadi, X.Z. Liao, S.P. Ringer, S. Primig. On the microstructure and texture evolution in 17-4 PH stainless steel during laser powder bed fusion: Towards textural design [J]. J. Mater. Sci. Technol., 2022, 117(0): 183-195. |
[7] | Yifeng Wang, Yilin Song, Kaikai Song, Lin Pan, Changchun Chen, Kunihito Koumoto, Qingfeng Liu. Enhanced thermoelectric performance of n-type Bi2Te2.7Se0.3 via a simple liquid-assisted shear exfoliation [J]. J. Mater. Sci. Technol., 2022, 117(0): 251-258. |
[8] | Young-Kyun Kim, Kee-Ahn Lee. Stabilized sub-grain and nano carbides-driven 1.2 GPa grade ultra-strong CrMnFeCoNi high-entropy alloy additively manufactured by laser powder bed fusion [J]. J. Mater. Sci. Technol., 2022, 117(0): 8-22. |
[9] | Xinyu Zhang, Chuanwei Li, Mengyao Zheng, Xudong Yang, Zhenhua Ye, Jianfeng Gu. Chemical, microstructure, and mechanical property of TiAl alloys produced by high-power direct laser deposition [J]. J. Mater. Sci. Technol., 2022, 117(0): 99-108. |
[10] | Jufu Jiang, Minjie Huang, Ying Wang, Yingze Liu, Ying Zhang. Microstructure evolution and formation mechanism of CoCrCu1.2FeNi high entropy alloy during the whole process of semi‐solid billet preparation [J]. J. Mater. Sci. Technol., 2022, 120(0): 172-185. |
[11] | J. Ding, A. Inoue, F.L. Kong, S.L. Zhu, Y.L. Pu, E. Shalaan, A.A. Al-Ghamdi, A.L. Greer. Novel heating-and deformation-induced phase transitions and mechanical properties for multicomponent Zr50M50, Zr50(M,Ag)50 and Zr50(M,Pd)50 (M = Fe,Co,Ni,Cu) amorphous alloys [J]. J. Mater. Sci. Technol., 2022, 104(0): 109-118. |
[12] | Zhaoxin Du, Qiwei He, Ruirun Chen, Fei Liu, Jingyong Zhang, Fei Yang, Xueping Zhao, Xiaoming Cui, Jun Cheng. Rolling reduction -dependent deformation mechanisms and tensile properties in a β titanium alloy [J]. J. Mater. Sci. Technol., 2022, 104(0): 183-193. |
[13] | Seungmi Kwak, Jaehwang Kim, Hongsheng Ding, Xuesong Xu, Ruirun Chen, Jingjie Guo, Hengzhi Fu. Using multiple regression analysis to predict directionally solidified TiAl mechanical property [J]. J. Mater. Sci. Technol., 2022, 104(0): 285-291. |
[14] | Mehmet R. Abul, Robert F. Cochrane, Andrew M. Mullis. Microstructural development and mechanical properties of drop tube atomized Al-2.85 wt% Fe [J]. J. Mater. Sci. Technol., 2022, 104(0): 41-51. |
[15] | Shengfeng Zhou, Min Xie, Changyi Wu, Yanliang Yi, Dongchu Chen, Lai-Chang Zhang. Selective laser melting of bulk immiscible alloy with enhanced strength: Heterogeneous microstructure and deformation mechanisms [J]. J. Mater. Sci. Technol., 2022, 104(0): 81-87. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||