J. Mater. Sci. Technol. ›› 2022, Vol. 128: 195-204.DOI: 10.1016/j.jmst.2022.03.032
• Research Article • Previous Articles Next Articles
Yang Boweia, Wang Yua, Gao Minqiangb,c,*(), Wang Changfengb,c, Guan Renguoa,b,c,*(
)
Received:
2022-02-23
Revised:
2022-03-13
Accepted:
2022-03-14
Published:
2022-11-20
Online:
2022-11-22
Contact:
Gao Minqiang,Guan Renguo
About author:
guanrenguo@sina.cn (R. Guan).Yang Bowei, Wang Yu, Gao Minqiang, Wang Changfeng, Guan Renguo. Microstructural evolution and strengthening mechanism of Al-Mg alloys with fine grains processed by accumulative continuous extrusion forming[J]. J. Mater. Sci. Technol., 2022, 128: 195-204.
Element | Content |
---|---|
Mg | 4.96 ± 0.11 |
Mn | 0.79 ± 0.08 |
Fe | 0.11 ± 0.06 |
Si | 0.03 ± 0.01 |
Ti | 0.04 ± 0.01 |
Cr | 0.05 ± 0.02 |
Zr | 0.12 ± 0.04 |
Zn | < 0.01 |
Cu | < 0.01 |
Al | Bal. |
Table 1. Chemical compositions of the commercial 5087 alloy (in wt.%).
Element | Content |
---|---|
Mg | 4.96 ± 0.11 |
Mn | 0.79 ± 0.08 |
Fe | 0.11 ± 0.06 |
Si | 0.03 ± 0.01 |
Ti | 0.04 ± 0.01 |
Cr | 0.05 ± 0.02 |
Zr | 0.12 ± 0.04 |
Zn | < 0.01 |
Cu | < 0.01 |
Al | Bal. |
Fig. 1. Schematic illustration showing the preparation process of the 5087 alloy wire via continuous rheo-extrusion and ACEF. The specimens collected from positions I, II, and III are used for the microstructure observation.
Fig. 2. (a-c) IPF maps of grain orientation distribution, (d-f) grain size statistics, and (g-i) orientation angles of adjacent grain boundaries in the rheo-extruded 5087 alloy at different positions during ACEF: (a, d, g) position Ⅰ; (b, e, h) position II; (c, f, i) position III. The black lines and white lines in (a-c) stand for the HAGBs and LAGBs, respectively.
Fig. 3. (a, d) IPF maps showing the grain orientation distribution; (b, e) grain size statistics; and (c, f) misorientation angles of the rheo-extruded 5087 alloy processed via different ACEF passes: (a-c) 1 pass; (d-f) 3 passes.
Position and pass | Average grain size (μm) | Fraction of HAGBs (%) | Average misorientation angle (°) |
---|---|---|---|
Position Ⅰ | 45.6 ± 0.4 | 44.7 ± 0.9 | 19.8 ± 0.6 |
Position II | 34.9 ± 0.5 | 24.0 ± 1.4 | 12.1 ± 0.7 |
Position Ⅲ | 24.0 ± 0.3 | 30.5 ± 0.9 | 14.4 ± 0.6 |
1 Pass | 20.1 ± 0.2 | 56.6 ± 0.8 | 23.9 ± 1.0 |
3 Passes | 2.5 ± 0.4 | 65.4 ± 1.6 | 27.7 ± 1.3 |
Table 2. EBSD results of the rheo-extruded 5087 alloy at different positions and passes during ACEF.
Position and pass | Average grain size (μm) | Fraction of HAGBs (%) | Average misorientation angle (°) |
---|---|---|---|
Position Ⅰ | 45.6 ± 0.4 | 44.7 ± 0.9 | 19.8 ± 0.6 |
Position II | 34.9 ± 0.5 | 24.0 ± 1.4 | 12.1 ± 0.7 |
Position Ⅲ | 24.0 ± 0.3 | 30.5 ± 0.9 | 14.4 ± 0.6 |
1 Pass | 20.1 ± 0.2 | 56.6 ± 0.8 | 23.9 ± 1.0 |
3 Passes | 2.5 ± 0.4 | 65.4 ± 1.6 | 27.7 ± 1.3 |
Fig. 4. DRX distribution and statistics result of the rheo-extruded 5087 alloy before and after ACEF: (a) position Ⅰ; (b) position II; (c) position III; (d) 1 pass; (e) 3 passes; (f) statistics result of distingusied resigons.
Fig. 5. SEM micrographs and XRD analyses of the rheo-extruded 5087 alloy before and after ACEF: (a) rheo-extruded alloy; (b) after 1 pass of ACEF; (c) after 3 passes of ACEF; (d-g) corresponding EDS map scanning results of the red square region in (a); (h) corresponding EDS results of the white phase marked by the red arrow in (a); (i) XRD analyses of the alloy before and after ACEF.
Fig. 6. TEM micrographs showing the Al6(Mn, Fe) phases, dislocations and (sub-) grain boundaries in the rheo-extruded 5087 alloy before and after ACEF: (a, d) rheo-extruded alloy; (b, e) after 1 pass of ACEF; (c, f) after 3 passes of ACEF. The Al6(Mn, Fe) phases, dislocations and (sub-) grain boundaries are indicated by the blue, red and yellow arrows, respectively. (a-c) and (d-f) represent the deformation and recrystallization zones, respectively. The inset in (a) is the SAED pattern of the Al6(Mn, Fe) phase.
Pass | UTS (MPa) | YS (MPa) | EL (%) |
---|---|---|---|
0 | 293.5 ± 1.3 | 128.9 ± 2.4 | 44.4 ± 1.3 |
1 | 309.6 ± 2.5 | 151.3 ± 1.9 | 34.5 ± 1.2 |
3 | 362.8 ± 2.2 | 234.6 ± 2.2 | 32.5 ± 1.6 |
Table 3. Mechanical properties of the rheo-extruded 5087 alloy before and after ACEF with different passes.
Pass | UTS (MPa) | YS (MPa) | EL (%) |
---|---|---|---|
0 | 293.5 ± 1.3 | 128.9 ± 2.4 | 44.4 ± 1.3 |
1 | 309.6 ± 2.5 | 151.3 ± 1.9 | 34.5 ± 1.2 |
3 | 362.8 ± 2.2 | 234.6 ± 2.2 | 32.5 ± 1.6 |
Fig. 8. SEM images showing the fracture morphologies of the rheo-extruded alloy before and after ACEF at room temperature: (a) rheo-extruded alloy; (b) after 1 pass of ACEF; (c) after 3 passes of ACEF.
Symbol | Description | Values | Unit | Ref. |
---|---|---|---|---|
Hall-Petch coefficient | 0.12 | MPa· | [56] | |
Average grain size | 45.6/2.5 | μm | This work | |
Shear modulus | 26 | GPa | [57] | |
Burgers vector | 0.286 | nm | [55] | |
Average diameter of secondary phases | 50 | nm | This work | |
Volume fraction of secondary phases | 0.0045/0.0328 | - | This work | |
Constant | 0.3 | - | [15] | |
Mean orientation factor | 3.06 | - | [58] | |
Dislocation density | 7.03 × 1013/2.61 × 1014 | m−2 | This work |
Table 4. Physical meaning and values of symbols applied in the calculation equations.
Symbol | Description | Values | Unit | Ref. |
---|---|---|---|---|
Hall-Petch coefficient | 0.12 | MPa· | [56] | |
Average grain size | 45.6/2.5 | μm | This work | |
Shear modulus | 26 | GPa | [57] | |
Burgers vector | 0.286 | nm | [55] | |
Average diameter of secondary phases | 50 | nm | This work | |
Volume fraction of secondary phases | 0.0045/0.0328 | - | This work | |
Constant | 0.3 | - | [15] | |
Mean orientation factor | 3.06 | - | [58] | |
Dislocation density | 7.03 × 1013/2.61 × 1014 | m−2 | This work |
Fig. 11. (a) Variations in WHR of the rheo-extruded alloy before and after ACEF; (b) the double logarithmic curves based on true stress-true strain curves.
[1] |
Y. Li, B. Hu, B. Liu, A. Nie, Q. Gu, J. Wang, Q. Li, Acta Mater. 187 (2020) 51-65.
DOI URL |
[2] |
Y. Li, Y. Jiang, B. Liu, Q. Luo, B. Hu, Q. Li, J. Mater. Sci. Technol. 65 (2021) 190-201.
DOI URL |
[3] |
T. Lei, J. Shin, D.S. Gianola, T.J. Rupert, Acta Mater. 221 (2021) 117394.
DOI URL |
[4] |
Z. Wang, X. Lin, N. Kang, J. Chen, H. Tan, Z. Feng, Z. Qin, H. Yang, W. Huang, J. Mater. Sci. Technol. 95 (2021) 40-56.
DOI URL |
[5] |
Q. Luo, H. Chen, W. Chen, C. Wang, W. Xu, Q. Li, Scr. Mater. 187 (2020) 413-417.
DOI URL |
[6] |
Y. Li, B. Hu, Q. Gu, B. Liu, Q. Li, Scr. Mater. 160 (2019) 75-80.
DOI URL |
[7] |
M. Zha, H.M. Zhang, X.T. Meng, H.L. Jia, S.B. Jin, G. Sha, H.Y. Wang, Y.J. Li, H.J. Roven, J. Mater. Sci. Technol. 89 (2021) 141-149.
DOI URL |
[8] |
H. Fang, H. Liu, Y. Yan, X. Luo, X. Xu, X. Chu, Y. Lu, K. Yu, D. Wang, Mater. Sci. Eng. A 804 (2021) 140682.
DOI URL |
[9] |
C. Guo, H. Zhang, J. Li, J. Alloy. Compd. 904 (2022) 163998.
DOI URL |
[10] |
H. Che, X. Jiang, N. Qiao, X. Liu, J. Alloy. Compd. 708 (2017) 662-670.
DOI URL |
[11] |
Z.G. Wu, M. Song, Y.H. He, Mater. Sci. Eng. A 504 (2009) 183-187.
DOI URL |
[12] |
H. Fang, H. Liu, Y. Yan, Y. Li, X. Xu, X. Chu, Y. Lu, K. Yu, Mater. Lett. 292 (2021) 129600.
DOI URL |
[13] |
A. Mohammadi, N.A. Enikeev, M.Y. Murashkin, M. Arita, K. Edalati, Acta Mater. 203 (2021) 116503.
DOI URL |
[14] |
X. Sauvage, N. Enikeev, R. Valiev, Y. Nasedkina, M. Murashkin, Acta Mater. 72 (2014) 125-136.
DOI URL |
[15] |
M. Zha, Y. Li, R.H. Mathiesen, R. Bjørge, H.J. Roven, Acta Mater. 84 (2015) 42-54.
DOI URL |
[16] |
Y. Liu, M. Liu, X. Chen, Y. Cao, H.J. Roven, M. Murashkin, R.Z. Valiev, H. Zhou, Scr. Mater. 159 (2019) 137-141.
DOI URL |
[17] |
J. Chen, C. Liu, R. Guan, F. Wen, Q. Zhou, H. Zhao, J. Mater. Res. Technol. 9 (2020) 1768-1779.
DOI URL |
[18] |
R. Guan, D. Tie, Z. Li, Y. An, X. Wang, Q. Li, X. Chen, Mater. Sci. Eng. A 738 (2018) 31-37.
DOI URL |
[19] |
Y.F. Shen, R.G. Guan, Z.Y. Zhao, R.D.K. Misra, Acta Mater. 100 (2015) 247-255.
DOI URL |
[20] |
G. Ribárik, T. Ungár, Mater. Sci. Eng. A 528 (2010) 112-121.
DOI URL |
[21] |
Y. Zhao, D. Song, H. Wang, Y. Jia, B. Lin, Y. Tang, Y. Tang, D. Shu, Z. Sun, Y. Fu, W. Zhang, J. Alloy. Compd. 901 (2022) 163666.
DOI URL |
[22] |
X. Zhu, P. Blake, K. Dou, S. Jia, Mater. Sci. Eng. A 732 (2018) 240-250.
DOI URL |
[23] |
Y.J. Li, W.Z. Zhang, K. Marthinsen, Acta Mater. 60 (2012) 5963-5974.
DOI URL |
[24] |
Y. Duan, H. Chen, Z. Chen, L. Wang, M. Wang, J. Liu, F. Zhang, H. Wang, J. Mater. Sci. Technol. 87 (2021) 74-82.
DOI URL |
[25] |
X. Li, W. Xia, H. Yan, J. Chen, B. Su, M. Song, Z. Li, Y. Li, Mater. Sci. Eng. A 753 (2019) 59-69.
DOI URL |
[26] |
N. Kumar, R. Jayaganthan, G.M. Owolabi, Mater. Sci. Eng. A 833 (2022) 142518.
DOI URL |
[27] |
H.W. Son, J.C. Lee, C.H. Cho, S.K. Hyun, J. Alloy. Compd. 887 (2021) 161397.
DOI URL |
[28] | Y. Zhang, W. Cheng, H. Yu, H. Wang, X. Niu, L. Wang, H. Li, J. Mater. Sci. Tech- nol. (2022) 274-285. |
[29] |
T. Morishige, T. Hirata, T. Uesugi, Y. Takigawa, M. Tsujikawa, K. Higashi, Scr. Mater. 64 (2011) 355-358.
DOI URL |
[30] |
D.H. Jang, Y.B. Park, W.J. Kim, Mater. Sci. Eng. A 744 (2019) 36-44.
DOI URL |
[31] |
T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, J.J. Jonas, Prog. Mater. Sci. 60 (2014) 130-207.
DOI URL |
[32] |
Y. Wang, R. Guan, D. Hou, Y. Zhang, W. Jiang, H. Liu, J. Mater. Sci. 52 (2017) 1137-1148.
DOI URL |
[33] |
D. Tie, R. Guan, Z. Wang, Y. Fu, J. Zhang, X. Chen, Y. Wang, C. Ling, M. Cai, Mater. Lett. 286 (2021) 129227.
DOI URL |
[34] |
N. Su, R. Guan, X. Wang, Y. Wang, W. Jiang, H. Liu, J. Alloy. Compd. 680 (2017) 283-290.
DOI URL |
[35] | R. Lu, L. Zhang, S. Zheng, D. Fu, J. Teng, J. Chen, G. Zhao, F. Jiang, H. Zhang, Int. J. Miner. Metall. Mater. 29 (2022) 108-118. |
[36] |
M. Ciemiorek, W. Chromiński, C. Jasiński, M. Lewandowska, Mater. Sci. Eng. A 831 (2022) 142202.
DOI URL |
[37] |
D. Mandal, I. Baker, Acta Mater. 45 (1997) 453-461.
DOI URL |
[38] |
Q. Luo, Y. Guo, B. Liu, Y. Feng, J. Zhang, Q. Li, K. Chou, J. Mater. Sci. Technol. 44 (2020) 171-190.
DOI |
[39] | X. Wang, R.G. Guan, D. Tie, Y.Q. Shang, H.M. Jin, H.C. Li, Metall. Mater. Trans. B 49 (2018) 490-498. |
[40] |
I. Nikulin, A. Kipelova, S. Malopheyev, R. Kaibyshev, Acta Mater. 60 (2012) 487-497.
DOI URL |
[41] |
J. Zhang, H. Wang, D. Yi, B. Wang, H. Wang, Mater. Charact. 145 (2018) 126-134.
DOI URL |
[42] |
P. Bate, Acta Mater. 49 (2001) 1453-1461.
DOI URL |
[43] |
Q. Li, Y. Lu, Q. Luo, X. Yang, Y. Yang, J. Tan, Z. Dong, J. Dang, J. Li, Y. Chen, B. Jiang, S. Sun, F. Pan, J. Magnes. Alloy. 9 (2021) 1922-1941.
DOI URL |
[44] |
K. Chang, W. Feng, L.Q. Chen, Acta Mater. 57 (2009) 5229-5236.
DOI URL |
[45] |
J. Zhou, S.H. Zhang, X.N. Wang, B.B. Zhao, X.P. Dong, L.T. Zhang, Scr. Mater. 116 (2016) 100-103.
DOI URL |
[46] | Q. Li, X. Lin, Q. Luo, Y. Chen, J. Wang, B. Jiang, F. Pan, Int. J. Miner. Metall. Mater. 29 (2022) 32-48. |
[47] |
R. Lu, S. Zheng, J. Teng, J. Hua, D. Fu, J. Chen, G. Zhao, F. Jiang, H. Zhang, J. Mater. Sci. Technol. 80 (2021) 150-162.
DOI URL |
[48] |
N. Pardis, C. Chen, R. Ebrahimi, L.S. Toth, C.F. Gu, B. Beausir, L. Kommel, Mater. Sci. Eng. A 628 (2015) 423-432.
DOI URL |
[49] |
J. Tang, M. Liu, G. Bo, F. Jiang, C. Luo, J. Teng, D. Fu, H. Zhang, J. Mater. Sci. Technol. 116 (2022) 130-150.
DOI |
[50] |
S. Tang, S. Shao, H. Liu, F. Jiang, D. Fu, H. Zhang, J. Teng, Mater. Sci. Eng. A 804 (2021) 140732.
DOI URL |
[51] |
B.P. Sahoo, D. Das, A.K. Chaubey, Mater. Sci. Eng. A 825 (2021) 141873.
DOI URL |
[52] |
Z. Que, Y. Zhou, Y. Wang, C.L. Mendis, Z. Fan, Mater. Charact. 171 (2021) 110758.
DOI URL |
[53] |
Y. Wang, M. Gao, B. Yang, E. Zhao, F. Liu, R. Guan, Mater. Charact. 184 (2022) 111709.
DOI URL |
[54] |
W.S. Miller, F.J. Humphreys, Scr. Metall. Mater. 25 (1991) 33-38.
DOI URL |
[55] |
Z. Chen, J. Ren, Z. Yuan, S.P. Ringer, Mater. Sci. Eng. A 787 (2020) 139447.
DOI URL |
[56] |
Y. Wang, Y. Zhao, X. Xu, D. Pan, W. Jiang, X. Yang, Z. Wang, Mater. Sci. Eng. A 735 (2018) 154-161.
DOI URL |
[57] |
I. Vysotskiy, D. Zhemchuzhnikova, S. Malopheyev, S. Mironov, R. Kaibyshev, Mater. Sci. Eng. A 770 (2020) 138540.
DOI URL |
[58] |
F. Lu, J.K. Sunde, C.D. Marioara, R. Holmestad, B. Holmedal, Mater. Sci. Eng. A 832 (2022) 142500.
DOI URL |
[59] |
M. Gao, H. Kang, Z. Chen, E. Guo, Y. Fu, Y. Xu, T. Wang, J. Alloy. Compd. 818 (2020) 153310.
DOI URL |
[60] |
S. Sivasankaran, K.R. Ramkumar, H.R. Ammar, F.A. Al-Mufadi, A.S. Alaboodi, O. M. Irfan, J. Mater. Process. Technol. 292 (2021) 117063.
DOI URL |
[61] |
S. Sivasankaran, K.R. Ramkumar, A.S. Alaboodi, Trans. Ind. Inst. Met. 70 (2017) 791-800.
DOI URL |
[62] |
C. Zhao, Y. Li, J. Xu, Q. Luo, Y. Jiang, Q. Xiao, Q. Li, J. Mater. Sci. Technol. 94 (2021) 104-112.
DOI URL |
[63] |
Y. Li, Y. Jiang, B. Hu, Q. Li, Scr. Mater. 187 (2020) 262-267.
DOI URL |
[1] | Hanchen Feng, Lei Cai, Linfeng Wang, Xiaodan Zhang, Feng Fang. Microstructure and strength in ultrastrong cold-drawn medium carbon steel [J]. J. Mater. Sci. Technol., 2022, 97(0): 89-100. |
[2] | T. Fang X., K. Li Z., F. Wang Y., M. Ruiz, L. Ma X., Y. Wang H., Y. Zhu, R. Schoell, C. Zheng, D. Kaoumi, T. Zhu Y.. Achieving high hetero-deformation induced (HDI) strengthening and hardening in brass by dual heterostructures [J]. J. Mater. Sci. Technol., 2022, 98(0): 244-247. |
[3] | Keer Li, W. Chen, G.X. Yu, J.Y. Zhang, S.W. Xin, J.X. Liu, X.X. Wang, J. Sun. Deformation kinking and highly localized nanocrystallization in metastable β-Ti alloys using cold forging [J]. J. Mater. Sci. Technol., 2022, 120(0): 53-64. |
[4] | Xinfeng Li, Jing Yin, Jin Zhang, Yanfei Wang, Xiaolong Song, Yong Zhang, Xuechong Ren. Hydrogen embrittlement and failure mechanisms of multi-principal element alloys: A review [J]. J. Mater. Sci. Technol., 2022, 122(0): 20-32. |
[5] | Gang Zhou, Yan Yang, Hanzhu Zhang, Faping Hu, Xueping Zhang, Chen Wen, Weidong Xie, Bin Jiang, Xiaodong Peng, Fusheng Pan. Microstructure and strengthening mechanism of hot-extruded ultralight Mg-Li-Al-Sn alloys with high strength [J]. J. Mater. Sci. Technol., 2022, 103(0): 186-196. |
[6] | Xu Xiaolong, Tang Cheng, Wang Hongfu, An Yukang, Zhao Yuhong. Microstructure evolution and grain refinement mechanism of rapidly solidified single-phase copper based alloys [J]. J. Mater. Sci. Technol., 2022, 128(0): 160-179. |
[7] | Bijun Xie, Zhenxiang Yu, Haiyang Jiang, Bin Xu, Chunyang Wang, Jianyang Zhang, Mingyue Sun, Dianzhong Li, Yiyi Li. Effects of surface roughness on interfacial dynamic recrystallization and mechanical properties of Ti-6Al-3Nb-2Zr-1Mo alloy joints produced by hot-compression bonding [J]. J. Mater. Sci. Technol., 2022, 96(0): 199-211. |
[8] | Seyedmohammad Tabaie, Farhad Rézaï-Aria, Bertrand C.D. Flipo, Mohammad Jahazi. Dissimilar linear friction welding of selective laser melted Inconel 718 to forged Ni-based superalloy AD730™: Evolution of strengthening phases [J]. J. Mater. Sci. Technol., 2022, 96(0): 248-261. |
[9] | S.B. Wang, C.F. Pan, B. Wei, X. Zheng, Y.X. Lai, J.H. Chen. Nano-phase transformation of composite precipitates in multicomponent Al-Mg-Si(-Sc) alloys [J]. J. Mater. Sci. Technol., 2022, 110(0): 216-226. |
[10] | Yupeng Diao, Luchun Yan, Kewei Gao. A strategy assisted machine learning to process multi-objective optimization for improving mechanical properties of carbon steels [J]. J. Mater. Sci. Technol., 2022, 109(0): 86-93. |
[11] | Libo Fu, Deli Kong, Chengpeng Yang, Jiao Teng, Yan Lu, Yizhong Guo, Guo Yang, Xin Yan, Pan Liu, Mingwei Chen, Ze Zhang, Lihua Wang, Xiaodong Han. Ultra-high strength yet superplasticity in a hetero-grain-sized nanocrystalline Au nanowire [J]. J. Mater. Sci. Technol., 2022, 101(0): 95-106. |
[12] | Z.W. Wang, J.F. Zhang, G.M. Xie, L.H. Wu, H. Zhang, P. Xue, D.R. Ni, B.L. Xiao, Z.Y. Ma. Evolution mechanisms of microstructure and mechanical properties in a friction stir welded ultrahigh-strength quenching and partitioning steel [J]. J. Mater. Sci. Technol., 2022, 102(0): 213-223. |
[13] | Zhengyi Mao, Mengke Huo, Fucong Lyu, Yongsen Zhou, Yu Bu, Lei Wan, Lulu Pan, Jie Pan, Hui Liu, Jian Lu. Nacre-liked material with tough and post-tunable mechanical properties [J]. J. Mater. Sci. Technol., 2022, 114(0): 172-179. |
[14] | Xin-Yu Mao, Xiao-Lei Shi, Liang-Chuang Zhai, Wei-Di Liu, Yue-Xing Chen, HanGao , Meng Li, De-Zhuang Wang, Hao Wu, Zhuang-Hao Zheng, Yi-Feng Wang, Qingfeng Liu, Zhi-Gang Chen. High thermoelectric and mechanical performance in the n-type polycrystalline SnSe incorporated with multi-walled carbon nanotubes [J]. J. Mater. Sci. Technol., 2022, 114(0): 55-61. |
[15] | Changshu He, Ying Li, Jingxun Wei, Zhiqiang Zhang, Ni Tian, Gaowu Qin, Xiang Zhao. Enhancing the mechanical performance of Al-Zn-Mg alloy builds fabricated via underwater friction stir additive manufacturing and post-processing aging [J]. J. Mater. Sci. Technol., 2022, 108(0): 26-36. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||