J. Mater. Sci. Technol. ›› 2022, Vol. 128: 180-194.DOI: 10.1016/j.jmst.2022.03.031
• Research Article • Previous Articles Next Articles
Tang Liting, Guo Qianying, Li Chong, Liu Chenxi*(), Liu Yongchang*(
)
Received:
2022-01-23
Revised:
2022-03-08
Accepted:
2022-03-09
Published:
2022-11-20
Online:
2022-11-22
Contact:
Liu Chenxi,Liu Yongchang
About author:
ycliu@tju.edu.cn (Y. Liu).Tang Liting, Guo Qianying, Li Chong, Liu Chenxi, Liu Yongchang. Precipitation sequences in rapidly solidified Allvac 718Plus alloy during solution treatment[J]. J. Mater. Sci. Technol., 2022, 128: 180-194.
Ni | Cr | W | Mo | Nb | It | Al | Co | Fe | C | P | B |
---|---|---|---|---|---|---|---|---|---|---|---|
Bal. | 17.58 | 1.0 | 1.42 | 6.08 | 0.90 | 1.55 | 9.35 | 9.56 | 0.020 | 0.014 | 0.006 |
Table 1. The chemical composition (wt.%) of the 718Plus alloy used in this study.
Ni | Cr | W | Mo | Nb | It | Al | Co | Fe | C | P | B |
---|---|---|---|---|---|---|---|---|---|---|---|
Bal. | 17.58 | 1.0 | 1.42 | 6.08 | 0.90 | 1.55 | 9.35 | 9.56 | 0.020 | 0.014 | 0.006 |
Sample | Heat treatment details |
---|---|
FTS | 960 °C/1 h/WC, 788 °C/8 h/FC + 704 °C/8 h/AC |
FRS (Fully heat-treated RS) | 960 °C/1 h/WC, 788 °C/8 h/FC + 704 °C/8 h/AC |
Solution-treated RS | Solution-treated at 960 °C for 1, 6, 8, 14 or 24 h |
Table 2. The details of heat treatment for the investigated 718Plus sample.
Sample | Heat treatment details |
---|---|
FTS | 960 °C/1 h/WC, 788 °C/8 h/FC + 704 °C/8 h/AC |
FRS (Fully heat-treated RS) | 960 °C/1 h/WC, 788 °C/8 h/FC + 704 °C/8 h/AC |
Solution-treated RS | Solution-treated at 960 °C for 1, 6, 8, 14 or 24 h |
Fig. 3. Dark-field TEM images of the η phase and the γ′-free zones, and the corresponding SAED patterns in (a, b) FTS sample and (c, d) FRS sample. The different widths of γ′PFZs could be obviously observed.
Precipitates | Ni(K) | Al(K) | Nb(K) | Ti(K) | Fe(K) | Co(K) | Cr(K) |
---|---|---|---|---|---|---|---|
FTS-η | 67.63 | 5.61 | 10.29 | 4.21 | 3.05 | 6.85 | 2.32 |
FRS-η | 62.83 | 4.46 | 7.23 | 1.96 | 5.50 | 7.41 | 7.99 |
Table 3. TEM-EDX results (at.%) of η precipitates in FTS and FRS samples.
Precipitates | Ni(K) | Al(K) | Nb(K) | Ti(K) | Fe(K) | Co(K) | Cr(K) |
---|---|---|---|---|---|---|---|
FTS-η | 67.63 | 5.61 | 10.29 | 4.21 | 3.05 | 6.85 | 2.32 |
FRS-η | 62.83 | 4.46 | 7.23 | 1.96 | 5.50 | 7.41 | 7.99 |
Fig. 4. Dark-field TEM images of the spherical γ′ precipitates and the corresponding SAED patterns in (a-c) FTS sample and (d-f) FRS sample. The primary γ′ phase could not be observed in FRS sample.
Fig. 5. SEM images of η precipitates in RS sample solution-treated at 960 °C for (a) 6 h, (b) 14 h and (c, d) 24 h. (d) High-magnification SEM image and the elemental maps of the granular and plate-shaped phases highlighting the disappearance of the needle-like η phase.
Phases | Ni | Al | Nb | Ti | Fe | Co | Cr | Mo |
---|---|---|---|---|---|---|---|---|
Granular phase | 24.09 | 2.57 | 17.13 | 10.01 | 6.29 | 5.68 | 12.73 | 4.99 |
Plate-shaped phase | 23.69 | 1.65 | 26.07 | 2.02 | 3.17 | 3.10 | 37.04 | 2.87 |
Table 4. SEM-EDS results (at.%) of the granular and plate-shaped phases in Fig. 5(c, d).
Phases | Ni | Al | Nb | Ti | Fe | Co | Cr | Mo |
---|---|---|---|---|---|---|---|---|
Granular phase | 24.09 | 2.57 | 17.13 | 10.01 | 6.29 | 5.68 | 12.73 | 4.99 |
Plate-shaped phase | 23.69 | 1.65 | 26.07 | 2.02 | 3.17 | 3.10 | 37.04 | 2.87 |
Fig. 6. Bright-field TEM images and the corresponding SAED patterns of η precipitates in RS alloy solution-treated at 960 °C for (a, d) 1 h, (b, e) 6 h and (c, f) 8 h, respectively. The growth and dissolution behaviors of η phase can be observed.
Fig. 7. (a) An HRTEM image of the η/γ-matrix interface along the [011_]γ and [21_1_0]η zone axis and the corresponding fast Fourier transform (FFT) patterns; (b) the enlarged image of the red rectangle in (a). The presence of SF with Shockley partial dislocations of b = $\frac{1}{6}{{\left[ 211 \right]}_{\gamma }}$ can be found at the γ/η interface. The sample was aged for 1 h at 960 °C.
Fig. 8. (a) An HRTEM image of the η/γ-matrix interface along the [011_]γ and [21_1_0]η zone axis, and (b) inverse FFT image of (a); (c, d) the enlarged images of the red rectangles in (a); (e, f) the FFT patterns of the yellow rectangles in (a). The presence of many edge dislocations of b = $\frac{1}{4}{{\left[ 0001 \right]}_{\eta }}$ can be found in the η precipitate. The sample was solution-treated for 6 h at 960 °C.
Fig. 9. (a) The mechanism of $\frac{1}{6}{{\left[ 211 \right]}_{\gamma }}$ Shockley partial dislocation in FCC structure altering the stacking sequence of close packed plane; (b) the transformation mechanism of FCC-γ→HCP-η by a systematic passage of SFs with Shockley partial dislocations; (c) the transformation mechanism of HCP-η→FCC-γ by the climbing of $\frac{1}{4}{{\left[ 0001 \right]}_{\eta }}$ edge dislocations.
Fig. 10. Bright-field TEM images of MC and Laves phases in RS samples solution-treated at 960 °C for (a) 6 h, (b) 8 h, (c) 14 h and (d) 24 h, respectively. The Lave precipitates can be found to form around the MC carbides.
Fig. 11. Bright-field TEM images and corresponding electron diffraction patterns of (a-d) MC and (e-h) Laves phase in RS samples solution-treated at 960 °C for 24 h. The MC carbides and Laves phase can be found without specific orientation relationship.
Phases | Ni(K) | Al(K) | Nb(K) | Ti(K) | Fe(K) | Co(K) | Cr(K) | Mo |
---|---|---|---|---|---|---|---|---|
MC | 13.92 | - | 21.20 | 46.61 | 2.14 | 3.88 | 5.06 | 7.20 |
Laves | 34.87 | - | 19.57 | - | 8.58 | 8.28 | 20.82 | 4.63 |
Table 5. TEM-EDX results (at.%) of MC phase and Laves phase in the solution-treated RS samples.
Phases | Ni(K) | Al(K) | Nb(K) | Ti(K) | Fe(K) | Co(K) | Cr(K) | Mo |
---|---|---|---|---|---|---|---|---|
MC | 13.92 | - | 21.20 | 46.61 | 2.14 | 3.88 | 5.06 | 7.20 |
Laves | 34.87 | - | 19.57 | - | 8.58 | 8.28 | 20.82 | 4.63 |
Fig. 12. (a) Bright-field TEM image and (b) elemental maps from EDX spectrum images showing chemical segregation between MC and Laves phase; (c) elemental distributions from EDX line scanning across the MC precipitates highlighting the Cr segregation around the MC precipitates.
Fig. 14. Schematic diagrams of the evolution of secondary phases in RS 718Plus alloy during solution treatment at 960 °C. The secondary phases consist of the η phase, the MC carbides and the Laves (C14) phase.
[1] |
Q. Qi, H. Zhang, C. Liu, Q. Guo, Y. Liu, Mater. Sci. Eng. A 798 (2020) 140132.
DOI URL |
[2] |
J.B. Zhang, C.J. Wu, Y.Y. Peng, X.C. Xia, J.G. Li, J. Ding, C. Liu, X.G. Chen, J. Dong, Y. C. Liu, J. Alloy. Compd. 835 (2020) 155195.
DOI URL |
[3] |
L. Whitmore, M.R. Ahmadi, L. Guetaz, H. Leitner, E. Povoden-Karadeniz, M. Stockinger, E. Kozeschnik, Mater. Sci. Eng. A 610 (2014) 39-45.
DOI URL |
[4] |
J. Li, Y.T. Wu, Y.C. Liu, C. Li, Z.Q. Ma, L.M. Yu, H.J. Li, C.X. Liu, Q.Y. Guo, Mater. Charact. 169 (2020) 110547.
DOI URL |
[5] |
B. Hassan, J. Corney, Mater. Sci. Technol. 33 (2017) 1879-1889.
DOI URL |
[6] |
L. Tang, H. Zhang, Q. Guo, C. Liu, C. Li, Y. Liu, Mater. Charact. 176 (2021) 111142.
DOI URL |
[7] | Y.C. Liu, H.J. Zhang, Q.Y. Guo, X.S. Zhou, Z.Q. Ma, Y. Huang, H.J. Li, Acta Metall. Sin. 54 (2018) 1653-1664. |
[8] |
E.J. Pickering, H. Mathur, A. Bhowmik, O. M.D.M. Messe, J.S. Barnard, M. C. Hardy, R. Krakow, K. Loehnert, H.J. Stone, C.M.F. Rae, Acta Mater. 60 (2012) 2757-2769.
DOI URL |
[9] |
Y.T. Wu, C. Li, X.C. Xia, H.Y. Liang, Q.Q. Qi, Y.C. Liu, J. Mater. Sci. Technol. 67 (2021) 95-104.
DOI URL |
[10] | J. Wu, Y.C. Liu, C. Li, Y.T. Yu, X.C. Xia, H.J. Li, Acta Metall. Sin. 56 (2020) 21-35. |
[11] |
M. Wang, J. Du, Q. Deng, Z. Tian, J. Zhu, J. Alloy. Compd. 701 (2017) 635-644.
DOI URL |
[12] |
L. Viskari, Y. Cao, M. Norell, G. Sjoberg, K. Stiller, Mater. Sci. Eng. A 528 (2011) 2570-2580.
DOI URL |
[13] |
S. Lech, A. Kruk, G. Cempura, A. Gruszczynski, A. Gil, A. Aguero, A. M. Wusatowska-Sarnek, A. Czyrska-Filemonowicz, J. Mater. Eng. Perform. 29 (2020) 1453-1459.
DOI URL |
[14] |
K.R. Vishwakarma, N.L. Richards, M.C. Chaturvedi, Mater. Sci. Eng. A 480 (2008) 517-528.
DOI URL |
[15] |
R. Krakow, D.N. Johnstone, A.S. Eggeman, D. Huenert, M.C. Hardy, C.M.F. Rae, P.A. Midgley, Acta Mater. 130 (2017) 271-280.
DOI URL |
[16] |
A. Kruk, G. Cempura, Int. J. Mater. Res. 110 (2019) 3-10.
DOI URL |
[17] | X.X. Li, C.L. Jia, Z.H. Jiang, Y. Zhang, S.M. Lv, JOM 72 (2020) 4139-4147. |
[18] | F. Hanning, A.K. Khan, J. Andersson, O. Ojo, Weld. World 64 (2020) 523-533. |
[19] | O. Caballero Ruiz, N. Soldevilla, E. Ott, A. Banik, J. Andersson, I. Dempster, T. Gabb, J. Groh, K. Heck, R. Helmink, X. Liu, A. WusatowskaSarnek,in:Pro-ceedings of the 8th International Symposium on Superalloy 718 and Deriva- tives, 2014, pp. 215-225. |
[20] |
W. Liu, N. Yan, H.P. Wang, Sci. China Technol. Sci. 62 (2019) 1976-1986.
DOI URL |
[21] |
T. Antonsson, H. Fredriksson, Metall. Mater. Trans. B 36 (2005) 85-96.
DOI URL |
[22] |
P.D. Enrique, A. Keshavarzkermani, N.Y. Zhou, Adv. Eng. Mater. 23 (2021) 2001396.
DOI URL |
[23] |
J. Chang, H.P. Wang, K. Zhou, B. Wei, Philos. Mag. Lett. 93 (5) (2013) 254-263.
DOI URL |
[24] | J. Li, H.M. Wang, Mater. Sci. Eng. A 527 (18-19) (2010) 4 823-4 829. |
[25] |
Y. Wang, R. Ran, Y.X. Zhang, F. Fang, H.S. Wang, Y.K. Xia, G. Yuan, G.D. Wang, Mater. Sci. Eng. A 823 (2021) 141726.
DOI URL |
[26] |
J. Kundin, L. Mushongera, H. Emmerich, Acta Mater. 95 (2015) 343-356.
DOI URL |
[27] | Y. Li, C. Li, L. Yu, Z. Ma, H. Li, Y. Liu, Vacuum 176 (2020) 109310. |
[28] |
Y.D. Zhang, S.B. Jin, P.W. Trimby, X.Z. Liao, M.Y. Murashkin, R.Z. Valiev, J.Z. Liu, J. M. Cairney, S.P. Ringer, G. Sha, Acta Mater. 162 (2019) 19-32.
DOI URL |
[29] |
F. Qian, S.B. Jin, G. Sha, Y.J. Li, Acta Mater. 157 (2018) 114-125.
DOI URL |
[30] |
A. Azzam, T. Philippe, A. Hauet, F. Danoix, D. Locq, P. Caron, D. Blavette, Acta Mater. 145 (2018) 377-387.
DOI URL |
[31] |
S.A. Mantri, S. Dasari, A. Sharma, T. Alam, M.V. Pantawane, M. Pole, S. Sharma, N.B. Dahotre, R. Banerjee, S. Banerjee, Acta Mater. 210 (2021) 116844.
DOI URL |
[32] |
G.L. Knapp, N. Raghavan, A. Plotkowski, T. DebRoy, Addit. Manuf. 25 (2019) 511-521.
DOI |
[33] |
G. Asala, J. Andersson, O.A. Ojo, Corros. Sci. 158 (2019) 108086.
DOI URL |
[34] | A. Casanova, N. Martín-Piris, M. Hardy, C. Rae, Y. Guedou, J. Chone (Eds.), Proceedings of the 2nd European Symposium on Superalloys and their Appli- cations, Giens, F rance, 2014, p. 09003. |
[35] | L. Wojnar, K.J. Kurzydłowski, J. Szala, in: ASM Handbook, 9, ASM International, 2004, p. 1004. |
[36] | E. McDevitt, E.A. Ott, J.R. Groh, A. Banik, I. Dempster, T.P. Gabb, R. Helmink, X. Liu, A. Mitchell, G.P. Sjöberg, A. Wusatowska-Sarnek,in:Proceedings of the 7th International Symposium on Superalloy 718 and Derivatives, 2010, pp. 307-319. |
[37] | A. Casanova, M. Hardy, C.M.F. Rae, E. Ott, A. Banik, J. Andersson, I. Dempster, T. Gabb, J. Groh, K. Heck, R. Helmink, X. Liu, A. WusatowskaSarnek,in:Pro-ceedings of the 8th International Symposium on Superalloy 718 and Deriva- tives, 2014, pp. 573-586. |
[38] |
B. Alabbad, S. Tin, Mater. Charact. 151 (2019) 53-63.
DOI |
[39] |
X.Z. Qin, J.T. Guo, C. Yuan, C.L. Chen, H.Q. Ye, Metall. Mater. Trans. A 38 (12)(2007) 3014-3022.
DOI URL |
[40] |
B.G. Choi, I.S. Kim, D.H. Kim, C.Y. Jo, Mater. Sci. Eng. A 478 (1-2) (2008) 329-335.
DOI URL |
[41] | X.Z. Qin, J.T. Guo, C. Yuan, J.S. Hou, H.Q. Ye, Mater. Sci. Forum 546-549 (2007) 1301-1304. |
[42] |
M.Q. Wang, Q. Deng, J.H. Du, Z.L. Tian, J. Zhu, Mater. Trans. 56 (2015) 635-641.
DOI URL |
[43] | M.Q. Wang, Q. Deng, J.H. Du, Z.L. Tian, J. Zhu, E. Ott, A. Banik, J. Andersson, I. Dempster, T. Gabb, J. Groh, K. Heck, R. Helmink, X. Liu, A. WusatowskaSarnek,in:Proceedings of the 8th International Symposium on Superalloy 718 and Derivatives, Pittsburgh, PA, 2014, pp. 769-776. |
[44] |
Y.U. Heo, M. Takeguchi, K. Furuya, H.C. Lee, Acta Mater. 57 (2009) 1176-1187.
DOI URL |
[45] |
D. Rossouw, R. Krakow, Z. Saghi, C.S.M. Yeoh, P. Burdet, R.K. Leary, F. de la Pena, C. Ducati, C.M.F. Rae, P.A. Midgley, Acta Mater. 107 (2016) 229-238.
DOI URL |
[46] |
H. Ge, W. Xing, B. Chen, X. Hu, S. Zheng, K. Liu, X. Ma, Acta Mater. 214 (2021) 116985.
DOI URL |
[47] |
G.P. Sabol, R. Stickler, Phys. Status Solidi (B) 35 (1969) 11-52.
DOI URL |
[48] | K.S. Kumar, P.M. Hazzledine, Intermetallics 12 (2004) 763-770. |
[49] |
M.I. Isik, A. Kostka, V.A. Yardley, K.G. Pradeep, M.J. Duarte, P.P. Choi, D. Raabe, G. Eggeler, Acta Mater. 90 (2015) 94-104.
DOI URL |
[50] | C. Liu, C. Mao, L. Cui, X. Zhou, L. Yu, Y. Liu, Acta Metall. Sin. 57 (2021) 1521-1538. |
[51] | D. Srinivasan, L.U. Lawless, E.A. Ott, E.S. Huron, R.C. Reed, M.C. Hardy, M. J. Mills, R.E. Montero, P.D. Portella, J. Telesman, in: Superalloys, John Wiley & Sons, Ltd., 2012, pp. 759-768. 2012. |
[52] |
Z.Y. Zhao, H.Q. Qu, P.K. Bai, J. Li, L.Y. Wu, P.C. Huo, Philos. Mag. Lett. 98 (2018) 547-555.
DOI URL |
[53] | L. Viskari, K. Stiller, Ultramicroscopy 111 (2011) 652-658. |
[54] |
C. Stotter, C. Sommitsch, J. Wagner, H. Leitner, I. Letofsky-Papst, G.A. Zickler, W. Prantl, M. Stockinger, Int. J. Mater. Res. 99 (2008) 376-380.
DOI URL |
[55] |
L. Whitmore, M.R. Ahmadi, M. Stockinger, E. Povoden-Karadeniz, E. Kozeschnik, H. Leitner, Mater. Sci. Eng. A 594 (2014) 253-259.
DOI URL |
[56] |
G.A. Zickler, R. Radis, R. Schnitzer, E. Kozeschnik, M. Stockinger, H. Leitner, Adv. Eng. Mater. 12 (2010) 176-183.
DOI URL |
[57] |
N.C. Eurich, P.D. Bristowe, Scr. Mater. 77 (2014) 37-40.
DOI URL |
[58] | D. Huber, C. Sommitsch, M. Stockinger, Adv. Mater. Res. 278 (2011) 168-173. |
[59] | R. Hayes, E. Thompson, K. Johnson, A. Aichlmayr, Mater. Sci. Eng. A 510-11 (2009) 256-261. |
[60] |
M. Kattoura, S.R. Mannava, D. Qian, V.K. Vasudevan, Int. J. Fatigue 110 (2018) 186-196.
DOI URL |
[61] |
X. Chen, Z. Yao, J. Dong, H. Shen, Y. Wang, J. Alloy. Compd. 735 (2018) 928-937.
DOI URL |
[62] |
M. Seifollahi, S.H. Razavi, S. Kheirandish, S.M. Abbasi, J. Mater. Eng. Perform. 22 (2013) 3063-3069.
DOI URL |
[63] |
K. Hou, M. Ou, M. Wang, H. Li, Y. Ma, K. Liu, Mater. Sci. Eng. A 763 (2019) 138137.
DOI URL |
[64] |
P.A. Carvalho, P.M. Bronsveld, B.J. Kooi, J.T.M. De Hosson, Acta Mater. 50 (2002) 4511-4526.
DOI URL |
[65] |
M. Šlapáková, A. Zendegani, C.H. Liebscher, T. Hickel, J. Neugebauer, T. Ham- merschmidt, A. Ormeci, J. Grin, G. Dehm, K.S. Kumar, F. Stein, Acta Mater. 183 (2020) 362-376.
DOI URL |
[66] |
Y.W. Chai, K. Kato, C. Yabu, S. Ishikawa, Y. Kimura, Acta Mater. 198 (2020) 230-241.
DOI URL |
[67] | B.K. Lu, C.Y. Wang, Z.H. Du, Chin. Phys. B 27 (2018) 097102. |
[68] |
J.F. Zhao, H.P. Wang, B. Wei, J. Mater. Sci. Technol. 100 (2022) 246-253.
DOI |
[69] |
P.R. Yang, C.X. Liu, Q.Y. Guo, Y.C. Liu, J. Mater. Sci. Technol. 72 (2021) 162-171.
DOI URL |
[70] |
X. Zhou, G. Li, X. Shen, Y. Liu, Mater. Sci. Eng. A 829 (2022) 142071.
DOI URL |
[71] |
H.M. Tawancy, Metallogr. Microstruct. Anal. 6 (3) (2017) 200-215.
DOI URL |
[72] |
M.I. Isik, A. Kostka, G. Eggeler, Acta Mater. 81 (2014) 230-240.
DOI URL |
[73] |
A. Aghajani, F. Richter, C. Somsen, S.G. Fries, I. Steinbach, G. Eggeler, Scr. Mater. 61 (11) (2009) 1068-1071.
DOI URL |
[1] | Ahmad Zafari, Edward Wen Chiek Lui, Mogeng Li, Kenong Xia. Enhancing work hardening and ductility in additively manufactured β Ti: roles played by grain orientation, morphology and substructure [J]. J. Mater. Sci. Technol., 2022, 105(0): 131-141. |
[2] | Lianbo Wang, Shilong Xing, Zizhen Shen, Huabing Liu, Chuanhai Jiang, Vincent Ji, Yuantao Zhao. The synergistic role of Ti microparticles and CeO2 nanoparticles in tailoring microstructures and properties of high-quality Ni matrix nanocomposite coating [J]. J. Mater. Sci. Technol., 2022, 105(0): 182-193. |
[3] | Zheng Zhang, Wenming Jiang, Guangyu Li, Junlong Wang, Feng Guan, Guoliang Jie, Zitian Fan. Effect of La on microstructure, mechanical properties and fracture behavior of Al/Mg bimetallic interface manufactured by compound casting [J]. J. Mater. Sci. Technol., 2022, 105(0): 214-225. |
[4] | Bo Hu, Zixin Li, Dejiang Li, Tao Ying, Xiaoqin Zeng, Wenjiang Ding. A hot tearing criterion based on solidification microstructure in cast alloys [J]. J. Mater. Sci. Technol., 2022, 105(0): 68-80. |
[5] | Gang Niu, Hatem S. Zurob, R.D.K. Misra, Huibin Wu, Yu Zou. Strength-ductility synergy in a 1.4 GPa austenitic steel with a heterogeneous lamellar microstructure [J]. J. Mater. Sci. Technol., 2022, 106(0): 133-138. |
[6] | Shicheng Li, Hongyan Liang, Chong Li, Yongchang Liu. Lattice mismatch in Ni3Al-based alloy for efficient oxygen evolution [J]. J. Mater. Sci. Technol., 2022, 106(0): 19-27. |
[7] | Qingfang Huang, Qingzheng Jiang, Jifan Hu, Sajjad Ur Rehman, Gang Fu, Qichen Quan, Jixiang Huang, Deqin Xu, Dakun Chen, Zhenchen Zhong. Extraordinary simultaneous enhancement of the coercivity and remanence of dual alloy HRE‐free Nd‐Fe‐B sintered magnets by post‐sinter annealing [J]. J. Mater. Sci. Technol., 2022, 106(0): 236-242. |
[8] | Jinlong Su, Xiankun Ji, Jin Liu, Jie Teng, Fulin Jiang, Dingfa Fu, Hui Zhang. Revealing the decomposition mechanisms of dislocations and metastable α' phase and their effects on mechanical properties in a Ti-6Al-4V alloy [J]. J. Mater. Sci. Technol., 2022, 107(0): 136-148. |
[9] | Cecil Cherian Lukose, Guillaume Zoppi, Martin Birkett. Mn3Ag(1-x)Cu(x)N antiperovskite thin films with ultra-low temperature coefficient of resistance [J]. J. Mater. Sci. Technol., 2022, 99(0): 138-147. |
[10] | Renquan Wang, Tingchuan Zhou, Zhiyong Zhong. Low-temperature processing of LiZn-based ferrite ceramics by co-doping of V2O5 and Sb2O3: Composition, microstructure and magnetic properties [J]. J. Mater. Sci. Technol., 2022, 99(0): 1-8. |
[11] | Huang Chunping, Liang Renyu, Liu Fenggang, Yang Haiou, Lin Xin. Effect of dimensionless heat input during laser solid forming of high-strength steel [J]. J. Mater. Sci. Technol., 2022, 99(0): 127-137. |
[12] | Tianyi Han, Yong Liu, Mingqing Liao, Danni Yang, Nan Qu, Zhonghong Lai, Jingchuan Zhu. Refined microstructure and enhanced mechanical properties of AlCrFe2Ni2 medium entropy alloy produced via laser remelting [J]. J. Mater. Sci. Technol., 2022, 99(0): 18-27. |
[13] | Hao Guo, Shufeng Yang, Tiantian Wang, Hang Yuan, Yanling Zhang, Jingshe Li. Microstructure evolution and acicular ferrite nucleation in inclusion-engineered steel with modified MgO@C nanoparticle addition [J]. J. Mater. Sci. Technol., 2022, 99(0): 277-287. |
[14] | Dongsen Geng, Haiqing Li, Ziliang Chen, Yu X. Xu, Qimin Wang. Microstructure, oxidation behavior and tribological properties of AlCrN/Cu coatings deposited by a hybrid PVD technique [J]. J. Mater. Sci. Technol., 2022, 100(0): 150-160. |
[15] | Jie Tang, Mingcai Liu, Guowei Bo, Fulin Jiang, Chunhui Luo, Jie Teng, Dingfa Fu, Hui Zhang. Unraveling precipitation evolution and strengthening function of the Al-Zn-Mg-Cu alloys with various Zn contents: Multiple experiments and integrated internal-state-variable modeling [J]. J. Mater. Sci. Technol., 2022, 116(0): 130-150. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||