J. Mater. Sci. Technol. ›› 2022, Vol. 128: 160-179.DOI: 10.1016/j.jmst.2022.04.025
• Research Article • Previous Articles Next Articles
Xu Xiaolong, Tang Cheng*(), Wang Hongfu*(
), An Yukang, Zhao Yuhong*(
)
Received:
2022-02-09
Revised:
2022-04-11
Accepted:
2022-04-11
Published:
2022-11-20
Online:
2022-11-22
Contact:
Tang Cheng,Wang Hongfu,Zhao Yuhong
About author:
zhaoyuhong@nuc.edu.cn (Y. Zhao).Xu Xiaolong, Tang Cheng, Wang Hongfu, An Yukang, Zhao Yuhong. Microstructure evolution and grain refinement mechanism of rapidly solidified single-phase copper based alloys[J]. J. Mater. Sci. Technol., 2022, 128: 160-179.
Fig. 6. Solidification front morphology of Cu65Ni35 alloy under different undercoolings ((a) $\text{ }\!\!\Delta\!\!\text{ }T$=79 K, (b) $\text{ }\!\!\Delta\!\!\text{ }T$=165 K, (c) $\text{ }\!\!\Delta\!\!\text{ }T$=214 K).
Fig. 7. Solidification front morphology of Cu60Ni40 alloy under different undercoolings ((a) $\text{ }\!\!\Delta\!\!\text{ }T$=92 K, (b) $\text{ }\!\!\Delta\!\!\text{ }T$=174 K, (c) $\text{ }\!\!\Delta\!\!\text{ }T$=247 K).
Fig. 8. Solidification front morphology of Cu55Ni45 alloy under different undercoolings ((a) $\text{ }\!\!\Delta\!\!\text{ }T$=86 K, (b) $\text{ }\!\!\Delta\!\!\text{ }T$=161 K, (c) $\text{ }\!\!\Delta\!\!\text{ }T$=229 K).
Fig. 9. EBSD analysis of Cu65Ni35 alloy at $\text{ }\!\!\Delta\!\!\text{ }T$=64 K ((a) Grain boundary, (b) Grain orientation of (a), (c) Polar figure of (b), (d) Grain boundary misorientation distribution).
Fig. 10. EBSD analysis of Cu60Ni40 alloy at $\text{ }\!\!\Delta\!\!\text{ }T$= 74 K. ((a) Grain boundary, (b) Grain orientation of (a), (c) Polar figure of (b), (d) Grain boundary misorientation distribution).
Fig. 11. EBSD analysis of Cu55Ni45 alloy at $\text{ }\!\!\Delta\!\!\text{ }T$= 70 K. ((a) Grain boundary, (b) Grain orientation of (a), (c). Polar figure of (b), (d) Grain boundary misorientation distribution).
Fig. 12. Solidification-recalescence curve of alloys. ((a) Solidification curve of Cu55Ni45 alloy, (b) Solidification curve of Cu60Ni40 alloy, (c) Solidification curve of Cu65Ni35 alloy).
Fig. 14. EBSD analysis of Cu65Ni35 alloy at $\text{ }\!\!\Delta\!\!\text{ }T$= 202 K. ((a) Grain boundary, (b) Grain orientation of (a), (c) Polar figure of (b), (d) Grain boundary misorientation distribution).
Fig. 15. EBSD analysis of Cu60Ni40 alloy at $\text{ }\!\!\Delta\!\!\text{ }T$=222 K. ((a) Grain boundary, (b) Grain orientation of (a), (c) Polar figure of (b), (d) Grain boundary misorientation distribution).
Fig. 16. EBSD analysis of Cu55Ni45 alloy at $\text{ }\!\!\Delta\!\!\text{ }T$= 272 K ((a) Grain boundary, (b) Grain orientation of (a), (c) Polar figure of (b), (d) Grain boundary misorientation distribution).
Fig. 17. Recrystallization area and proportion of alloys. ((a) Recrystallization area and proportion of Cu65Ni35 alloy at 202 K, (b) Recrystallization area and proportion of Cu60Ni40 alloy at 222K, (c) Recrystallization area and proportion of Cu55Ni45 alloy at 272 K).
Parameter | Value of Cu65Ni35 alloy |
---|---|
heat of fusion ΔHf/kJ mol−1 | 14090 |
specific heat of the liquid CP/J−1 mol−1 K−1 | 32.6 |
dynamic viscosity of the liquid μ/Pas | 10−3 |
molar volume of the liquidVmL/m3 mol−1 | 8.02 × 10−6 |
molar volume of the solid VmS/m3 mol−1 | 7.04 × 10−6 |
liquidus TL/K | 1528 |
solute diffusivity in the liquid DL/m2 s−1 | 4.3 × 10−9 |
thermal diffusivityαL/m2 s−1 | 7.5 × 10−9 |
atomic spacea0/m | 3.0 × 10−10 |
interfacial energyσS,L/J m−2 | 0.29 |
speed of sound in the melt V0/m s−1 | 4000 |
equilibrium liquidus slope mL/K (at.%)−1 | 4.13 |
equilibrium solute partition coeffificient k0 | 1.35 |
solidifification time tf/s | 0.1 |
size of the mushy zonea/m | 0.01 |
gibbse-Thomson coeffificientΓ | 2.86 × 10−7 |
solid fraction at the dendrite coherency pointfscoh | 0.15 |
solidifification shrinkage of the primary phaseβ | 0.13 |
atomic diffusive speed VD/m s−1 | 20 |
Table 1. Physical parameters used in calculation [29,39]
Parameter | Value of Cu65Ni35 alloy |
---|---|
heat of fusion ΔHf/kJ mol−1 | 14090 |
specific heat of the liquid CP/J−1 mol−1 K−1 | 32.6 |
dynamic viscosity of the liquid μ/Pas | 10−3 |
molar volume of the liquidVmL/m3 mol−1 | 8.02 × 10−6 |
molar volume of the solid VmS/m3 mol−1 | 7.04 × 10−6 |
liquidus TL/K | 1528 |
solute diffusivity in the liquid DL/m2 s−1 | 4.3 × 10−9 |
thermal diffusivityαL/m2 s−1 | 7.5 × 10−9 |
atomic spacea0/m | 3.0 × 10−10 |
interfacial energyσS,L/J m−2 | 0.29 |
speed of sound in the melt V0/m s−1 | 4000 |
equilibrium liquidus slope mL/K (at.%)−1 | 4.13 |
equilibrium solute partition coeffificient k0 | 1.35 |
solidifification time tf/s | 0.1 |
size of the mushy zonea/m | 0.01 |
gibbse-Thomson coeffificientΓ | 2.86 × 10−7 |
solid fraction at the dendrite coherency pointfscoh | 0.15 |
solidifification shrinkage of the primary phaseβ | 0.13 |
atomic diffusive speed VD/m s−1 | 20 |
Fig. 21. Evolution of grain size and microhardness of alloy. ((a) Evolution of grain size and microhardness of Cu65Ni35 alloy, (b) Evolution of grain size and microhardness of Cu60Ni40 alloy, (c) Evolution of grain size and microhardness of Cu55Ni45 alloy).
[1] | J. Yang, M.L. Chen, H. Gao, Adv. Mater. Res. 335-336 (2011) 396-399. |
[2] |
A.M. Mullis, R.F. Cochrane, J. Appl. Phys. 82 (1997) 3783-3790.
DOI URL |
[3] | J. LI, Y. Lv, G. Yang, Y. Zhou, Prog. Nat. Sci. 7 (1997) 736-741. |
[4] |
B. Wei, C. Yang, Y. Zhou, Acta Metall. Mater 39 (1991) 1249-1258.
DOI URL |
[5] | Z. Zhang, J.H. Zhang, J. Wang, Z.H. Li, J.S. Xie, S.J. Liu, K. Guan, R.Z. Wu, Int. J. Min. Met. Mater. (2021). |
[6] | L.M. Kwon, Bowers, C.M. Brandes, Robertson McCreary, M.I. Phani, P. Sndahar- shan, Acta. Mater. (2015) 89. |
[7] |
T. Masumoto, I. Ohnaka, A. Inoue, M. Hagiwara, Scr. Metal. 15 (1981) 293-296.
DOI URL |
[8] |
F. Liu, G.C. Yang, Int. Mater. Rev. 51 (2013) 145-170.
DOI URL |
[9] | C. Yang, F. Liu, G. Yang, Y. Zhou, J. Cryst. Growth 311 (2009) 404-412. |
[10] | H.X. Zheng, Y. Yu, J.G. Li, Mater. Sci. Forum 475 (2005) 2651-2654. |
[11] | K.I. Dragnevski, A.M. Mullis, R.F. Cochrane, Mater. Sci. Eng. A 375-377 (2004) 4 85-4 87. |
[12] |
J.H. Perepezko, Mater. Sci. Eng. A 178 (1984) 105-111.
DOI URL |
[13] | K. Eckler, F. Grtner, H. Assadi, Mater. Sci. Eng. A 226 (1997) 410-414. |
[14] |
D.M. Herlach, Mater. Sci. Eng. R 12 (1994) 177-272.
DOI URL |
[15] | K. Ma, Y. Zhao, X. Xu, H. Hou, J. Cryst. Growth 513 (2019) 30-37. |
[16] | Z. Xi, G. Yang, Y. Zhou, Prog. Nat. Sci. 5 (1997) 114-121. |
[17] |
K.K. Leung, C.P. Chiu, H.W. Kui, Scr. Metal. Mater. 32 (1995) 1559-1563.
DOI URL |
[18] |
X. Xu, Y. Chen, F. Liu, Mater. Lett. 81 (2012) 73-75.
DOI URL |
[19] | T.A. Ei-Benawy, N.A. Ei-Mahallawy, M.A. Taha, H. Fredriksson, Mater. Sci. Tech- nol. 14 (2013) 721-725. |
[20] | S.Y. Lu, J.F. Li, Y.H. Zhou, J. Cryst. Growth 309 (2007) 103-111. |
[21] |
X. Xu, F. Liu, J. Alloys Compd. 615 (2014) 156-162.
DOI URL |
[22] | X. Xu, H. Hou, Y. Zhao, F. Liu, Metall. Mater. Trans A 48 (2017) 4777-4785. |
[23] |
X. Xu, H. Hou, Y. Zhao, F. Liu, Mater. Sci. Technol. 34 (2017) 79-85.
DOI URL |
[24] |
M. Schwarz, A. Karma, K. Eckler, D.M. Herlach, Phys. Rev. Lett. 73 (1994) 1380-1383.
PMID |
[25] |
H. Wang, F. Liu, G. Yang, J. Mater. Res. 25 (2011) 1963-1974.
DOI URL |
[26] | K.I. Dragnevski, R.F. Cochrane, A.M. Mullis, Mater. Sci. Eng. A 375-377 (2004) 479-484. |
[27] |
T. Zhang, F. Liu, H.F. Wang, G.C. Yang, Scr. Mater. 63 (2010) 43-46.
DOI URL |
[28] | T.Z. Kattamis, J. Cryst. Growth 34 (1976) 215-220. |
[29] | J. Li, Y. Liu, Y. Lu, G. Yang, Y. Zhou, J. Cryst. Growth 192 (1998) 462-470. |
[30] | L. Powell, J. Aust. Inst. Met. 10 (1965) 3223. |
[31] | B. Jones, G. Weston, J. Aust. Inst. Met. 15 (1970) 3167. |
[32] | G. Horvay, Int. J.Heat Mass Transf. 8 (1965) 195-243. |
[33] |
R. Willnecker, D.M. Herlach, B. Feuerbacher, Appl. Phys. Lett. 56 (1990) 324-326.
DOI URL |
[34] | W.J. Boettinger, S.R. Coriell, R. Trivedi, Rapid solidification processing: princi- ples and technologies IV, first ed, Claitor’s Pulishing Division, Baton Rouge, 1988. |
[35] |
E. Hürlimann, R. Trittibach, U. Bisang, J.H. Bilgram, Phys. Rev. A 46 (1992) 6579-6595.
DOI URL |
[36] |
S.S. Farvid, P.V. Radovanovic, J. Am. Chem. Soc. 134 (2012) 7015-7024.
DOI URL |
[37] | F. Liu, G. Yang, J. Cryst. Growth 231 (2001) 295-305. |
[38] | D.H.J.A.K. Dahle, H.J. Thevik, Metall. Mater. Trans. B 30 (1999). |
[39] | E.A. Brandes,Smithells Metalls Reference Book, 6th ed., Butterworth, Bodmin, 1983. |
[40] |
X.L. Xu, Y.Z. Chen, F. Liu, Mater. Sci. Technol. 28 (2013) 1492-1498.
DOI URL |
[41] |
A. Di Schino, J.M. Kenny, Mater. Lett. 57 (2003) 1830-1834.
DOI URL |
[1] | H.T. Jeong, W.J. Kim. Effect of roll speed ratio on the texture and microstructural evolution of an FCC high-entropy alloy during differential speed rolling [J]. J. Mater. Sci. Technol., 2022, 111(0): 152-166. |
[2] | Cheng Zhu, Zhihao Zhao, Qingfeng Zhu, Gaosong Wang, Yubo Zuo, Qiangqiang Li, Gaowu Qin. Hot-top direct chill casting assisted by a twin-cooling field: Improving the ingot quality of a large-size 2024 Al alloy [J]. J. Mater. Sci. Technol., 2022, 112(0): 114-122. |
[3] | Hongxiang Jiang, Yan Song, Lili Zhang, Jie He, Shixin Li, Jiuzhou Zhao. Efficient grain refinement of Al alloys induced by in-situ nanoparticles [J]. J. Mater. Sci. Technol., 2022, 124(0): 14-25. |
[4] | Xiaohui Liu, Yunzhong Liu, Zhiguang Zhou, Qiangkun Zhan. Enhanced strength and ductility in Al-Zn-Mg-Cu alloys fabricated by laser powder bed fusion using a synergistic grain-refining strategy [J]. J. Mater. Sci. Technol., 2022, 124(0): 41-52. |
[5] | Mengcheng Zhou, Xinfang Zhang. Regulating the recrystallized grain to induce strong cube texture in oriented silicon steel [J]. J. Mater. Sci. Technol., 2022, 96(0): 126-139. |
[6] | Shuaishuai Liu, Han Liu, Xiang Chen, Guangsheng Huang, Qin Zou, Aitao Tang, Bin Jiang, Yuntian Zhu, Fusheng Pan. Effect of texture on deformation behavior of heterogeneous Mg-13Gd alloy with strength-ductility synergy [J]. J. Mater. Sci. Technol., 2022, 113(0): 271-286. |
[7] | Wenwei Gao, Hai Wang, Konrad Koenigsmann, Shuyuan Zhang, Ling Ren, Ke Yang. Fabrication of ultrafine-grained Ti-15Zr-xCu alloys through martensite decompositions under thermomechanical coupling conditions [J]. J. Mater. Sci. Technol., 2022, 127(0): 19-28. |
[8] | Xu Jing, Guan Bo, Xin Yunchang, Wei Xuedong, Huang Guangjie, Liu Chenglu. A weak texture dependence of Hall-Petch relation in a rare-earth containing magnesium alloy [J]. J. Mater. Sci. Technol., 2022, 99(0): 251-259. |
[9] | Ao Fu, Bin Liu, Zezhou Li, Bingfeng Wang, Yuankui Cao, Yong Liu. Dynamic deformation behavior of a FeCrNi medium entropy alloy [J]. J. Mater. Sci. Technol., 2022, 100(0): 120-128. |
[10] | Guanqiang Wang, Mingsong Chen, Yongcheng Lin, Hongbin Li, Yuqiang Jiang, Yanyong Ma, Chengxu Peng, Jinliang Cai, Quan Chen. Recrystallization nucleation under close-set δ phase in a nickel-based superalloy during annealing [J]. J. Mater. Sci. Technol., 2022, 115(0): 166-176. |
[11] | J.M. Yu, T. Hashimoto, H.T. Li, N. Wanderka, Z. Zhang, C. Cai, X.L. Zhong, J. Qin, Q.P. Dong, H. Nagaumi, X.N. Wang. Formation of intermetallic phases in unrefined and refined AA6082 Al alloys investigated by using SEM-based ultramicrotomy tomography [J]. J. Mater. Sci. Technol., 2022, 120(0): 118-128. |
[12] | Yu-qin Zhang, Wei-li Cheng, Hui Yu, Hong-xia Wang, Xiao-feng Niu, Li-fei Wang, Hang Li. Unveiling the twinning and dynamic recrystallization behavior and the resultant texture evolution in the extruded Mg-Bi binary alloys during hot compression [J]. J. Mater. Sci. Technol., 2022, 105(0): 274-285. |
[13] | Miao Wang, Xingwei Huang, Peng Xue, Shangquan Wu, Chuanyong Cui, Qingchuan Zhang. High strength and ductility achieved in friction stir processed Ni-Co based superalloy with fine grains and nanotwins [J]. J. Mater. Sci. Technol., 2022, 106(0): 162-172. |
[14] | Yu Yin, Qiyang Tan, Qiang Sun, Wangrui Ren, Jingqi Zhang, Shiyang Liu, Yingang Liu, Michael Bermingham, Houwen Chen, Ming-Xing Zhang. Heterogeneous lamella design to tune the mechanical behaviour of a new cost-effective compositionally complicated alloy [J]. J. Mater. Sci. Technol., 2022, 96(0): 113-125. |
[15] | Bijun Xie, Zhenxiang Yu, Haiyang Jiang, Bin Xu, Chunyang Wang, Jianyang Zhang, Mingyue Sun, Dianzhong Li, Yiyi Li. Effects of surface roughness on interfacial dynamic recrystallization and mechanical properties of Ti-6Al-3Nb-2Zr-1Mo alloy joints produced by hot-compression bonding [J]. J. Mater. Sci. Technol., 2022, 96(0): 199-211. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||