J. Mater. Sci. Technol. ›› 2022, Vol. 128: 205-212.DOI: 10.1016/j.jmst.2022.03.033
• Research Article • Previous Articles Next Articles
Peng Zhuoa, Han Changcuna, Huang Chuyuna, Dong Zehuab,*(), Ma Xinguoa,*(
)
Received:
2022-01-24
Revised:
2022-03-17
Accepted:
2022-03-24
Published:
2022-11-20
Online:
2022-11-22
Contact:
Dong Zehua,Ma Xinguo
About author:
maxg@hbut.edu.cn (X. Ma).Peng Zhuo, Han Changcun, Huang Chuyun, Dong Zehua, Ma Xinguo. Preventing surface passivation of transition metal nanoparticles in oxygen electrocatalyst to extend the lifespan of Zn-air battery[J]. J. Mater. Sci. Technol., 2022, 128: 205-212.
Fig. 2. SEM (a) and TEM (b) images of Zn-Co PBA/TA-FeⅡ/Ru3+. SEM (c), TEM (d) and HRTEM (e, f) images of Co-Fe-Ru/PNCS. XRD pattern of Co-Fe-Ru/PNCS (g).
Fig. 3. High resolution XPS spectra of Co 2p (a) and Fe 2p (b) in Co-Fe-Ru/PNCS. High resolution XPS spectra of Co 2p (c) and Fe 2p (d) in Co-Fe/PNCS.
Fig. 4. LSV curves of Co-Fe-Ru/PNCS, Co-Fe/PNCS, Co-Fe-Ru/NC and 20% Pt/C in O2-saturated 0.1 M KOH at 1600 rpm (a). LSV curves of Co-Fe-Ru/PNCS before and after 3000 CV cycles at the range of 0 to 1.2 V in O2-saturated 0.1 M KOH solution; the inset is corresponding 1st and 3000th CV curves of Co-Fe-Ru/PNCS (b). LSV curves of Co-Fe-Ru/PNCS, Co-Fe/PNCS, Co-Fe-Ru/NC and RuO2 in O2-saturated 1.0 M KOH (c). E-t curves of Co-Fe-Ru/PNCS and RuO2 at 10 mA cm?2 (d).
Fig. 5. Polarization curves and the corresponding power density of Co-Fe-Ru/PNCS, Co-Fe/PNCS, Co-Fe-Ru/NC and Pt/C+RuO2-based ZAB (a). Comparison of Co-Fe-Ru/PNCS and Pt/C+RuO2-based ZAB: specific capacity (b), charge rate (c) and discharge rate (d). Galvanostatic discharge/charge cycling of Co-Fe-Ru/PNCS and Pt/C+RuO2-based ZAB at 5.0 mA cm-2 (e).
Fig. 6. Co 2p (a) and Fe 2p (b) high resolution XPS spectra of Co-Fe-Ru/PNCS before and after 24 h galvanostatic cycling test. Co 2p (d) and Fe 2p (e) high resolution XPS spectra of Co-Fe/PNCS before and after 24 h galvanostatic cycling test. Polarization curves of air electrode modified by Co-Fe-Ru/PNCS (c) or Co-Fe/PNCS (f) at different galvanostatic cycling test stage.
[1] |
J. Pan, Y.Y. Xu, H. Yang, Z. Dong, H. Liu, B.Y. Xia, Adv. Sci. 5 (4) (2018) 1700691.
DOI URL |
[2] | L. Ma, S. Chen, Z. Pei, Y. Huang, G. Liang, F. Mo, Q. Yang, J. Su, Y. Gao, J.A. Za- pien, C. Zhi, ACS Nano 12 (2) (2018) 1949-1958. |
[3] | J. Yin, Y. Li, F. Lv, Q. Fan, Y.Q. Zhao, Q. Zhang, W. Wang, F. Cheng, P. Xi, S. Guo, ACS Nano 11 (2) (2017) 2275-2283. |
[4] |
Y. Li, C. Zhong, J. Liu, X. Zeng, S. Qu, X. Han, Y. Deng, W. Hu, J. Lu, Adv. Mater. 30 (4) (2018) 1703657.
DOI URL |
[5] |
X.F. Lu, Y. Chen, S. Wang, S. Gao, X.W. Lou, Adv. Mater. 31 (39) (2019) 1902339.
DOI URL |
[6] |
H. Tabassum, R. Zou, A. Mahmood, Z. Liang, Q. Wang, H. Zhang, S. Gao, C. Qu, W. Guo, S. Guo, Adv. Mater. 30 (8) (2018) 1705441.
DOI URL |
[7] |
X. Chen, B. Liu, C. Zhong, Z. Liu, J. Liu, L. Ma, Y.D. Deng, X.P. Han, T.P. Wu, W.B. Hu, J. Lu, Adv. Energy Mater. 7 (18) (2017) 1700779.
DOI URL |
[8] |
C. Hang, J. Zhang, J.W. Zhu, W.Q. Li, Z.K. Kou, Y.H. Huang, Adv. Energy Mater. 8 (16) (2018) 1703539.
DOI URL |
[9] |
T. Wang, Z. Kou, S. Mu, J. Liu, D. He, I.S. Amiinu, W. Meng, K. Zhou, Z. Luo, S. Chaemchuen, Adv. Funct. Mater. 28 (5) (2018) 1705048.
DOI URL |
[10] |
Y. Xu, P. Deng, G. Chen, J. Chen, Y. Yan, K. Qi, H. Liu, B.Y. Xia, Adv. Funct. Mater. 30 (6) (2019) 1906081.
DOI URL |
[11] |
H. Zhang, T.T. Wang, A. Sumboja, W.J. Zang, J.P. Xie, D.Q. Gao, Adv. Funct. Mater. 28 (40) (2018) 1804846.
DOI URL |
[12] | G. Li, X. Wang, J. Fu, J. Li, M.G. Park, Y. Zhang, G. Lui, Z. Chen, Angew. Chem. Int. Ed. 55 (16) (2016) 4 977-4 982. |
[13] |
Y.P. Deng, R.L. Liang, G.P. Jiang, Y. Jiang, A.P. Yu, Z.W. Chen, ACS Energy Lett. 5 (5) (2020) 1665-1675.
DOI URL |
[14] |
B.Y. Guan, Y. Lu, Y. Wang, M.H. Wu, X.W. Lou, Adv. Funct. Mater. 28 (10) (2018) 1706738.
DOI URL |
[15] |
J. Xi, Y. Xia, Y. Xu, J. Xiao, S. Wang, Chem. Comm. 51 (52) (2015) 10479-10482.
DOI URL |
[16] | S.L. Zhang, B.Y. Guan, X.W. Lou, Small 15 (13) (2019) 1805324. |
[17] | B.K. Barman, K.K. Nanda, A.C.S. Sustain, Chem. Eng. 6 (10) (2018) 12736-12745. |
[18] |
S.S. Li, W.H. Chen, H.Z. Pan, Y.W. Cao, Z.Q. Jiang, X.N. Tian, X.G. Hao, T. Maiyala- gan, Z.J. Jiang, ACS Sustain. Chem. Eng. 7 (9) (2019) 8530-8541.
DOI URL |
[19] |
C.Y. Su, H. Cheng, W. Li, Z.Q. Liu, N. Li, Z.F. Hou, F.Q. Bai, H.X. Zhang, T.Y. Ma, Adv. Energy Mater. 7 (13) (2017) 1602420.
DOI URL |
[20] |
S. Li, C. Cheng, X. Zhao, J. Schmidt, A. Thomas, Angew. Chem. Int. Ed. 57 (7)(2018) 1856-1862.
DOI URL |
[21] |
P.W. Cai, S.Q. Ci, E.H. Zhang, P. Shao, C.S. Cao, Z.H. Wen, Electrochim. Acta 220 (2016) 354-362.
DOI URL |
[22] |
J. Zhang, T. Quast, W. He, S. Dieckhöfer, J.R.C. Junqueira, D. Öhl, P. Wilde, D. Jambrec, Y.T. Chen, W. Schuhmann, Adv. Mater. 34 (2022) 2109108.
DOI URL |
[23] |
S. Jin, ACS Energy Lett. 2 (2017) 1937-1938.
DOI URL |
[24] |
H.B. Zhang, W. Zhou, J.C. Dong, X.F. Lu, X.W. Lou, Energy Environ. Sci. 12 (11)(2019) 3348-3355.
DOI URL |
[25] |
Y. Li, M. Gong, Y. Liang, J. Feng, J.E. Kim, H. Wang, G. Hong, B. Zhang, H. Dai, Nat. Comm. 4 (2013) 1805.
DOI URL |
[26] |
J. Chen, H. Li, C. Fan, Q. Meng, Y. Tang, X. Qiu, G. Fu, T. Ma, Adv. Mater. 32 (30)(2020) 2003134.
DOI URL |
[27] | P. Yu, L. Wang, F. Sun, Y. Xie, X. Liu, J. Ma, X. Wang, C. Tian, J. Li, H. Fu, Adv. Mater. 31 (30) (2019) 1901666. |
[28] | Z. Peng, H. Wang, X. Xia, X. Zhang, Z. Dong. ACS Sustain. Chem. Eng. 8 (24)(2020) 9009-9016. |
[29] |
J. Guo, B.L. Tardy, A.J. Christofferson, Y. Dai, J.J. Richardson, W. Zhu, M. Hu, Y. Ju, J. Cui, R.R. Dagastine, I. Yarovsky, F. Caruso, Nat. Nanotechnol. 11 (12)(2016) 1105-1111.
DOI URL |
[30] |
J. Guo, Y. Ping, H. Ejima, K. Alt, M. Meissner, J.J. Richardson, Y. Yan, K. Pe- ter, E.D. Von, C.E. Hagemeyer, F. Caruso, Angew. Chem. Int. Ed. 53 (22) (2014) 5546-5551.
DOI URL |
[31] |
J. Nai, X.W. Lou, Adv. Mater. 31 (38) (2019) 1706825.
DOI URL |
[32] |
M.A. Rahim, S.L. Kristufek, S. Pan, J.J. Richardson, F. Caruso, Angew. Chem. Int. Ed. 58 (7) (2019) 1904-1927.
DOI URL |
[33] |
G. Yun, S. Pan, T.Y. Wang, J. Guo, J.J. Richardson, F. Caruso, Adv. Healthc. Mater. 7 (5) (2018) 1700934.
DOI URL |
[34] |
Y. Pan, K. Sun, S. Liu, X. Cao, K. Wu, W.C. Cheong, Z. Chen, Y. Wang, Y. Li, Y. Liu, D. Wang, Q. Peng, C. Chen, Y. Li, J. Am. Chem. Soc. 140 (7) (2018) 2610-2618.
DOI URL |
[35] |
J. Zhao, X. Quan, S. Chen, Y. Liu, H. Yu, ACS Appl. Mater. Interfaces 9 (34) (2017) 28685-28694.
DOI URL |
[36] | B.Y. Xia, Y. Yan, N. Li, H.B. Wu, X.W. Lou, X. Wang, Nat. Energy 1 (1) (2016) 15006. |
[37] |
X. Mu, J. Gu, F. Feng, Z. Xiao, C. Chen, S. Liu, S. Mu, Adv. Sci. 8 (2) (2021) 2002341.
DOI URL |
[38] | Y. Xue, L. Shi, X. Liu, J. Fang, X. Wang, B.P. Setzler, W. Zhu, Y. Yan, Z. Zhuang. Nat. Comm. 11 (2020) 5651. |
[39] |
H. Wang, W. Wang, S. Zaman, Y. Yu, Z. Wu, H. Liu, B.Y. Xia, J. Colloid Interface Sci. 530 (2018) 196-201.
DOI URL |
[40] |
Y.Q. Wang, L. Tao, Z.H. Xiao, R. Chen, Z.Q. Jiang, S.Y. Wang, Adv. Funct. Mater. 28 (11) (2018) 1705356.
DOI URL |
[41] |
Y. Hu, J.O. Jensen, W. Zhang, L.N. Cleemann, W. Xing, N.J. Bjerrum, Q. Li, Angew. Chem. Int. Ed. 53 (14) (2014) 3675-3679.
DOI URL |
[42] |
Y. Pei, W. He, M. Wang, J. Wang, T. Sun, L. Hu, J. Zhu, Y. Tan, J. Wang, Chem. Comm. 57 (12) (2021) 1498-1501.
DOI PMID |
[43] |
Y.Y. Li, Z.Z. Wang, X.P. Guo, G.A. Zhang, Corros. Sci. 147 (2019) 260-272.
DOI |
[44] |
Y. Zuo, L. Yang, Y. Tan, Y. Wang, J. Zhao, Corros. Sci. 120 (2017) 99-106.
DOI URL |
[1] | Xiaolin Hu, Tongxin Yang, Zuguang Yang, Zongyang Li, Ronghua Wang, Meng Li, Guangsheng Huang, Bin Jiang, Chaohe Xu, Fusheng Pan. Engineering of Co3O4@Ni2P heterostructure as trifunctional electrocatalysts for rechargeable zinc-air battery and self-powered overall water splitting [J]. J. Mater. Sci. Technol., 2022, 115(0): 19-28. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||