J. Mater. Sci. Technol. ›› 2022, Vol. 110: 260-268.DOI: 10.1016/j.jmst.2021.09.032
• Research Article • Previous Articles Next Articles
Shuang Jianga, Lin Peng Rub, Kristián Máthisc, Hai-Le Yana,*(), Gergely Farkasd, Zoltán Hegeduese, Ulrich Lienerte, Johan Moverareb, Xiang Zhaoa, Liang Zuoa, Nan Jiaa,*(
), Yan-Dong Wangf,*(
)
Received:
2021-07-18
Revised:
2021-09-08
Accepted:
2021-09-10
Published:
2021-11-28
Online:
2021-11-28
Contact:
Hai-Le Yan,Nan Jia,Yan-Dong Wang
About author:
ydwang@ustb.edu.cn (Y.-D. Wang).Shuang Jiang, Lin Peng Ru, Kristián Máthis, Hai-Le Yan, Gergely Farkas, Zoltán Hegedues, Ulrich Lienert, Johan Moverare, Xiang Zhao, Liang Zuo, Nan Jia, Yan-Dong Wang. Shear banding-induced 〈c+a〉 slip enables unprecedented strength-ductility combination of laminated metallic composites[J]. J. Mater. Sci. Technol., 2022, 110: 260-268.
Fig. 1. (a) Schematic of the HE-XRD measurement set-up. (b) Representative X-ray diffraction pattern (quarter of image plate) of the as-ARBed N8 composite. RD: rolling direction, ND: normal direction, TD: transverse direction.
Fig. 2. The measured and the CMWP fitted diffraction profiles of (a) N1 and (b) N8 composites. The measured and the fitted diffraction data is shown with black circles and solid red lines, respectively. The difference between the measured and the fitted spectra is shown with solid blue lines. The diffraction intensity and the difference are shown in logarithmic and linear scale, respectively.
Fig. 3. Evolution of dislocation activities for (a) various Burgers vectors and (b) the five common slip systems with ARB cycles in Ti of the ARBed Ti/Nb composites. (c) Schematic illustration of the Burgers vector direction of each dislocation type and common slip planes in the hcp structured Ti. The fitted lines in (a) and (b) are regression lines with 95% confidence to show the variation tendency. The dislocation activities obtained from the X-ray peak profile analysis of a CP-Ti under hot rolling [39] are shown as dashed lines in (a), in which the equivalent true strains of processing are indicated in the upper abscissa axis. B<a>: basal 〈a〉 slip, P<a>: prismatic 〈a〉 slip, Py<a>: pyramidal 〈a〉 slip, PyI<c+a>: first-order pyramidal 〈c+a〉 slip, PyII<c+a>: second-order pyramidal 〈c+a〉 slip. SBs: shear bands.
Fig. 4. Representative lamellar morphologies of (a) N5 and (b) N8 SBL Ti/Nb composites showing the initiation of shear bands. The yellow arrows and boxes indicate the necking of the hard Nb layers and the formation of shear bands that cut through several heterophase interfaces, respectively. The Ti layers are shown in dark grey and the Nb layers are in light grey, respectively.
Fig. 5. Dislocation characteristics in Nb layers. The representative modified Williamson-Hall plots with different dislocation activities of Nb in the (a) N1 and (b) N8 composites. Here, the broadening of each peak, ΔKhkl, is plotted as a function of ($K_{h k l} \bar{C}_{h k l}^{1 / 2}$), where Khkl corresponds to the peak position and $\bar{C}_{hkl}$ is average dislocation contrast factor of the {hkl} plane. E1: {110}〈$1\bar{1}1$〉 edge dislocation, E2: {112}〈$11\bar{1}$〉 edge dislocation, S: screw dislocation, Mix: a combination of 88% E1 and 12% E2 dislocations.
Fig. 6. Textures characterized by neutron diffraction. Pole figures of (a) N2, (b) N5 and (c) N8 Ti/Nb composites after intermediate annealing (AN). The left and right columns are pole figures for Ti and Nb, respectively. The orange stars are projections of the orientations with the maximum orientation distribution function (ODF) intensity. RD: rolling direction, TD: transverse direction, ND: normal direction.
Parameters | P<a> | B<a> | Py<a> | PyI<c+a> | PyII<c+a> |
---|---|---|---|---|---|
m | 0.1462 | 0.4583 | 0.259 | 0.4632 | 0.3821 |
m’ | 0.6211 | 0.4448 | 0.7226 | 0.8538 | 0.7071 |
e13 | 1.0284 | 1.0992 | 1.0825 | 1.1684 | 0.9943 |
Table 1. Parameters to evaluate the effect of stress field and local deformation accommodation on dislocation activities in Ti. Maximum Schmid factors for various slip systems at the plane strain state (m) and the pure shear strain state (m’) are given, respectively. By expressing the slip shear displacement gradient tensor of the E1 slip in Nb in the reference systems of each slip mode in Ti, in the obtained tensor e the component e13 is used to evaluate the accommodation ability of each slip system.
Parameters | P<a> | B<a> | Py<a> | PyI<c+a> | PyII<c+a> |
---|---|---|---|---|---|
m | 0.1462 | 0.4583 | 0.259 | 0.4632 | 0.3821 |
m’ | 0.6211 | 0.4448 | 0.7226 | 0.8538 | 0.7071 |
e13 | 1.0284 | 1.0992 | 1.0825 | 1.1684 | 0.9943 |
Fig. 7. Schematic illustration of the grain orientations with Euler angles of (173°, 34°, 186°) in Ti and (328°, 0°, 347°) in Nb, and the corresponding configuration of slip planes, illustrating the local strain accommodation between Ti and Nb at heterophase interfaces. Displacement gradient tensor (e) expressed in the slip reference system is also given. RD: rolling direction, TD: transverse direction, ND: normal direction of the ARBed sheets. b: Burgers vector, n: normal direction of slip plane. shcp and sbcc denote theoretical slip shear of the slip systems in the hcp structured Ti and the bcc structured Nb, respectively.
Fig. 8. TEM characterizations of dislocations in the SBL composite. Bright-field TEM of the dislocation structures for (a) the as-ARBed N8 composite and (b) the N8 composite after the subsequent uniaxial tensile testing to fracture (with a maximum elongation of ~9%). Dislocations that are visible under imaging vector g=[0002]* are 〈c+a〉 dislocations based on dislocation invisibility criterion g·b=0 (b: Burgers vector). The inset in the right panel of (b) shows the various crystallographic plane traces, enabling the determination of crystal planes of the observed 〈c+a〉 dislocations, as shown by the short-dashed lines. B: basal plane, P: prismatic plane, PyI: first-order pyramidal plane, PyII: second-order pyramidal plane.
Fig. 9. Superior mechanical properties of the SBL composites. (a) Engineering stress-strain curves of the SBL Ti/Nb composites processed by five and eight ARB cycles (N5 and N8 composites) in comparison with other LMCs composed of at least one hcp constituent [[48], [49], [50], [51], [52], [53], [54], [55], [56], [57], [58], [59], [60], [61]]. ε denotes equivalent true strain achieved in the fabrication routes of rolling or ARB processing. (b) Comparison of ultimate tensile strength versus elongation to fracture obtained in the current Ti/Nb composites with other materials. (c) Fracture elongation versus equivalent true strain applied in mechanical processing of the materials. All data are obtained from uniaxial tensile tests along the rolling direction with nominally quasi-static strain rates at room temperature.
[1] | F. Liang, Z.X. Wang, Y.-.W. Luo, B. Zhang, X.-.M. Luo, G.-.P. Zhang, Acta Mater 216 (2021) 117138. |
[2] |
Q.M. Wei, N. Li, N. Mara, M. Nastasi, A. Misra, Acta Mater 59 (2011) 6331-6340.
DOI URL |
[3] |
L.F. Zeng, R. Gao, Q.F. Fang, X.P. Wang, Z.M. Xie, S. Miao, T. Hao, T. Zhang, Acta Mater 110 (2016) 341-351.
DOI URL |
[4] |
J.T. Avallone, T.J. Nizolek, B.B. Bales, T.M. Pollock, Acta Mater 176 (2019) 189-198.
DOI |
[5] |
R. Gao, M.M. Jin, F. Han, B.M. Wang, X.P. Wang, Q.F. Fang, Y.H. Dong, C. Sun, L. Shao, M.D. Li, J. Li, Acta Mater 197 (2020) 212-223.
DOI URL |
[6] |
J.S. Carpenter, S.C. Vogel, J.E. LeDonne, D.L. Hammon, I.J. Beyerlein, N.A. Mara, Acta Mater 60 (2012) 1576-1586.
DOI URL |
[7] |
J.S. Carpenter, T. Nizolek, R.J. McCabe, M. Knezevic, S.J. Zheng, B.P. Eftink, J.E. Scott, S.C. Vogel, T.M. Pollock, N.A. Mara, I.J. Beyerlein, Acta Mater 92 (2015) 97-108.
DOI URL |
[8] |
D.J. Savage, I.J. Beyerlein, N.A. Mara, S.C. Vogel, R.J. McCabe, M. Knezevic, Int. J. Plast. 125 (2020) 1-26.
DOI URL |
[9] |
D.K. Yang, P. Cizek, P. Hodgson, C. Wen, Scr. Mater. 62 (2010) 321-324.
DOI URL |
[10] |
S. Ohsaki, S. Kato, N. Tsuji, T. Ohkubo, K. Hono, Acta Mater 55 (2007) 2885-2895.
DOI URL |
[11] |
C.X. Huang, Y.F. Wang, X.L. Ma, S. Yin, H.W. Höppel, M. Göken, X.L. Wu, H.J. Gao, Y.T. Zhu, Mater. Today 21 (2018) 713-719.
DOI URL |
[12] |
D. Rahmatabadi, M. Tayyebi, R. Hashemi, G. Faraji, Int. J. Miner. Metall. Mater. 25 (2018) 564-572.
DOI URL |
[13] | Z.X. Wu, W.A. Curtin, Proc. Natl. Acad. Sci. U.S.A. 113 (2016) 11137-11142. |
[14] |
S.J. Zinkle, G.S. Was, Acta Mater 61 (2013) 735-758.
DOI URL |
[15] |
J.Y. Zhang, J.T. Zhao, X.G. Li, Y.Q. Wang, K. Wu, G. Liu, J. Sun, Acta Mater 143 (2018) 55-66.
DOI URL |
[16] |
Z.H. Cao, W. Sun, Y.J. Ma, Q. Li, Z. Fan, Y.P. Cai, Z.J. Zhang, H. Wang, X. Zhang, X.K. Meng, Acta Mater 195 (2020) 240-251.
DOI URL |
[17] |
D.C. Pagan, M. Obstalecki, J.S. Park, M.P. Miller, Acta Mater 147 (2018) 133-148.
DOI URL |
[18] |
Y. Wang, C. Huang, Y. Li, F. Guo, Q. He, M. Wang, X. Wu, R.O. Scattergood, Y. Zhu, Int. J. Plast. 124 (2020) 186-198.
DOI URL |
[19] |
A. Orozco-Caballero, F. Li, D. Esqué-de los Ojos, M.D. Atkinson, J. Quinta da Fonseca, Acta Mater 149 (2018) 1-10.
DOI URL |
[20] |
K. Máthis, K. Nyilas, A. Axt, I. Dragomir-Cernatescu, T. Ungár, P. LukáČ, Acta Mater 52 (2004) 2889-2894.
DOI URL |
[21] | Y.Q. Bu, Z.M. Li, J.B. Liu, H.T. Wang, D. Raabe, W. Yang, Phys. Rev. Lett. 122 (2019) 075502. |
[22] |
W.J. Kim, J.B. Lee, W.Y. Kim, H.T. Jeong, H.G. Jeong, Scr. Mater. 56 (2007) 309-312.
DOI URL |
[23] |
Y.C. Xin, M.Y. Wang, Z. Zeng, G.J. Huang, Q. Liu, Scr. Mater. 64 (2011) 986-989.
DOI URL |
[24] |
S. Sandlöbes, Z. Pei, M. Friák, L.F. Zhu, F. Wang, S. Zaefferer, D. Raabe, J. Neuge- bauer, Acta Mater 70 (2014) 92-104.
DOI URL |
[25] |
S. Sandlöbes, S. Zaefferer, I. Schestakow, S. Yi, R. Gonzalez-Martinez, Acta Mater 59 (2011) 429-439.
DOI URL |
[26] | K. Wei, R. Hu, D.D. Yin, L.R. Xiao, S. Pang, Y. Cao, H. Zhou, Y.H. Zhao, Y.T. Zhu, Acta Mater 206 (2021) 116604. |
[27] | D.Y. Li, G.H. Fan, X.X. Huang, D.J. Jensen, K. Miao, C. Xu, L. Geng, Y.B. Zhang, T.B. Yu, Acta Mater 206 (2021) 116627. |
[28] |
J.Y. Zhang, K. Wu, L.Y. Zhang, Y.Q. Wang, G. Liu, J. Sun, Int. J. Plast. 96 (2017) 120-134.
DOI URL |
[29] |
T. Chen, R. Yuan, I.J. Beyerlein, C. Zhou, Int. J. Plast. 124(2020)247-260.
DOI URL |
[30] |
J. Wang, I.J. Beyerlein, N.A. Mara, D. Bhattacharyya, Scr. Mater. 64 (2011) 1083-1086.
DOI URL |
[31] | J.W. Yan, X.F. Zhu, B. Yang, G.P. Zhang, Phys. Rev. Lett. 110 (2013) 5. |
[32] |
S.J. Zheng, J. Wang, J.S. Carpenter, W.M. Mook, P.O. Dickerson, N.A. Mara, I.J. Beyerlein, Acta Mater 79 (2014) 282-291.
DOI URL |
[33] | X.H. An, S.M. Zhu, Y. Cao, M. Kawasaki, X.Z. Liao, S.P. Ringer, J.F. Nie, T.G. Lang- don, Y.T. Zhu, Appl. Phys. Lett. 107 (2015) 011901. |
[34] |
K. Máthis, G. Csiszár, J. Čapek, J. Gubicza, B. Clausen, P. Lukáš, A. Vinogradov, S.R. Agnew, Int. J. Plast. 72 (2015) 127-150.
DOI URL |
[35] | S. Jiang, R.L. Peng, Z. Hegedus, T. Gnäupel-Herold, J.J. Moverare, U. Lienert, F. Fang, X. Zhao, L. Zuo, N. Jia, Acta Mater 205 (2021) 116546. |
[36] |
J. Kieffer, V. Valls, N. Blanc, C. Hennig, J. Synchrotron Radiat. 27 (2020) 558-566.
DOI PMID |
[37] |
I.C. Dragomir, T. Ungár, J. Appl. Crystallogr. 35 (2002) 556-564.
DOI URL |
[38] |
R. Hielscher, H. Schaeben, J. Appl. Crystallogr. 41 (2008) 1024-1037.
DOI URL |
[39] |
I.C. Dragomir, D.S. Li, G.A. Castello-Branco, H. Garmestani, R.L. Snyder, G. Rib- arik, T. Ungár, Mater. Charact. 55 (2005) 66-74.
DOI URL |
[40] |
C.W. Dallas, R. Trinkle, Science 310 (2005) 1665-1667.
PMID |
[41] |
F. Maresca, W.A. Curtin, Acta Mater 182 (2020) 144-162.
DOI URL |
[42] | C. Minnert, H. ur Rehman, K. Durst, J. Mater. Res. (2021) 1-11. |
[43] |
N. Jia, D. Raabe, X. Zhao, Acta Mater 76 (2014) 238-251.
DOI URL |
[44] |
S.Y. Wang, Y.D. Zhang, C. Schuman, J.S. Lecomte, X. Zhao, L. Zuo, M.J. Philippe, C. Esling, Acta Mater 82 (2015) 424-436.
DOI URL |
[45] |
B.Y. Liu, F. Liu, N. Yang, X.B. Zhai, L. Zhang, Y. Yang, B. Li, J. Li, E. Ma, J.F. Nie, Z.W. Shan, Science 365 (2019) 73-75.
DOI URL |
[46] | Z.X. Wu, R. Ahmad, B.L. Yin, S. Sandlöbes, W.A. Curtin, Science 359 (2018) 447-452. |
[47] |
T. Soyez, D. Caillard, F. Onimus, E. Clouet, Acta Mater 197 (2020) 97-107.
DOI URL |
[48] |
H.P. Ng, T. Przybilla, C. Schmidt, R. Lapovok, D. Orlov, H.W. Höppel, M. Göken, Mater. Sci. Eng. A 576 (2013) 306-315.
DOI URL |
[49] |
H. Wu, G.H. Fan, M. Huang, L. Geng, X.P. Cui, H.L. Xie, Int. J. Plast. 89 (2017) 96-109.
DOI URL |
[50] |
S.Y. Lyu, Y.B. Sun, L. Ren, W.L. Xiao, C.L. Ma, Intermetallics 90 (2017) 16-22.
DOI URL |
[51] |
S. Jiang, R.L. Peng, N. Jia, X. Zhao, L. Zuo, J. Mater. Sci. Technol. 35 (2019) 1165-1174.
DOI URL |
[52] |
G. Anne, M.R. Ramesh, H. Shivananda Nayaka, S.B. Arya, S. Sahu, J. Alloys Compd. 724 (2017) 146-154.
DOI URL |
[53] |
K. Wu, H. Chang, E. Maawad, W.M. Gan, H.G. Brokmeier, M.Y. Zheng, Mater. Sci. Eng. A 527 (2010) 3073-3078.
DOI URL |
[54] |
H. Chang, M.Y. Zheng, C. Xu, G.D. Fan, H.G. Brokmeier, K. Wu, Mater. Sci. Eng. A 543 (2012) 249-256.
DOI URL |
[55] |
R.N. Dehsorkhi, F. Qods, M. Tajally, Mater. Sci. Eng. A 530 (2011) 63-72.
DOI URL |
[56] |
L. Ghalandari, M.M. Mahdavian, M. Reihanian, Mater. Sci. Eng. A 593 (2014) 145-152.
DOI URL |
[57] |
R.G. Zhang, V.L. Acoff, Mater. Sci. Eng. A 463 (2007) 67-73.
DOI URL |
[58] |
P.D. Motevalli, B. Eghbali, Mater. Sci. Eng. A 628 (2015) 135-142.
DOI URL |
[59] |
N. Ye, X.P. Ren, J.H. Liang, J. Mater. Res. Technol. 9 (2020) 5524-5532.
DOI URL |
[60] |
D. Rahmatabadi, M. Tayyebi, A. Sheikhi, R. Hashemi, Mater. Sci. Eng. A 734 (2018) 427-436.
DOI URL |
[61] |
M.M. Mahdavian, L. Ghalandari, M. Reihanian, Mater. Sci. Eng. A 579 (2013) 99-107.
DOI URL |
[62] |
S.V. Zherebtsov, G.S. Dyakonov, A.A. Salem, V.I. Sokolenko, G.A. Salishchev, S.L. Semiatin, Acta Mater 61 (2013) 1167-1178.
DOI URL |
[63] |
H.L. Yu, M. Yan, J.T. Li, A. Godbole, C. Lu, K. Tieu, H.J. Li, C. Kong, Mater. Sci. Eng. A 710 (2018) 10-16.
DOI URL |
[64] |
A. Fattah-alhosseini, A. Reza Ansari, Y. Mazaheri, M. Karimi, M. Haghshenas, Mater. Sci. Eng. A 688 (2017) 218-224.
DOI URL |
[65] |
J.L. Milner, F. Abu-Farha, C. Bunget, T. Kurfess, V.H. Hammond, Mater. Sci. Eng. A 561 (2013) 109-117.
DOI URL |
[66] | X. Luo, Z.Q. Feng, T.B. Yu, T.L. Huang, R.G. Li, G.L. Wu, N. Hansen, X.X. Huang, Mater. Sci. Eng. A 772 (2020) 138763. |
[67] |
L. Wang, Z. Zheng, H. Phukan, P. Kenesei, J.S. Park, J. Lind, R.M. Suter, T.R. Bieler, Acta Mater 132 (2017) 598-610.
DOI URL |
[1] | Chong Yang, Pengming Cheng, Baoan Chen, Jinyu Zhang, Gang Liu, Jun Sun. Solute clusters-promoted strength-ductility synergy in Al-Sc alloy [J]. J. Mater. Sci. Technol., 2022, 96(0): 325-331. |
[2] | Q. Yan, B. Chen, L. Cao, K.Y. Liu, S. Li, L. Jia, K. Kondoh, J.S. Li. Improved mechanical properties in titanium matrix composites reinforced with quasi-continuously networked graphene nanosheets and in-situ formed carbides [J]. J. Mater. Sci. Technol., 2022, 96(0): 85-93. |
[3] | Fei Guo, Weijiu Huang, Xusheng Yang, Haipeng Dong, Hang Yu, Qiuyu Chen, Li Hu, Luyao Jiang. Variation of mechanical properties and microstructure of hot-rolled AA2099 Al-Li alloy induced by the precipitation during preheating process [J]. J. Mater. Sci. Technol., 2022, 110(0): 198-209. |
[4] | Yang Yafeng, Geng Kang, Li Shaofu, Bermingham Michael, Misra R.D.K.. Highly ductile hypereutectic Al-Si alloys fabricated by selective laser melting [J]. J. Mater. Sci. Technol., 2022, 110(0): 84-95. |
[5] | Ao Fu, Bin Liu, Zezhou Li, Bingfeng Wang, Yuankui Cao, Yong Liu. Dynamic deformation behavior of a FeCrNi medium entropy alloy [J]. J. Mater. Sci. Technol., 2022, 100(0): 120-128. |
[6] | Xiaoru Liu, Hao Feng, Jing Wang, Xuefei Chen, Ping Jiang, Fuping Yuan, Huabing Li, En Ma, Xiaolei Wu. Mechanical property comparisons between CrCoNi medium-entropy alloy and 316 stainless steels [J]. J. Mater. Sci. Technol., 2022, 108(0): 256-269. |
[7] | Y.K. Xiao, H. Chen, Z.Y. Bian, T.T. Sun, H. Ding, Q. Yang, Y. Wu, Q. Lian, Z. Chen, H.W. Wang. Enhancing strength and ductility of AlSi10Mg fabricated by selective laser melting by TiB2 nanoparticles [J]. J. Mater. Sci. Technol., 2022, 109(0): 254-266. |
[8] | Wenjie Lu, Kang Yan, Xian Luo, Yuetang Wang, Le Hou, Pengtao Li, Bin Huang, Yanqing Yang. Superb strength and ductility balance of a Co-free medium-entropy alloy with dual heterogeneous structures [J]. J. Mater. Sci. Technol., 2022, 98(0): 197-204. |
[9] | Z.Q. Chen, M.C. Li, J.S. Cao, F.C. Li, S.W. Guo, B.A. Sun, H.B. Ke, W.H. Wang. Interface dominated deformation transition from inhomogeneous to apparent homogeneous mode in amorphous/amorphous nanolaminates [J]. J. Mater. Sci. Technol., 2022, 99(0): 178-183. |
[10] | Heng Duan, Bin Liu, Ao Fu, Junyang He, Tao Yang, C.T. Liu, Yong Liu. Segregation enabled outstanding combination of mechanical and corrosion properties in a FeCrNi medium entropy alloy manufactured by selective laser melting [J]. J. Mater. Sci. Technol., 2022, 99(0): 207-214. |
[11] | Wanting Sun, Bo Wu, Hui Fu, Xu-Sheng Yang, Xiaoguang Qiao, Mingyi Zheng, Yang He, Jian Lu, San-Qiang Shi. Combining gradient structure and supersaturated solid solution to achieve superior mechanical properties in WE43 magnesium alloy [J]. J. Mater. Sci. Technol., 2022, 99(0): 223-238. |
[12] | Yu-qin Zhang, Wei-li Cheng, Hui Yu, Hong-xia Wang, Xiao-feng Niu, Li-fei Wang, Hang Li. Unveiling the twinning and dynamic recrystallization behavior and the resultant texture evolution in the extruded Mg-Bi binary alloys during hot compression [J]. J. Mater. Sci. Technol., 2022, 105(0): 274-285. |
[13] | Jianjun Li, Feng Qin, Dingshun Yan, Wenjun Lu, Jiahao Yao. Shear instability in heterogeneous nanolayered Cu/Zr composites [J]. J. Mater. Sci. Technol., 2022, 105(0): 81-91. |
[14] | Gang Niu, Hatem S. Zurob, R.D.K. Misra, Huibin Wu, Yu Zou. Strength-ductility synergy in a 1.4 GPa austenitic steel with a heterogeneous lamellar microstructure [J]. J. Mater. Sci. Technol., 2022, 106(0): 133-138. |
[15] | Devashish Rajpoot, R. Lakshmi Narayan, Long Zhang, Punit Kumar, Haifeng Zhang, Parag Tandaiya, Upadrasta Ramamurty. Fracture toughness of a rejuvenated β-Ti reinforced bulk metallic glass matrix composite [J]. J. Mater. Sci. Technol., 2022, 106(0): 225-235. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||