J. Mater. Sci. Technol. ›› 2022, Vol. 105: 81-91.DOI: 10.1016/j.jmst.2021.06.070
• Research Article • Previous Articles Next Articles
Jianjun Lia,b,*(
), Feng Qina, Dingshun Yanc, Wenjun Lud,*(
), Jiahao Yaoe,*(
)
Received:2021-04-02
Revised:2021-06-01
Accepted:2021-06-09
Published:2021-09-12
Online:2021-09-12
Contact:
Jianjun Li,Wenjun Lu,Jiahao Yao
About author:jiahao.yao@hotmail.com (J. Yao).Jianjun Li, Feng Qin, Dingshun Yan, Wenjun Lu, Jiahao Yao. Shear instability in heterogeneous nanolayered Cu/Zr composites[J]. J. Mater. Sci. Technol., 2022, 105: 81-91.
Fig. 1. Schematic diagram of the fabricated NL Cu/Zr architectures. (a) Two homogeneous samples with an equivalent layer thickness of 10 or 100 nm. (b) Bimodal sample consists of alternating one 100 nm Cu-Zr bilayer and two 10 nm Cu-Zr bilayers. (c) Heterogeneous NL composite with one or several Cu-Zr bilayers as interlayers at each 100 nm Cu-Zr interface. HA, HB and HC denote three heterogeneous samples with one 2.5 nm, 5 nm and 10 nm Cu-Zr bilayer as interlayer, respectively, while HC2 and HC3 denote two heterogeneous samples with two and three 10 nm Cu-Zr bilayers as interlayer, respectively.
Fig. 2. XRD patterns of monolayer Cu and Zr films and the heterogeneous NL Cu/Zr samples with interlayer of one 2.5 nm (HA) and 5 nm (HB) Cu/Zr bilayer.
Fig. 3. The microstructures of the heterogeneous NL Cu/Zr architectures. Representative cross-sectional bright field TEM images of HA (a), HC (d), and the dark field TEM image of HC2 (g). HAADF-STEM images of HA (b) and HC (e). LAADF-STEM image of HC2 (h). Insets in (b), (e) and (h) are the corresponding EDS maps. The yellow dash lines in (b), (e) and (h) outline the Cu-Zr bilayers between the 100 nm Cu and Zr layers. (c), (f) and (i) are the corresponding selected area electron diffraction (SAED) patterns of (a), (d) and (g), respectively.
Fig. 4. Deformation morphologies of 100 nm Cu/Zr (a) and 10 nm Cu/Zr (c) composites after 50 g microindentation, and the corresponding cross-sectional SEM image of 100 nm Cu/Zr (b) and the HAADF-STEM image of 10 nm Cu/Zr (d) composites. The white lines in (a) and (c) denote where the cross-sectional SEM and STEM samples were taken, respectively. The blue arrows in (b) and (d) indicate the position of the indenter.
Fig. 5. HAADF-STEM image (a), and corresponding EDS map (b) of the local shear banding region of 10 nm Cu/Zr composite. (c) EDS line scanning profiles follow the path indicated by the white arrow in (b).
Fig. 6. Deformation morphologies of heterogeneous Cu/Zr composite samples (HA (a), HB (b), HC (c), HC2 (d), and HC3 (e)) and bimodal sample (f) after 50 g microindentation for 5 s holding time. The numerals in (a-c) indicate the number of the shear bands. The white lines in (a), (c), (e) and (f) designate where the cross-sectional STEM samples were taken.
Fig. 7. (a-d) Cross-sectional HAADF-STEM images of heterogeneous composites (samples HA, HC, HC3) and bimodal composites (d) after 50 g microindentation, respectively. (a1) EDS map of (a). (b1-d1) The corresponding EDS maps of the regions indicated by the white squared box in (b-d), respectively. The shear bands in each sample are designated by yellow arrows. The numerals in (a) and (b) indicate the number of the shear bands, which correspond to the shear bands numbered in Fig. 6(a) and (c), respectively. The blue arrows in (a-d) denote the position of the indenter.
Fig. 8. Schematic diagram of the shear band with geometric parameters, showing the interface kink angle (φ), the tilt angle of the shear band (α), and the width of the shear band (WSB).
Fig. 10. The normal strain (εn) of the 100 nm Cu and Zr layers within the shear band from the sample bottom to the top for heterogeneous (HA, HC, HC3) and bimodal composites.
Fig. 11. Yield strength versus strain delocalization for different NL Cu/Zr composites. The strain delocalization is defined as 1/ε, where the ε denotes the average layer strain of the 100 nm layers inside the shear band. The yield strength of HA and 10 nm Cu/Zr composites [51] are calculated by hardness/3, the yield strength of HC, HC3, 100 nm Cu/Zr and bimodal composites are adopted from the micropillar compression experiments in our previous work [51,55]. The “l” and “N” denote the thickness and number of the thin bilayer, respectively.
Fig. 12. Schematic diagram of the deformation process for heterogeneous Cu/Zr composite related to the number of Cu-Zr bilayers. Dislocations first slip on the {111} plane in the 100 nm Cu layer and accumulate at the interface, resulting in stress concentration at the interface near the 100 nm Cu layer (a, b). Two deformation modes associated with the number of Cu-Zr bilayers, i.e., multiple shear bands (b) and single shear band (e). The initiation of shear band induced by grain boundary (GB) sliding and grain rotation in Cu-Zr bilayer with various numbers (c, f).
| [1] |
M.A. Meyers, A. Mishra, D.J. Benson, Prog. Mater. Sci. 51 (2006) 427-556.
DOI URL |
| [2] |
J. Wang, Q. Zhou, S. Shao, A. Misra, Mater. Res. Lett. 5 (2016) 1-19.
DOI URL |
| [3] |
G.P. Zhang, F. Liang, X.M. Luo, X.F. Zhu, J. Mater. Res. 34 (2019) 1479-1488.
DOI URL |
| [4] |
I.A. Ovid’ko, R.Z. Valiev, Y.T. Zhu, Prog. Mater. Sci. 94 (2018) 462-540.
DOI URL |
| [5] |
M. Nasim, Y.C. Li, M. Wen, C.E. Wen, J. Mater. Sci. Technol. 50 (2020) 215-244.
DOI URL |
| [6] |
H.X. Zhang, F. Ren, M.Q. Hong, X.H. Xiao, G.X. Cai, C.Z. Jiang, J. Mater. Sci. Technol. 30 (2014) 1012-1019.
DOI URL |
| [7] |
J. Wang, L. Han, X.H. Li, D.G. Liu, L.M. Luo, Y. Huang, Y.C. Liu, Z.M. Wang, J. Mater. Sci. Technol. 65 (2021) 202-209.
DOI URL |
| [8] |
W.Y. Wang, B. Gan, D.Y. Lin, J. Wang, Y.G. Wang, B. Tang, H.C. Kou, S.L. Shang, Y. Wang, X.Y. Gao, H.F. Song, X.D. Hui, L.J. Kecskes, Z.H. Xia, K.A. Dahmen, P.K. Liaw, J.S. Li, Z.K. Liu, J. Mater. Sci. Technol. 53 (2020) 192-199.
DOI URL |
| [9] |
L.L. Li, Y.Q. Su, I.J. Beyerlein, W.Z. Han, Sci. Adv. 6 (2020) eabb6658.
DOI URL |
| [10] | B.M. Clemens, H. Kung, S.A. Barnett, MRS Bull 24 (1999) 20-26. |
| [11] |
J. McKeown, A. Misra, H. Kung, R.G. Hoagland, M. Nastasi, Scr. Mater. 46 (2002) 593-598.
DOI URL |
| [12] |
J.W. Yan, G.P. Zhang, X.F. Zhu, H.S. Liu, C. Yan, Philos. Mag. 93 (2013) 434-448.
DOI URL |
| [13] |
X.Z. Wei, Q. Zhou, K.W. Xu, P. Huang, F. Wang, T.J. Lu, Mater. Sci. Eng. A 726 (2018) 274-281.
DOI URL |
| [14] |
S.P. Wen, R.L. Zong, F. Zeng, Y. Gao, F. Pan, Acta Mater. 55 (2007) 345-351.
DOI URL |
| [15] |
D. Li, Z.W. Zhu, A.M. Wang, H.M. Fu, H. Li, H.W. Zhang, H.F. Zhang, J. Mater. Sci. Technol. 34 (2018) 708-712.
DOI |
| [16] |
Y.F. Zhao, J.Y. Zhang, Y.Q. Wang, S.H. Wu, X.Q. Liang, K. Wu, G. Liu, J. Sun, J. Mater. Sci. Technol. 68 (2021) 16-29.
DOI URL |
| [17] |
H.S. Liu, B. Zhang, G.P. Zhang, Scr. Mater. 65 (2011) 891-894.
DOI URL |
| [18] |
Y.C. Wang, A. Misra, R.G. Hoagland, Scr. Mater. 54 (2006) 1593-1598.
DOI URL |
| [19] |
H.F. Tan, B. Zhang, X.M. Luo, X.F. Zhu, G.P. Zhang, Adv. Eng. Mater. 18 (2016) 2003-2009.
DOI URL |
| [20] |
Y.C. Wang, F. Liang, H.F. Tan, B. Zhang, G.P. Zhang, Mater. Sci. Eng. A 714 (2018) 43-48.
DOI URL |
| [21] | A. Misra, M.J. Demkowicz, X. Zhang, R.G. Hoagland, JOM 59 (2007) 62-65. |
| [22] |
M.J. Demkowicz, R.G. Hoagland, J.P. Hirth, Phys. Rev. Lett. 100 (2008) 136102.
DOI URL |
| [23] |
W. Han, M.J. Demkowicz, N.A. Mara, E. Fu, S. Sinha, A.D. Rollett, Y. Wang, J.S. Carpenter, I.J. Beyerlein, A. Misra, Adv. Mater. 25 (2013) 6975-6979.
DOI URL |
| [24] |
I.J. Beyerlein, A. Caro, M.J. Demkowicz, N.A. Mara, A. Misra, B.P. Uberuaga, Mater. Today 16 (2013) 443-449.
DOI URL |
| [25] |
L.F. Zeng, R. Gao, Q.F. Fang, X.P. Wang, Z.M. Xie, S. Miao, T. Hao, T. Zhang, Acta Mater 110 (2016) 341-351.
DOI URL |
| [26] |
Y.J. Ma, Y.P. Cai, G.J. Wang, M.J. Cui, C. Sun, Z.H. Cao, X.K. Meng, Mater. Sci. Eng. A 742 (2019) 751-759.
DOI URL |
| [27] |
M.Z. Wei, J.Z. Huo, C.Z. Ye, Z.H. Cao, AIP Adv. 10 (2020) 045201.
DOI URL |
| [28] |
J.D. Zuo, Y.Q. Wang, K. Wu, C. Yang, J.Y. Zhang, G. Liu, J. Sun, Mater. Sci. Eng. A 793 (2020) 139823.
DOI URL |
| [29] |
L.X. Sun, N.R. Tao, M. Kuntz, J.Q. Yu, K. Lu, J. Mater. Sci. Technol. 30 (2014) 731-735.
DOI |
| [30] | L.L. Li, I.J. Beyerlein, W.Z. Han, J.Mater.Sci.Technol. 73(2021)61-65. |
| [31] |
D. Josell, D. van Heerden, D. Read, J. Bonevich, D. Shechtman, J. Mater. Res. 13 (1998) 2902-2909.
DOI URL |
| [32] |
I.J. Beyerlein, N.A. Mara, J. Wang, J.S. Carpenter, S.J. Zheng, W.Z. Han, R.F. Zhang, K. Kang, T. Nizolek, T.M. Pollock, JOM 64 (2012) 1192-1207.
DOI URL |
| [33] |
N.A. Mara, D. Bhattacharyya, R.G. Hoagland, A. Misra, Scr. Mater. 58 (2008) 874-877.
DOI URL |
| [34] |
C.C. Aydıner, D.W. Brown, N.A. Mara, J. Almer, A. Misra, Appl. Phys. Lett. 94 (2009) 031906.
DOI URL |
| [35] |
A. Misra, R.G. Hoagland, J. Mater. Sci. 42 (2007) 1765-1771.
DOI URL |
| [36] |
S. Lei, J.Y. Zhang, J.J. Niu, G. Liu, X. Zhang, J. Sun, Scr. Mater. 66 (2012) 706-709.
DOI URL |
| [37] |
J.Y. Zhang, S. Lei, J. Niu, Y. Liu, G. Liu, X. Zhang, J. Sun, Acta Mater. 60 (2012) 4054-4064.
DOI URL |
| [38] |
Y.P. Li, G.P. Zhang, W. Wang, J. Tan, S.J. Zhu, Scr. Mater. 57 (2007) 117-120.
DOI URL |
| [39] |
Y.P. Li, X.F. Zhu, J. Tan, B. Wu, G.P. Zhang, Phil. Mag. Lett. 89 (2009) 66-74.
DOI URL |
| [40] |
Y.P. Li, X.F. Zhu, G.P. Zhang, J. Tan, W. Wang, B. Wu, Philos. Mag. 90 (2010) 3049-3067.
DOI URL |
| [41] |
Y.P. Li, X.F. Zhu, J. Tan, B. Wu, W. Wang, G.P. Zhang, J. Mater. Res. 24 (2011) 728-735.
DOI URL |
| [42] |
F. Wang, P. Huang, M. Xu, T.J. Lu, K.W. Xu, Mater. Sci. Eng. A 528 (2011) 7290-7294.
DOI URL |
| [43] |
D. Wang, T. Kups, J. Schawohl, P. Schaaf, J. Mater. Sci.-Mater. El. 23 (2012) 1077-1082.
DOI URL |
| [44] |
A. Misra, J.P. Hirth, R.G. Hoagland, Acta Mater. 53 (2005) 4817-4824.
DOI URL |
| [45] |
G.P. Zhang, Y. Liu, W. Wang, J. Tan, Appl. Phys. Lett. 88 (2006) 013105.
DOI URL |
| [46] |
D. Bhattacharyya, N.A. Mara, P. Dickerson, R.G. Hoagland, A. Misra, J. Mater. Res. 24 (2009) 1291-1302.
DOI URL |
| [47] |
N.A. Mara, D. Bhattacharyya, J.P. Hirth, P. Dickerson, A. Misra, Appl. Phys. Lett. 97 (2010) 021909.
DOI URL |
| [48] |
S.J. Zheng, J. Wang, J.S. Carpenter, W.M. Mook, P.O. Dickerson, N.A. Mara, I.J. Beyerlein, Acta Mater. 79 (2014) 282-291.
DOI URL |
| [49] |
T.A. Wynn, D. Bhattacharyya, D.L. Hammon, A. Misra, N.A. Mara, Mater. Sci. Eng. A 564 (2013) 213-217.
DOI URL |
| [50] | X. Wu, M. Yang, F. Yuan, G. Wu, Y. Wei, X. Huang, Y. Zhu, Proc. Natl. Acad. Sci. USA 112 (2015) 14501-14505. |
| [51] |
J. Li, W. Lu, S. Zhang, D. Raabe, Sci. Rep. 7 (2017) 11371.
DOI URL |
| [52] |
J. Li, W. Lu, J. Gibson, S. Zhang, T. Chen, S. Korte-Kerzel, D. Raabe, Sci. Rep. 8 (2018) 16216.
DOI URL |
| [53] |
Y. Wang, J. Li, W. Lu, F. Yuan, X. Wu, J. Appl. Phys. 126 (2019) 215111.
DOI URL |
| [54] |
Z.H. Cao, W. Sun, Y.J. Ma, Q. Li, Z. Fan, Y.P. Cai, Z.J. Zhang, H. Wang, X. Zhang, X.K. Meng, Acta Mater 195 (2020) 240-251.
DOI URL |
| [55] |
J. Li, W. Lu, J. Gibson, S. Zhang, S. Korte-Kerzel, D. Raabe, Scr. Mater. 179 (2020) 30-35.
DOI URL |
| [56] | Y.M. Wang, J. Li, A.V. Hamza, T.W. Barbee, Proc. Natl. Acad. Sci. USA 104 (2007) 11155-11160. |
| [57] |
J.Y. Zhang, Y. Liu, J. Chen, Y. Chen, G. Liu, X. Zhang, J. Sun, Mater. Sci. Eng. A 552 (2012) 392-398.
DOI URL |
| [58] | R.G. Hoagland, T.E. Mitchell, J.P. Hirth, H. Kung, Philos. Mag. A 82 (2002) 643-664. |
| [59] |
W. Guo, E.A. Jagle, P.P. Choi, J. Yao, A. Kostka, J.M. Schneider, D. Raabe, Phys. Rev. Lett. 113 (2014) 035501.
DOI URL |
| [60] |
D. Raabe, P.P. Choi, Y.J. Li, A. Kostka, X. Sauvage, F. Lecouturier, K. Hono, R. Kirchheim, R. Pippan, D. Embury, MRS Bull. 35 (2011) 982-991.
DOI URL |
| [61] |
D. Raabe, S. Ohsaki, K. Hono, Acta Mater. 57 (2009) 5254-5263.
DOI URL |
| [62] |
C.A. Schuh, T.C. Hufnagel, U. Ramamurty, Acta Mater. 55 (2007) 4067-4109.
DOI URL |
| [63] |
S. Ohsaki, S. Kato, N. Tsuji, T. Ohkubo, K. Hono, Acta Mater. 55 (2007) 2885-2895.
DOI URL |
| [64] |
Q. Wei, D. Jia, K.T. Ramesh, E. Ma, Appl. Phys. Lett. 81 (2002) 1240.
DOI URL |
| [65] |
D. Jia, K.T. Ramesh, E. Ma, Acta Mater. 51 (2003) 3495-3509.
DOI URL |
| [66] |
Y.P. Li, J. Tan, G.P. Zhang, Scr. Mater. 59 (2008) 1226-1229.
DOI URL |
| [67] |
W.C. Oliver, G.M. Pharr, J. Mater. Res. 7 (1992) 1564-1583.
DOI URL |
| [68] |
V. Yamakov, D. Wolf, S.R. Phillpot, A.K. Mukherjee, H. Gleiter, Nat. Mater. 1 (2002) 45-49.
DOI URL |
| [69] |
Z.W. Shan, E.A. Stach, W. Jmk, J.A. Knapp, D.M. Follstaedt, S.X. Mao, Science 305 (2004) 654-657.
DOI URL |
| [70] |
J.R. Trelewicz, C.A. Schuh, Acta Mater. 55 (2007) 5948-5958.
DOI URL |
| [71] |
A.C. Lund, C.A. Schuh, Acta Mater. 53 (2005) 3193-3205.
DOI URL |
| [72] |
Y. Cui, O.T. Abad, F. Wang, P. Huang, T.J. Lu, K.W. Xu, J. Wang, Sci. Rep. 6 (2016) 23306.
DOI URL |
| [73] |
K.K. Fu, L. Chang, C.H. Yang, L. Sheppard, H.J. Wang, M. Maandal, L. Ye, J. Mater. Sci. 52 (2017) 13956-13965.
DOI URL |
| [74] |
J.Y. Kim, X. Gu, M. Wraith, J.T. Uhl, K.A. Dahmen, J.R. Greer, Adv. Funct. Mater. 22 (2012) 1972-1980.
DOI URL |
| [75] |
X.L. Lu, Y. Li, L. Lu, Acta Mater. 106 (2016) 182-192.
DOI URL |
| [76] |
X.Y. Cuan, J. Pan, R.Q. Cao, Y. Lin, J.H. Yao, Y.X. Wang, Y. Li, Mater. Lett. 218 (2018) 150-153.
DOI URL |
| [77] |
R.Q. Cao, J. Pan, Y. Lin, Y. Li, Mater. Sci. Eng. A 760 (2019) 458-468.
DOI URL |
| [78] |
F. Liang, B. Zhang, Y. Yong, X.M. Luo, G.P. Zhang, Int. J. Plast. 132 (2020) 102745.
DOI URL |
| [1] | Ao Fu, Bin Liu, Zezhou Li, Bingfeng Wang, Yuankui Cao, Yong Liu. Dynamic deformation behavior of a FeCrNi medium entropy alloy [J]. J. Mater. Sci. Technol., 2022, 100(0): 120-128. |
| [2] | Z.Q. Chen, M.C. Li, J.S. Cao, F.C. Li, S.W. Guo, B.A. Sun, H.B. Ke, W.H. Wang. Interface dominated deformation transition from inhomogeneous to apparent homogeneous mode in amorphous/amorphous nanolaminates [J]. J. Mater. Sci. Technol., 2022, 99(0): 178-183. |
| [3] | Minmin Zhu, Haizhong Zhang, Shoo Wen Long Favier, Yida Zhao, Huilu Guo, Zehui Du. A general strategy towards controllable replication of butterfly wings for robust light photocatalysis [J]. J. Mater. Sci. Technol., 2022, 105(0): 286-292. |
| [4] | Devashish Rajpoot, R. Lakshmi Narayan, Long Zhang, Punit Kumar, Haifeng Zhang, Parag Tandaiya, Upadrasta Ramamurty. Fracture toughness of a rejuvenated β-Ti reinforced bulk metallic glass matrix composite [J]. J. Mater. Sci. Technol., 2022, 106(0): 225-235. |
| [5] | Jiayi Zhang, Yan Jin Lee, Hao Wang. Microstructure evaluation of shear bands of microcutting chips in AA6061 alloy under the mechanochemical effect [J]. J. Mater. Sci. Technol., 2021, 91(0): 178-186. |
| [6] | Jing Zhou, Qianqian Wang, Qiaoshim Zeng, Kuibo Yin, Anding Wang, Junhua Luan, Litao Sun, Baolong Shen. A plastic FeNi-based bulk metallic glass and its deformation behavior [J]. J. Mater. Sci. Technol., 2021, 76(0): 20-32. |
| [7] | Mohammad Sharear Kabir, Zhifeng Zhou, Zonghan Xie, Paul Munroe. Designing multilayer diamond like carbon coatings for improved mechanical properties [J]. J. Mater. Sci. Technol., 2021, 65(0): 108-117. |
| [8] | Yang Chen, Yuede Cao, Zhixiang Qi, Guang Chen. Increasing high-temperature fatigue resistance of polysynthetic twinned TiAl single crystal by plastic strain delocalization [J]. J. Mater. Sci. Technol., 2021, 93(0): 53-59. |
| [9] | Zhuang-Hao Zheng, Jun-Yu Niu, Dong-Wei Ao, Bushra Jabar, Xiao-Lei Shi, Xin-Ru Li, Fu Li, Guang-Xing Liang, Yue-Xing Chen, Zhi-Gang Chen, Ping Fan. In-situ growth of high-performance (Ag, Sn) co-doped CoSb3 thermoelectric thin films [J]. J. Mater. Sci. Technol., 2021, 92(0): 178-185. |
| [10] | Min Cheol Jo, Selim Kim, Dong Woo Suh, Hong Kyu Kim, Yong Jin Kim, Seok Su Sohn, Sunghak Lee. Enhancement of ballistic performance enabled by transformation-induced plasticity in high-strength bainitic steel [J]. J. Mater. Sci. Technol., 2021, 84(0): 219-229. |
| [11] | Jianping Lai, Wen Hu, Amit Datye, Jingbei Liu, Jan Schroers, Udo D. Schwarz, Jiaxin Yu. Revealing the relationships between alloy structure, composition and plastic deformation in a ternary alloy system by a combinatorial approach [J]. J. Mater. Sci. Technol., 2021, 84(0): 97-104. |
| [12] | L. Jiang, Z.Q. Chen, H.B. Lu, H.B. Ke, Y. Yuan, Y.M. Dong, X.K. Meng. Corrosion protection of NiNb metallic glass coatings for 316SS by magnetron sputtering [J]. J. Mater. Sci. Technol., 2021, 79(0): 88-98. |
| [13] | Thang Q. Tran, Jeremy Kong Yoong Lee, Amutha Chinnappan, W.A.D.M. Jayathilaka, Dongxiao Ji, Vishnu Vijay Kumar, Seeram Ramakrishna. Strong, lightweight, and highly conductive CNT/Au/Cu wires from sputtering and electroplating methods [J]. J. Mater. Sci. Technol., 2020, 40(0): 99-106. |
| [14] | Shidong Feng, n Li, K.C. Chan, Lei Zhao, Limin Wang, Riping Liu. Enhancing strength and plasticity by pre-introduced indent-notches in Zr36Cu64 metallic glass: A molecular dynamics simulation study [J]. J. Mater. Sci. Technol., 2020, 43(0): 119-125. |
| [15] | J. Hu, J.X. Li, Y.-N. Shi. Suppression of grain boundary migration at cryogenic temperature in an extremely fine nanograined Ni-Mo alloy [J]. J. Mater. Sci. Technol., 2020, 57(0): 65-69. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
