J. Mater. Sci. Technol. ›› 2022, Vol. 105: 92-100.DOI: 10.1016/j.jmst.2021.06.058
• Research Article • Previous Articles Next Articles
Fan Wang, Weihua Gu, Jiabin Chen, Qianqian Huang, Mingyang Han, Gehuan Wang, Guangbin Ji(
)
Received:2021-06-02
Revised:2021-06-21
Accepted:2021-06-26
Published:2021-09-25
Online:2021-09-25
Contact:
Guangbin Ji
About author:*E-mail address: gbji@nuaa.edu.cn (G. Ji).Fan Wang, Weihua Gu, Jiabin Chen, Qianqian Huang, Mingyang Han, Gehuan Wang, Guangbin Ji. Improved electromagnetic dissipation of Fe doping LaCoO3 toward broadband microwave absorption[J]. J. Mater. Sci. Technol., 2022, 105: 92-100.
| Parameters | LaCoFeO3 | LaCo0.9Fe0.1O3 | LaCo0.8Fe0.2O3 | LaCo0.7Fe0.3O3 |
|---|---|---|---|---|
| k-points | 3×3×3 | 3×3×1 | 1×3×3 | 1×3×3 |
| Energy cut-off (eV) | 400 | 380 | 380 | 380 |
| Protocell number | 1 | 5 | 4 | 4 |
| Co3+/Fe3+ | 0 | 3:29 | 5:24 | 7:24 |
| a=b (Å) | 5.3416 | 5.3416 | 5.5314 | 5.3416 |
| c (Å) | 5.3416 | 22.2758 | 22.1052 | 21.3664 |
Table 1. The first principles calculation parameters and the optimized lattice parameters for each magnetically LCFOs configuration.
| Parameters | LaCoFeO3 | LaCo0.9Fe0.1O3 | LaCo0.8Fe0.2O3 | LaCo0.7Fe0.3O3 |
|---|---|---|---|---|
| k-points | 3×3×3 | 3×3×1 | 1×3×3 | 1×3×3 |
| Energy cut-off (eV) | 400 | 380 | 380 | 380 |
| Protocell number | 1 | 5 | 4 | 4 |
| Co3+/Fe3+ | 0 | 3:29 | 5:24 | 7:24 |
| a=b (Å) | 5.3416 | 5.3416 | 5.5314 | 5.3416 |
| c (Å) | 5.3416 | 22.2758 | 22.1052 | 21.3664 |
Fig. 2. XRD patterns of (a) LCFOs with different Fe doping amounts; SEM images of LCFOs ((b) LCO, (c) LCFO-1, (d) LCFO-2, (e) LCFO-3, (f) LCFO-4, (g) LCFO-5 and (h) LCFO-6).
Fig. 4. The total and partial density states of (a) LCO, (b) LCFO-2, (c) LCFO-4, (d) LCFO-6 in the GGA+U models; (e) the simulated total density of states plots for the four Fe doped systems; (f) the exchange interaction between Co and O elements.
Fig. 5. (a) The antiferromagnetic structure diagram of LCO; (b, c) the diagram of super-exchange interaction model; (d) the diagram of double-exchange interaction model.
Fig. 6. Frequency and thickness dependence of 2D reflection loss (RL) contour maps for (a) LCO, (b) LCFO-1, (c) LCFO-2, (d) LCFO-3, (e) LCFO-4, (f) LCFO-5, (g) LCFO-6; (h) the RL curves of LCFO-2 at the thickness of 1.95 and 2.30 mm; (i) the RL curves of series of LaCo1-xFexO3 at the thickness of 1.8 mm.
Fig. 7. (a) The real part ε′ and (b) imaginary part ε″ of complex permittivity of LaCo1-xFexO3; (c) the dielectric loss tangent (ε″/ε′) of series of LaCo1-xFexO3; (d) the real part μ′ and (e) imaginary part μ″ of complex permeability of LaCo1-xFexO3; (f) the magnetic loss tangent (μ″/μ′) of LaCo1-xFexO3.
| [1] |
L. Huang, Y. Duan, X. Dai, Y. Zeng, G. Ma, Y. Liu, S. Gao, W. Zhang, Small 15 (2019) 1902730.
DOI URL |
| [2] |
Y. Duan, H. Pang, X. Wen, X. Zhang, T. Wang, J. Mater. Sci. Technol. 77 (2021) 209-216.
DOI URL |
| [3] |
B. Zhang, Y. Duan, H. Zhang, S. Huang, G. Ma, T. Wang, X. Dong, N. Jia, J. Mater. Sci. Technol. 68 (2021) 124-131.
DOI |
| [4] |
L. Song, Y. Duan, J. Liu, H. Pang, Nano Res. 13 (2020) 95-104.
DOI URL |
| [5] |
I. Hajimiri, M.S. Seyed Dorraji, M.H. Rasoulifard, A.R. Amani-Ghadim, M.R. Khoshroo, Mater. Sci. Eng. B 225 (2017) 75-85.
DOI URL |
| [6] |
M.I. Saleem, S.Y. Yang, A. Batool, M. Sulaman, C.P. Veeramalai, Y.R. Jiang, Y. Tang, Y.Y. Cui, L.B. Tang, B.S. Zou, J. Mater. Sci. Technol. 75 (2021) 196-204.
DOI URL |
| [7] | Z. Jing, Y.A. Xiong, J. Yao, Q. Pan, G. Du, Z. Feng, Y. You, S. Miao, T. Sha, Chin. Sci. Bul. 65 (2012) 916-930. |
| [8] |
A. Tkach, O. Okhay, J. Mater. Sci. Technol. 65 (2020) 151-153.
DOI URL |
| [9] |
J.W. Liu, J.J. Wang, H.T. Gao, Mater. Sci. Forum 914 (2018) 96-101.
DOI URL |
| [10] |
L. Chen, C. Lu, Y. Zhao, Y. Ni, J. Song, Z. Xu, J. Alloys Compd. 509 (2011) 8756-8760.
DOI URL |
| [11] |
L. Chen, C. Lu, Y. Lu, Z. Fang, Y. Ni, Z. Xu, RSC Adv. 3 (2013) 3967-3972.
DOI URL |
| [12] | V. Hardy, Y. Breard, F. Guillou, J. Phys.: Condens. Matter (2020) 095801. |
| [13] |
L. Wang, X. Li, Q. Li, Y. Zhao, R. Che, ACS Appl. Mater Inter. 10 (2018) 22602-22610.
DOI URL |
| [14] | L. Sun, G. Li, W.J.Hu Chen, Comput. Mater. Sci. 115 (2016) 154-157. |
| [15] | D. Wu, G.D. Chen, C.Y. Ge, Z.P. Hu, X.H. He, X.G. Li, J. Chem. Phys. 30 (2017) 295-302. |
| [16] |
H. Wu, F. Li, Phys. Lett. A 383 (2019) 210-214.
DOI URL |
| [17] |
T. Hou, Z. Jia, A. Feng, Z. Zhou, X. Liu, H. Lv, G. Wu, J. Mater. Sci. Technol. 68 (2021) 61-69.
DOI URL |
| [18] |
X. Zhou, Z. Jia, X. Zhang, B. Wang, W. Wu, X. Liu, B. Xu, G. Wu, J. Mater. Sci. Technol. 87 (2021) 120-132.
DOI URL |
| [19] |
X. Xu, F. Ran, Z. Fan, Z. Cheng, T. Lv, L. Shao, Y. Liu, ACS Appl Mater Inter 12 (2020) 17870-17880.
DOI URL |
| [20] |
Z.U. Rehman, M. Uzair, N.T. Hwan, K.M. Soo, I. Hussain, B.H. Koo, J. Supercond, Nov. Magn. 31 (2017) 833-839.
DOI URL |
| [21] |
Y.L. Cen, J.J. Shi, M. Zhang, M. Wu, J. Du, W.H. Guo, S.M. Liu, S.P. Han, Y.H. Zhu, Chem. Mater. 32 (2020) 2450-2460.
DOI URL |
| [22] |
Y. Hong, J. Li, H. Bai, Z. Song, G. Li, M. Wang, Z. Zhou, Appl. Phys. Lett. 116 (2020) 013103.
DOI URL |
| [23] |
M. Zhang, H.j. Yang, Y. Li, W.Q. Cao, X.Y. Fang, J. Yuan, M.S. Cao, Appl. Phys. Lett. 115 (2019) 212902.
DOI URL |
| [24] |
S.N.A. Rusly, K.A. Matori, I. Ismail, Z. Abbas, Z. Awang, F.M. Idris, I.R. Ibrahim, J. Mater. Sci.: Mater. Electron. 29 (2018) 13229-13240.
DOI URL |
| [25] |
Y. Li, N. Sun, J. Liu, X. Hao, J. Du, H. Yang, X. Li, M. Cao, Compos. Sci. Technol. 159 (2018) 240-250.
DOI URL |
| [26] |
H. Zhao, Y. Cheng, Z. Zhang, J. Yu, J. Zheng, M. Zhou, L. Zhou, B. Zhang, G. Ji, Compos. B. Eng. 196 (2020) 108119.
DOI URL |
| [27] |
X. Wang, Y. Han, X. Song, W. Liu, H. Cui, Comput. Mater. Sci. 136 (2017) 191-197.
DOI URL |
| [28] |
P. Miao, J. Yang, Y. Liu, H. Xie, K.J. Chen, J. Kong, Cryst. Growth Des. 20 (2020) 4818-4826.
DOI URL |
| [29] | C. Zener, IPhys. Rev. 83 (1951) 299-301. |
| [30] |
Y. Li, X. Fang, M. Cao, Sci. Rep. 6 (2016) 24837.
DOI URL |
| [31] | E. Smith, S. Škapin, R. Ubic, J. Alloys Compd. 836 (2020) 115475. |
| [32] |
J. Park, Y.N. Wu, W.A.B. Saidi, Phys. Chem. Chem. Phys. 22 (2020) 27163-27172.
DOI URL |
| [33] |
L. Wang, M. Al-Mamun, Y.L. Zhong, P. Liu, Y. Wang, H.G. Yang, H. Zhao, Chempluschem 83 (2018) 924-928.
DOI URL |
| [34] |
T. Jia, Z. Zeng, H.Q. Lin, Y. Duan, P. Ohodnicki, RSC Adv. 7 (2017) 38798-38804.
DOI URL |
| [35] |
J.L. Hueso, J.P. Holgado, R. Pereñíguez, S. Mun, M. Salmeron, A. Caballero, J. Solid State Chem. 183 (2010) 27-32.
DOI URL |
| [36] | C.L. Flint, A. Vailionis, H. Zhou, H. Jang, J.S. Lee, Y. Suzuki, Phys. Rev. B 96 (2017) 087202. |
| [37] |
D.R. Munazat, B. Kurniawan, J. Phys.: Conf. Ser. 1170 (2019) 012051.
DOI URL |
| [38] |
C. Yin, G. Tian, G. Li, F. Liao, J. Lin, RSC Adv. 7 (2017) 33869-33874.
DOI URL |
| [39] |
A.E. Thuijs, X.G. Li, Y.P. Wang, K.A. Abboud, X.G. Zhang, H.P. Cheng, G. Christou, Nat. Commun. 8 (2017) 500.
DOI URL |
| [40] |
V. Lalan, A. Puthiyedath Narayanan, K.P. Surendran, S. Ganesanpotti, ACS Omega 4 (2019) 8196-8206.
DOI URL |
| [41] |
H. Jing, G. Hu, S.B. Mi, L. Lu, M. Liu, S. Cheng, S. Cheng, C.L. Jia, Microsc. Microanal. 23 (2017) 1656-1657.
DOI URL |
| [42] |
S.N.A. Rusly, I. Ismail, K.A. Matori, Z. Abbas, A.H. Shaari, Z. Awang, I.R. Ibrahim, F.M. Idris, M.H. Mohd Zaid, M.K.A. Mahmood, I.H. Hasan, Ceram. Int. 46 (2020) 737-746.
DOI URL |
| [43] |
Y. Wang, W. Zhou, G. Zeng, H. Chen, H. Luo, X. Fan, Y. Li, Carbon 175(2021) 233-242.
DOI URL |
| [44] |
W. Zhou, Y. Li, L. Long, H. Luo, Y. Wang, J. Am. Ceram. Soc. 103 (2020) 6822-6832.
DOI URL |
| [45] | X. Gao, Z. Jia, B. Wang, X. Wu, T. Sun, X. Liu, Q. Chi, G. Wu, Chem. Eng. J. 19 (2021) 130019. |
| [46] |
B. Quan, W.H. Gu, J.Q. Sheng, X.F. Lv, Y.Y. Mao, L. Liu, X.G. Huang, Z.J. Tian, G.B. Ji, Nano Res. 14 (2021) 1495-1501.
DOI URL |
| [47] |
W.H. Gu, X.Q. Cui, J. Zheng, J.W. Yu, Y. Zhao, J. Mater. Sci. Technol. 67 (2021) 265-272.
DOI URL |
| [48] |
Z. Zhang, J.W. Tan, W.H. Gu, H.Q. Zhao, J. Zheng, B.S. Zhang, G.B. Ji, Chem. Eng. J. 395 (2020) 125190.
DOI URL |
| [49] |
W.H. Gu, J.Q. Sheng, Q.Q. Huang, G.H. Wang, J.B. Chen, G.B. Ji, Nano-Micro Lett. 13 (2021) 102.
DOI URL |
| [50] |
S. Sharif, G. Murtaza, T. Meydan, P.I. Williams, J. Cuenca, S.H. Hashimdeen, F. Shaheen, R. Ahmad, Thin Solid Films 662 (2018) 83-89.
DOI URL |
| [51] | Z. Ma, C.T. Cao, Q.F. Liu, J.B. Wang, Chin. Phys. Let. 29 (2012) 247-250. |
| [1] | Fu-Zhi Dai, Yinjie Sun, Yixiao Ren, Huimin Xiang, Yanchun Zhou. Segregation of solute atoms in ZrC grain boundaries and their effects on grain boundary strengths [J]. J. Mater. Sci. Technol., 2022, 101(0): 234-241. |
| [2] | Jun He, Shengtao Gao, Yuanchun Zhang, Xingzhao Zhang, Hanxu Li. N-doped residual carbon from coal gasification fine slag decorated with Fe3O4 nanoparticles for electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 104(0): 98-108. |
| [3] | Li Liu, Jian-Tang Jiang, Xiang-Yuan Cui, Bo Zhang, Liang Zhen, Simon P. Ringer. Correlation between precipitates evolution and mechanical properties of Al-Sc-Zr alloy with Er additions [J]. J. Mater. Sci. Technol., 2022, 99(0): 61-72. |
| [4] | Rui Guo, Qi Zheng, Lianjun Wang, Yuchi Fan, Wan Jiang. Porous N-doped Ni@SiO2/graphene network: Three-dimensional hierarchical architecture for strong and broad electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 106(0): 108-117. |
| [5] | Yingzhi Jiao, Siyao Cheng, Fan Wu, Jiaoyan Shi, Aming Xie, Xufei Zhu, Wei Dong. Microporous polythiophene (MPT)-guest complex derived magnetic metal sulfides/carbon nanocomposites for broadband electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 100(0): 206-215. |
| [6] | Fei Pan, Lei Cai, Yanyan Dong, Xiaojie Zhu, Yuyang Shi, Wei Lu. Mixed-dimensional hierarchical configuration of 2D Ni2P nanosheets anchored on 1D silk-derived carbon fiber for extraordinary electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 101(0): 85-94. |
| [7] | Yue Liu, Xuehua Liu, Xinyu E, Bingbing Wang, Zirui Jia, Qingguo Chi, Guanglei Wu. Synthesis of MnxOy@C hybrid composites for optimal electromagnetic wave absorption capacity and wideband absorption [J]. J. Mater. Sci. Technol., 2022, 103(0): 157-164. |
| [8] | Ning Sun, Wen Li, Shuang Wei, Hui Gao, Wei Wang, Shougang Chen. Facile synthesis of lightweight 3D hierarchical NiCo2O4 nanoflowers/reduced graphene oxide composite foams with excellent electromagnetic wave absorption performance [J]. J. Mater. Sci. Technol., 2021, 91(0): 187-199. |
| [9] | Lakshitha Jasin Arachchige, Yongjun Xu, Zhongxu Dai, Xiao Li Zhang, Feng Wang, Chenghua Sun. Double transition metal atoms anchored on Graphdiyne as promising catalyst for electrochemical nitrogen reduction reaction [J]. J. Mater. Sci. Technol., 2021, 77(0): 244-251. |
| [10] | Xiankai Fu, Bo Yang, Wanqi Chen, Zongbin Li, Haile Yan, Xiang Zhao, Liang Zuo. Electromagnetic wave absorption performance of Ti2O3 and vacancy enhancement effective bandwidth [J]. J. Mater. Sci. Technol., 2021, 76(0): 166-173. |
| [11] | Qiu-Jie Chen, Shang-Yi Ma, Shao-Qing Wang. The assisting and stabilizing role played by ω phase during the $~\left\{ 112 \right\}{{111}_{\beta }}$ twinning in Ti-Mo alloys: A first-principles insight [J]. J. Mater. Sci. Technol., 2021, 80(0): 163-170. |
| [12] | Lin Gao, Kai Li, Song Ni, Yong Du, Min Song. The growth mechanisms of θ′ precipitate phase in an Al-Cu alloy during aging treatment [J]. J. Mater. Sci. Technol., 2021, 61(0): 25-32. |
| [13] | Hai-Le Yan, Hao-Xuan Liu, Ying Zhao, Nan Jia, Jing Bai, Bo Yang, Zongbin Li, Yudong Zhang, Claude Esling, Xiang Zhao, Liang Zuo. Impact of B alloying on ductility and phase transition in the Ni-Mn-based magnetic shape memory alloys: Insights from first-principles calculation [J]. J. Mater. Sci. Technol., 2021, 74(0): 27-34. |
| [14] | Yifan Wang, Yanli Lu, Jing Zhang, Wenchao Yang, Changlin Yang, Pan Wang, Xiaoqing Song, Zheng Chen. Investigation of the 12 orientations variants of nanoscale Al precipitates in eutectic Si of Al-7Si-0.6Mg alloy [J]. J. Mater. Sci. Technol., 2021, 67(0): 186-196. |
| [15] | W.-W. Xu, G.H. Yin, Z.Y. Xiong, Q. Yu, T.Q. Gang, L.J. Chen. Plasticity-induced stacking fault behaviors of γ’ precipitates in novel CoNi-based superalloys [J]. J. Mater. Sci. Technol., 2021, 90(0): 20-29. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
