J. Mater. Sci. Technol. ›› 2022, Vol. 105: 101-108.DOI: 10.1016/j.jmst.2021.06.063
• Research Article • Previous Articles Next Articles
Yunhai Zhang, Yongsheng Liu(
), Liyang Cao, Xutong Zheng, Yejie Cao, Jing Wang(
), Qing Zhang
Received:2021-05-15
Revised:2021-06-16
Accepted:2021-06-20
Published:2021-09-08
Online:2021-09-08
Contact:
Yongsheng Liu,Jing Wang
About author:wangjing1@nwpu.edu.cn (J. Wang).Yunhai Zhang, Yongsheng Liu, Liyang Cao, Xutong Zheng, Yejie Cao, Jing Wang, Qing Zhang. Construction of continuous heat conductive channel, a double harvest strategy to enhance thermal conductance and bending strength of C/SiC composites[J]. J. Mater. Sci. Technol., 2022, 105: 101-108.
Fig. 2. SEM images of HTCF-C/SiC composites: (a) surface of filled micro-channel, (b) high magnification image of HTC in micro-channel, (c) backscatter diffraction image of filled micro-channel, (d) the image of HTCF-C/SiC composites observed with Micro-CT (the color represents the closed pores volume and distribution within the composites) and (e) the local magnification image of Micro-CT (The white band along the Micro-channel is the SiC dense band).
| Sample | Density (g/cm3) | Bending strength (MPa) |
|---|---|---|
| C/SiC | 2.21 | 345.05 ± 28 |
| HTCF-C/SiC | 2.17 | 457.09 ± 21 |
Table 1. the density and bending strength of C/SiC and HTCF-C/SiC composites
| Sample | Density (g/cm3) | Bending strength (MPa) |
|---|---|---|
| C/SiC | 2.21 | 345.05 ± 28 |
| HTCF-C/SiC | 2.17 | 457.09 ± 21 |
Fig. 4. Fracture surface and fracture schematic diagram of three-point bending strength test: (a, c, e) C/SiC composites, (b, d, f) HTCF-C/SiC composites.
Fig. 5. Schematic diagram of bending deformation: (a) general bending deformation, (b) bending stress distribution of general bending deformation, (c) shear stress distribution corresponding to general C/SiC composites, (d) bending fracture of C/SiC composites, (e) bending fracture of HTCF-C/SiC composites.
Fig. 6. fracture morphology of HTCF: (a1-a4) the fracture morphology of single HTCF, (b1-b4) the fracture morphology of HTCF in HTCF-C/SiC composites, (c1-c4) the fracture morphology of HTCF in HTCF-C/SiC composites with high magnification.
Fig. 7. EDS mapping of surface of HTCF: (a1, b1 and c1) the grey image of HTCF, (a2, b2 and c2) the distribution of carbon element, (a3, b3 and c3) the distribution of silicon element. (c1 is a polished surface.)
| [1] | M. Leuchs, in: W. Krenkel (Ed.), Ceramic Matrix Composites, Wiley-VCH Verlag GmbH & Co. KGaA, 2008, pp. 141-164. |
| [2] |
J. Ding, X. Ma, X. Fan, J. Xue, F. Ye, L. Cheng, J. Mater. Sci. Technol. 88 (2021) 1-10.
DOI URL |
| [3] |
P.R. Wang, F.Q. Liu, H. Wang, H. Li, Y.Z. Gou, J. Mater. Sci. Technol. 35 (2019) 2743-2750.
DOI URL |
| [4] | W. Krenkel, in: Handbook of Ceramic Composites, Springer US, Boston, MA, 2005, pp. 117-148. |
| [5] |
Q.C. He, H.J. Li, X.M. Yin, J.H. Lu, J. Mater. Sci. Technol. 71 (2021) 55-66.
DOI URL |
| [6] |
X.R. Lv, M.K. Yue, W.F. Yang, X. Feng, X.Y. Li, Y.M. Wang, J.M. Wang, J. Zhang, J.Y. Wang, J. Mater. Sci. Technol. 67 (2021) 165-173.
DOI URL |
| [7] |
S.L. Lv, Q.N. Zeng, L.J. Yao, L.D. Chen, X.Y. Tong, Appl. Mech. Mater. 109 (2012) 17-22.
DOI URL |
| [8] | S. Li, X. Tong, L. Yao, B. Li, Adv. Mater. Res. 460 (2012) 342-346. |
| [9] | T. Reimer, I. Petkov, W. Rotärmel, 8th European symposium on aerothermody- namics for space vehicles. Lisbon, Portugal, 2015. |
| [10] |
P. Tao, W. Liu, Y. Wang, J. Eur. Ceram. Soc. 40 (2020) 3399-3405.
DOI URL |
| [11] |
L. Cao, Y. Liu, Y. Zhang, J. Wang, J. Chen, J. Eur. Ceram. Soc. 40 (2020) 3520-3527.
DOI URL |
| [12] |
J. Li, Y. Liu, C. Chen, Y. Pan, J. Wang, N. Wang, Diam. Relat. Mater. 107 (2020) 107902.
DOI URL |
| [13] | M.A. McCarthy, E.M. Byrne, N.P. O’Brien, T. Murmu, in: Improved Mechan- ical Performance of CNTs and CNT Fibres in Nanocomposites Through In- ter-Wall and Inter-Tube Coupling, Springer International Publishing, Cham, 2014, pp. 1-56. |
| [14] | G.Z. Ze, Z.Z. Tai, J.J. Sheng, R.J. Bishop, in: Physical Properties of Inorganic Ma- terials, Tsinghua University Press 2011, pp. 108-164. |
| [15] |
R.J. Bruls, H.T. Hintzen, R. Metselaar, J. Eur. Ceram. Soc. 25 (2005) 767-779.
DOI URL |
| [16] |
F.R. Charvat, W.D. Kingery, J. Am. Ceram. Soc. 40 (1957) 306-315.
DOI URL |
| [17] | P.G. Klemens, Phil. Trans. Soc. A 208 (1951) 108-133. |
| [18] | P.G. Klemens, Sol. Stat. Phys. 7 (1958) 1-98. |
| [19] |
P.G. Klemens, Phys. Rev. 119 (1960) 507-509.
DOI URL |
| [20] |
V. Ambegaokar, Phys. Rev. 114 (1959) 488-489.
DOI URL |
| [21] | M.R. Wisnom, Philos. Trans. Soc. A 370 (2012) 1850-1870. |
| [22] |
D.X. Yan, M. Zu, P.R. Wang, Y. Zhang, J.H. Chen, Y.Z. Gou, J. Am. Ceram. Soc. 104 (2021) 5365-5378.
DOI URL |
| [23] |
M.G. Dobb, D.J. Johnson, C.R. Park, J. Mater. Sci. 25 (1990) 829-834.
DOI URL |
| [24] |
M. Endo, J. Mater. Sci. 23 (1988) 598-605.
DOI URL |
| [1] | Zhilei Wei, Zhejian Zhang, Xiaoyu Zhang, Zhiyuan Li, Tao Li, Jiabin Hu, Shunjian Xu, Zhongqi Shi. Preparation of unidirectional porous AlN ceramics via the combination of freeze casting and combustion synthesis [J]. J. Mater. Sci. Technol., 2022, 100(0): 161-168. |
| [2] | Jun Guo, Yu-Ke Zhu, Lin Chen, Zi-Yuan Wang, Zhen-Hua Ge, Jing Feng. High thermoelectric properties realized in earth abundant Bi2S3 bulk materials via Se and Cl co-doping in solution synthesis process [J]. J. Mater. Sci. Technol., 2022, 100(0): 51-58. |
| [3] | Yating Wang, Hong Jin, Jiajun Shen, Bijia Wang, Xueling Feng, Zhiping Mao, Yumei Zhang, Xiaofeng Sui. Thermally conductive poly(lactic acid)/boron nitride composites via regenerated cellulose assisted Pickering emulsion approach [J]. J. Mater. Sci. Technol., 2022, 101(0): 146-154. |
| [4] | De-Zhuang Wang, Wei-Di Liu, Xiao-Lei Shi, Han Gao, Hao Wu, Liang-Cao Yin, Yuewen Zhang, Yifeng Wang, Xueping Wu, Qingfeng Liu, Zhi-Gang Chen. Se-alloying reducing lattice thermal conductivity of Ge0.95Bi0.05Te [J]. J. Mater. Sci. Technol., 2022, 106(0): 249-256. |
| [5] | Shaohan Li, Weiwei Sun, Yi Luo, Jin Yu, Litao Sun, Bao-Tian Wang, Ji-Xuan Liu, Guo-Jun Zhang, Igor Di Marco. Pushing the limit of thermal conductivity of MAX borides and MABs [J]. J. Mater. Sci. Technol., 2022, 97(0): 79-88. |
| [6] | Tianci Xie, Hui Shi, Hongbin Wang, Qun Luo, Qian Li, Kuo-Chih Chou. Thermodynamic prediction of thermal diffusivity and thermal conductivity in Mg-Zn-La/Ce system [J]. J. Mater. Sci. Technol., 2022, 97(0): 147-155. |
| [7] | Shiyi Wen, Yong Du, Jing Tan, Yuling Liu, Peng Zhou, Jianzhan Long, George Kaptay. A new model for thermal conductivity of “continuous matrix / dispersed and separated 3D-particles” type composite materials and its application to WC-M (M = Co, Ag) systems [J]. J. Mater. Sci. Technol., 2022, 97(0): 123-133. |
| [8] | Ping Zhang, Zhihao Lou, Mengjie Qin, Jie Xu, Jiatong Zhu, Zongmo Shi, Qian Chen, Michael J. Reece, Haixue Yan, Feng Gao. High-entropy (Ca0.2Sr0.2Ba0.2La0.2Pb0.2)TiO3 perovskite ceramics with A-site short-range disorder for thermoelectric applications [J]. J. Mater. Sci. Technol., 2022, 97(0): 182-189. |
| [9] | You Shi, Yang Bai, Yanzhou Lei, Haoruo Zhang, Shengtai Zhou, Huawei Zou, Mei Liang, Yang Chen. Simultaneously enhanced heat dissipation and tribological properties of polyphenylene sulfide-based composites via constructing segregated network structure [J]. J. Mater. Sci. Technol., 2022, 99(0): 239-250. |
| [10] | Yang Jianyan, Ren Weijun, Zhao Xinguo, Kikuchi Tatsuya, Miao Ping, Nakajima Kenji, Li Bing, Zhang Zhidong. Mictomagnetism and suppressed thermal conduction of the prototype high-entropy alloy CrMnFeCoNi [J]. J. Mater. Sci. Technol., 2022, 99(0): 55-60. |
| [11] | Jin Ba, Xu Ji, Bin Wang, Peixin Li, Jinghuang Lin, Jian Cao, Junlei Qi. Microstructure design of C/C composites through electrochemical corrosion for brazing to Nb [J]. J. Mater. Sci. Technol., 2022, 104(0): 33-40. |
| [12] | Shuaihang Qiu, Mingliang Li, Gang Shao, Hailong Wang, Jinpeng Zhu, Wen Liu, Bingbing Fan, Hongliang Xu, Hongxia Lu, Yanchun Zhou, Rui Zhang. (Ca,Sr,Ba)ZrO3: A promising entropy-stabilized ceramic for titanium alloys smelting [J]. J. Mater. Sci. Technol., 2021, 65(0): 82-88. |
| [13] | Yue Zhou, William G. Fahrenholtz, Joseph Graham, Gregory E. Hilmas. From thermal conductive to thermal insulating: Effect of carbon vacancy content on lattice thermal conductivity of ZrCx [J]. J. Mater. Sci. Technol., 2021, 82(0): 105-113. |
| [14] | Ying Li, Changdan Gong, Chenggong Li, Kunpeng Ruan, Chao Liu, Huan Liu, Junwei Gu. Liquid crystalline texture and hydrogen bond on the thermal conductivities of intrinsic thermal conductive polymer films [J]. J. Mater. Sci. Technol., 2021, 82(0): 250-256. |
| [15] | Ximeng Dong, Wenlin Cui, Wei-Di Liu, Shuqi Zheng, Lei Gao, Luo Yue, Yue Wu, Boyi Wang, Zipei Zhang, Liqiang Chen, Zhi-Gang Chen. Synergistic band convergence and defect engineering boost thermoelectric performance of SnTe [J]. J. Mater. Sci. Technol., 2021, 86(0): 204-209. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
