J. Mater. Sci. Technol. ›› 2022, Vol. 105: 109-121.DOI: 10.1016/j.jmst.2021.07.026
• Research Article • Previous Articles Next Articles
Yunwu Maa,c, Bingxin Yanga,b, Shanqing Hua,b, He Shana,b, Peihao Gengc, Yongbing Lia,b,*(
), Ninshu Mac
Received:2021-05-08
Revised:2021-06-29
Accepted:2021-07-05
Published:2021-09-20
Online:2021-09-20
Contact:
Yongbing Li
About author:*E-mail address: yongbinglee@sjtu.edu.cn (Y. Li).Yunwu Ma, Bingxin Yang, Shanqing Hu, He Shan, Peihao Geng, Yongbing Li, Ninshu Ma. Combined strengthening mechanism of solid-state bonding and mechanical interlocking in friction self-piercing riveted AA7075-T6 aluminum alloy joints[J]. J. Mater. Sci. Technol., 2022, 105: 109-121.
| Process number | Stage-I | Stage-II | Dswitch (mm) | Dplunge (mm) | Δt (s) | ||
|---|---|---|---|---|---|---|---|
| f1 (mm/s) | ω1 (rpm) | f2 (mm/s) | ω2 (rpm) | ||||
| #1 | 2.0 | 3600 | 11 | 0 | 2.5 | 5.3 | 1.50 |
| #2 | 2.0 | 3600 | 11 | 0 | 3.0 | 5.3 | 1.71 |
| #3 | 2.0 | 3600 | 11 | 0 | 4.0 | 5.3 | 2.12 |
| #4 | 2.0 | 3600 | 11 | 0 | 5.3 | 5.3 | 2.65 |
Table 1. F-SPR process parameter combinations.
| Process number | Stage-I | Stage-II | Dswitch (mm) | Dplunge (mm) | Δt (s) | ||
|---|---|---|---|---|---|---|---|
| f1 (mm/s) | ω1 (rpm) | f2 (mm/s) | ω2 (rpm) | ||||
| #1 | 2.0 | 3600 | 11 | 0 | 2.5 | 5.3 | 1.50 |
| #2 | 2.0 | 3600 | 11 | 0 | 3.0 | 5.3 | 1.71 |
| #3 | 2.0 | 3600 | 11 | 0 | 4.0 | 5.3 | 2.12 |
| #4 | 2.0 | 3600 | 11 | 0 | 5.3 | 5.3 | 2.65 |
Fig. 3. Miniature tensile test. (a) Extraction location of the miniature tensile bar; (b) dimensions of the miniature tensile bar; and (c) testing fixture with a miniature sample.
Fig. 6. F-SPR joint indexes under different switch depths. (a) The calculated heat input; (b) the measured peak riveting force; and (c) the measured interlock amounts.
Fig. 7. Microstructures of the F-SPR joint with 3.0 mm switch depth. (a) Micro profile of the etched joint; (b)-(d) correspond to locations b-d in Fig. 7(a). The FGZ refers to “fine grain zone”, and the CGZ refers to “coarse grain zone”.
Fig. 8. EBSD images of (a) base material, (b) the CGZ in Fig. 7(b), (c) the FGZ; (d) zoom-in region of the black box in (c); (e)-(g) fractions of misorientation angles in (a)-(c), respectively. RD, TD, and ND represent the rolling, transverse, and normal directions, respectively.
Fig. 9. Vickers microhardness distribution of the F-SPR joints under different switch depths. (a) 2.5 mm; (b) 3.0 mm; (c) 4.0 mm; and (d) 5.3 mm. The dimensions denote the width of the softening zones.
Fig. 12. Microhardness distribution on the miniature tensile test samples of different F-SPR switch depths. (a) 2.5 mm; (b) 3.0 mm; (c) 4.0 mm; and (d) 5.3 mm.
Fig. 14. (a) Typical cross-tension load-displacement curves; and (b) macro profiles of the joint with 3.0 mm switch depth at the displacements marked with i-iv in (a).
| Region | Average hardness | Hardness ratio | Swift law constants | ||
|---|---|---|---|---|---|
| K (MPa) | ε0 | n | |||
| AA7075-T6 BM(Zones A & B) | 169 | 1.0 | 835.7 | 0.015 | 0.12 |
| Zone C | 154 | 0.91 | 760.5 | ||
| Zone D | 161 | 0.95 | 793.9 | ||
| Zone E | 151 | 0.89 | 743.8 | ||
| Zone F | 159 | 0.94 | 785.6 | ||
| 35CrMo (Rivet) | 470 | - | 3432.5 | 0.0026 | 0.14 |
Table 2. Average hardness values and hardening parameters of different zones.
| Region | Average hardness | Hardness ratio | Swift law constants | ||
|---|---|---|---|---|---|
| K (MPa) | ε0 | n | |||
| AA7075-T6 BM(Zones A & B) | 169 | 1.0 | 835.7 | 0.015 | 0.12 |
| Zone C | 154 | 0.91 | 760.5 | ||
| Zone D | 161 | 0.95 | 793.9 | ||
| Zone E | 151 | 0.89 | 743.8 | ||
| Zone F | 159 | 0.94 | 785.6 | ||
| 35CrMo (Rivet) | 470 | - | 3432.5 | 0.0026 | 0.14 |
Fig. 18. Joint geometry comparison and the simulated Von-Mises stress distribution. (a) Experimental cross-section profiles of the joint obtained by interrupting the cross-tension tests; (b) Case-1; (c) Case-2; and (d) Case-3. Subfigures ii-iv correspond to the loading stages marked with ii-iv in Fig. 17.
| [1] |
Y. Li, Y. Jiang, B. Hu, Q. Li, Scr. Mater. 187 (2020) 262-267.
DOI URL |
| [2] |
H. Liu, Y. Aoki, Y. Aoki, K. Ushioda, H. Fujii, J. Mater. Sci. Technol. 46 (2020) 211-224.
DOI URL |
| [3] |
L. Hu, X. Wang, Q. Ma, W. Meng, S. Chen, J. Mater, Process. Technol. 297 (2021) 117232.
DOI URL |
| [4] |
C. Zhao, Y. Li, J. Xu, Q. Luo, Y. Jiang, Q. Xiao, Q. Li, J. Mater. Sci. Technol. 94 (2021) 104-112.
DOI URL |
| [5] |
S.M. Manladan, F. Yusof, S. Ramesh, M. Fadzil, Z. Luo, S. Ao, Int. J. Adv. Manuf. Technol. 90 (2017) 605-634.
DOI URL |
| [6] |
D. Lin, L. Yongbing, B. Carlson, D. Sigler, Weld. J. 97 (2018) 120-132.
DOI |
| [7] |
Y. Li, Y. Jiang, B. Liu, Q. Luo, B. Hu, Q. Li, J. Mater. Sci. Technol. 65 (2021) 190-201.
DOI URL |
| [8] |
L. Qi, Q. Zhang, Y. Ma, Y. Xu, X. Han, Y. Li, J. Manuf. Process. 66 (2021) 133-144.
DOI URL |
| [9] |
Y. Li, B. Hu, B. Liu, A. Nie, Q. Gu, J. Wang, Q. Li, Acta Mater 187 (2020) 51-65.
DOI URL |
| [10] |
W. Cai, G. Daehn, A. Vivek, J.J. Li, H. Khan, R.S. Mishra, M. Komarasamy, ASME J. Manuf. Sci. Eng. 141 (2019) 031012.
DOI URL |
| [11] |
Q. Chu, W.Y. Li, H.L. Hou, X.W. Yang, A. Vairis, C. Wang, W.B. Wang, J. Mater. Sci. Technol. 35 (2019) 784-789.
DOI |
| [12] |
S.D. Ji, Q. Wen, Z.W. Li, J. Mater. Sci. Technol. 48 (2020) 23-30.
DOI |
| [13] |
P.L. Niu, W.Y. Li, D.L. Chen, J. Mater. Sci. Technol. 73 (2021) 91-100.
DOI |
| [14] |
P. Yu, C. Wu, L. Shi, Acta Mater 207 (2021) 116692.
DOI URL |
| [15] |
S. Mironov, Y.S. Sato, H. Kokawa, Mater. Sci. Eng. A 527 (2010) 7498-7504.
DOI URL |
| [16] |
K.V. Jata, S.L. Semiatin, Scr. Mater. 43 (2000) 743-749.
DOI URL |
| [17] |
C.D. Barrett, A. Imandoust, A.L. Oppedal, K. Inal, M.A. Tschopp, H. El Kadiri, Acta Mater 128 (2017) 270-283.
DOI URL |
| [18] |
P.B. Prangnell, C.P. Heason, Acta Mater 53 (2005) 3179-3192.
DOI URL |
| [19] |
Z. Zhang, C. He, Y. Li, L. Yu, S. Zhao, X. Zhao, J. Mater. Sci. Technol. 43 (2020) 1-13.
DOI URL |
| [20] |
J.Y. Cao, M. Wang, L. Kong, H.X. Zhao, P. Chai, Mater. Charact. 128 (2017) 54-62.
DOI URL |
| [21] |
X. Zeng, P. Xue, L. Wu, D. Ni, B. Xiao, K. Wang, Z. Ma, J. Mater. Sci. Technol. 35 (2019) 972-981.
DOI |
| [22] |
P. Geng, G. Qin, J. Zhou, T. Li, N. Ma, J. Mater, Process. Technol. 288 (2021) 116879.
DOI URL |
| [23] |
S. Serajzadeh, A. Karimi Taheri, Mater. Des. 23 (2002) 271-276.
DOI URL |
| [24] |
Y. Pang, D. Sun, Q. Gu, K.-C. Chou, X. Wang, Q. Li, Cryst. Growth Des. 16 (2016) 2404-2415.
DOI URL |
| [25] |
Z. Shen, Y. Ding, J. Chen, L. Fu, X.C. Liu, H. Chen, W. Guo, A.P. Gerlich, Sci. Technol. Weld. Joining 24 (2019) 587-600.
DOI URL |
| [26] |
M. Reimann, J. Goebel, J.F. dos Santos, Mater. Des. 132 (2017) 283-294.
DOI URL |
| [27] |
J.Y. Cao, C.C. Zhang, Y.F. Xing, M. Wang, J. Mater, Process. Technol. 284 (2020) 116760.
DOI URL |
| [28] |
A.H. Baghdadi, A. Rajabi, N.F.M. Selamat, Z. Sajuri, M.Z. Omar, Mater. Sci. Eng., A 754 (2019) 728-734.
DOI URL |
| [29] |
G. Ipekoglu, S. Erim, G. Cam, Int. J. Adv. Manuf. Technol. 70 (2014) 201-213.
DOI URL |
| [30] |
Y. Hu, H. Liu, D. Li, J. Mater. Sci. Technol. 85 (2021) 205-217.
DOI URL |
| [31] | F.G. Renner, Automation 18 (1971) 51-54. |
| [32] |
K. Martinsen, S.J. Hu, B.E. Carlson, CIRP Ann 64 (2015) 679-699.
DOI URL |
| [33] | K. Mori, Y. Abe, Int. J. Lightweight Mater. Manuf. 1 (2018) 1-11. |
| [34] |
B.Y. Xing, X.C. He, K. Zeng, Y.Q. Wang, Int. J. Adv. Manuf. Technol. 75 (2014) 351-361.
DOI URL |
| [35] |
D.Z. Li, L. Han, M. Thornton, M. Shergold, Mater. Sci. Eng., A 558 (2012) 242-252.
DOI URL |
| [36] |
Z.M. Su, P.C. Lin, W.J. Lai, J. Pan, Int. J. Fatigue 72 (2015) 53-65.
DOI URL |
| [37] | M. Jäckel, T. Grimm, D. Landgrebe, AIP Conf, Proc. 1769 (2016) 100010. |
| [38] |
D.Z. Li, A. Chrysanthou, I. Patel, G. Williams, Int. J. Adv. Manuf. Technol. 92 (2017) 1777-1824.
DOI URL |
| [39] |
J.W. Wang, Z.X. Liu, Y. Shang, A.L. Liu, M.X. Wang, R.N. Sun, P.C. Wang, ASME J. Manuf. Sci. Eng. 133 (2011) 031009.
DOI URL |
| [40] |
Y. Durandet, R. Deam, A. Beer, W. Song, S. Blacket, Mater. Des. 31 (2010) S13-S16.
DOI URL |
| [41] |
H.Ali Khan, J. Li, C. Shao, ASME J. Manuf. Sci. Eng. 139 (2017) 090801.
DOI URL |
| [42] |
D.L. Gao, U. Ersoy, R. Stevenson, P.C. Wang, ASME J. Manuf. Sci. Eng. 131 (2009) 061002.
DOI URL |
| [43] |
J.Y. Min, Y.Q. Li, B.E. Carlson, S.J. Hu, J.J. Li, J.P. Lin, CIRP Ann. 64 (2015) 13-16.
DOI URL |
| [44] |
A. Samanta, N.G. Shen, H.P. Ji, W.M. Wang, J.J. Li, H.T. Ding, ASME J. Manuf. Sci. Eng. 140 (2018) 031016-031016-10.
DOI URL |
| [45] |
F. Aslan, L. Langlois, T. Balan, Int. J. Adv. Manuf. Technol. 104 (2019) 2377-2388.
DOI URL |
| [46] | J.D. Skovron, B.J. Ruszkiewicz, L. Mears, T. Abke, in: Proceedings of the ASME 11th International Manufacturing Science and Engineering Conference, MSEC 2016, Blacksburg, Virginia, USA, June 27-July 1, 2016. |
| [47] |
Y.B. Li, Z.Y. Wei, Z.Z. Wang, Y.T. Li, ASME J. Manuf. Sci. Eng. 135 (2013) 061007.
DOI URL |
| [48] |
Y.W. Ma, Y.B. Li, Z.Q. Lin, ASME J. Manuf. Sci. Eng. 141 (2019) 041005.
DOI URL |
| [49] |
Y. Ma, G. He, M. Lou, Y. Li, Z. Lin, ASME J. Manuf. Sci. Eng. 140 (2018) 101015-101015-10.
DOI URL |
| [50] |
Y. Ma, H. Shan, S. Niu, Y. Li, Z. Lin, N. Ma, Engineering (2020), doi: 10.1016/j. eng.2020.06.015.
DOI |
| [51] |
Y. Ma, S. Niu, H. Shan, Y. Li, N. Ma, Automotive Innovation 3 (2020) 242-249.
DOI URL |
| [52] |
X.R. Xian, Y.W. Ma, H. Shan, S.Z. Niu, Y.B. Li, J. Manuf. Process. 38 (2019) 319-327.
DOI URL |
| [53] |
Y.W. Ma, B.X. Yang, M. Lou, Y.B. Li, N.S. Ma, J. Mater. Process. Technol. 278 (2020) 116543.
DOI URL |
| [54] |
Y. Ma, S. Niu, H. Liu, Y. Li, N. Ma, J. Mater. Sci. Technol. 82 (2021) 80-95.
DOI URL |
| [55] |
H. Miura, T. Sakai, H. Hamaji, J.J. Jonas, Scr. Mater. 50 (2004) 65-69.
DOI URL |
| [56] |
Y.Y. Hu, H.J. Liu, H. Fujii, K. Ushioda, J. Manuf. Process. 56 (2020) 362-371.
DOI URL |
| [57] |
J.W. Lee, K.T. Son, T.K. Jung, Y.O. Yoon, S.K. Kim, H.J. Choi, S.K. Hyun, Mater. Sci. Eng. A 673 (2016) 648-659.
DOI URL |
| [58] |
G. Quan, Y. Mao, G. Li, W. Lv, Y. Wang, J. Zhou, Comput. Mater. Sci. 55 (2012) 65-72.
DOI URL |
| [59] |
Q. Luo, Y. Guo, B. Liu, Y. Feng, J. Zhang, Q. Li, K. Chou, J. Mater. Sci. Technol. 44 (2020) 171-190.
DOI |
| [60] |
K. Mori, T. Kato, Y. Abe, Y. Ravshanbek, CIRP Ann 55 (2006) 283-286.
DOI URL |
| [61] |
R. Haque, Y. Durandet, Mater. Des. 108 (2016) 666-678.
DOI URL |
| [62] |
H.W. Swift, J. Mech. Phys. Solids 1 (1952) 1-18.
DOI URL |
| [63] |
B. Yang, Y. Ma, H. Shan, S. Niu, Y. Li, J. Magnesium Alloys (2021) in Press, doi: 10.1016/j.jma.2020.12.016.
DOI |
| [64] | M. Cockcroft, D. Latham, J. Inst. Metals 96 (1968) 33-39. |
| [65] |
X. Hu, Z.Q. Lin, S.H. Li, Y.X. Zhao, Mater. Des. 31 (2010) 1410-1416.
DOI URL |
| [66] |
N.H. Hoang, M. Langseth, R. Porcaro, A.G. Hanssen, Eur. J. Mech. A. Solids 30 (2011) 619-630.
DOI URL |
| [67] |
L. Ying, T. Gao, M. Dai, P. Hu, J. Dai, Int. J. Mech. Sci. 189 (2021) 105978.
DOI URL |
| [1] | Yunwu Ma, Sizhe Niu, Huihong Liu, Yongbing Li, Ninshu Ma. Microstructural evolution in friction self-piercing riveted aluminum alloy AA7075-T6 joints [J]. J. Mater. Sci. Technol., 2021, 82(0): 80-95. |
| [2] | Xuewei Yan, Qingyan Xu, Guoqiang Tian, Quanwei Liu, Junxing Hou, Baicheng Liu. Multi-scale modeling of liquid-metal cooling directional solidification and solidification behavior of nickel-based superalloy casting [J]. J. Mater. Sci. Technol., 2021, 67(0): 36-49. |
| [3] | Yufan Zhao, Yuichiro Koizumi, Kenta Aoyagi, Kenta Yamanaka, Akihiko Chiba. Isothermal γ → ε phase transformation behavior in a Co-Cr-Mo alloy depending on thermal history during electron beam powder-bed additive manufacturing [J]. J. Mater. Sci. Technol., 2020, 50(0): 162-170. |
| [4] | M.P. Miles, T.W. Nelson, C. Gunter, F.C. Liu, L. Fourment, T. Mathis. Predicting recrystallized grain size in friction stir processed 304L stainless steel [J]. J. Mater. Sci. Technol., 2019, 35(4): 491-498. |
| [5] | Zhe Shen, Minghu Peng, Dongsheng Zhu, Tianxiang Zheng, Yunbo Zhong, Weili Ren, Chuanjun Li, Weidong Xuan, Zhongming Ren. Evolution of the microstructure and solute distribution of Sn-10wt% Bi alloys during electromagnetic field-assisted directional solidification [J]. J. Mater. Sci. Technol., 2019, 35(4): 568-577. |
| [6] | Gaoqiang Chen, Qingxian Ma, Shuai Zhang, Jianjun Wu, Gong Zhang, Qingyu Shi. Computational fluid dynamics simulation of friction stir welding: A comparative study on different frictional boundary conditions [J]. J. Mater. Sci. Technol., 2018, 34(1): 128-134. |
| [7] | Yunqiang Zhao, Chungui Wang, Jizhong Li, Jinhong Tan, Chunlin Dong. Local melting mechanism and its effects on mechanical properties of friction spot welded joint for Al-Zn-Mg-Cu alloy [J]. J. Mater. Sci. Technol., 2018, 34(1): 185-191. |
| [8] | S.D. Ji, Y.Y. Jin, Y.M. Yue, S.S. Gao, Y.X. Huang, L. Wang. Effect of Temperature on Material Transfer Behavior at Different Stages of Friction Stir Welded 7075-T6 Aluminum Alloy [J]. J. Mater. Sci. Technol., 2013, 29(10): 955-960. |
| [9] | Nannan Song, Yikun Luan, Yunlong Bai, Z.A. Xu, Xiuhong Kang, Dianzhong Li. Numerical Simulation of Solidification of Work Roll in Centrifugal Casting Process [J]. J Mater Sci Technol, 2012, 28(2): 147-154. |
| [10] | Guangquan Yue Boming Zhang Fuhong Dai Shanyi Du. Three-dimensional Cure Simulation of Stiffened Thermosetting Composite Panels [J]. J Mater Sci Technol, 2010, 26(5): 467-471. |
| [11] | S.H. Song Y.S. Byun T.W. Ku W.J. Song J. Kim B.S. Kang. Experimental and Numerical Investigation on Impact Performance of Carbon Reinforced Aluminum Laminates [J]. J Mater Sci Technol, 2010, 26(4): 327-332. |
| [12] | Lixia Zhang,Jicai Feng. Effect of Reaction Layers on the Residual Stress of the Brazed TiC Cermets/Steel Joints [J]. J Mater Sci Technol, 2009, 25(02): 203-207. |
| [13] | Xiang XUE, Jinjun TANG. Numerical Simulation of Microstructure and Microsegregation in Ni-Cu Alloy under Isothermal Condition [J]. J Mater Sci Technol, 2008, 24(03): 391-394. |
| [14] | Xiaojing LIU, Yongchao XU, Shijian YUAN. Effects of Loading Paths on Hydrodynamic Deep Drawing with Independent Radial Hydraulic Pressure of Aluminum Alloy Based on Numerical Simulation [J]. J Mater Sci Technol, 2008, 24(03): 395-399. |
| [15] | Lugui CHEN, Yong LING, Xiuhong KANG, Lijun XIA, Dianzhong LI. Numerical Simulation of Stress and Deformation for a Duplex Stainless Steel Impeller during Casting and Heat Treatment Processes [J]. J Mater Sci Technol, 2008, 24(03): 364-368. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
