J. Mater. Sci. Technol. ›› 2020, Vol. 50: 162-170.DOI: 10.1016/j.jmst.2019.11.040
• Research Article • Previous Articles Next Articles
Yufan Zhaoa, Yuichiro Koizumib, Kenta Aoyagib,*(), Kenta Yamanakab, Akihiko Chibab
Received:
2019-08-28
Revised:
2019-10-29
Accepted:
2019-11-11
Published:
2020-08-01
Online:
2020-08-10
Contact:
Kenta Aoyagi
Yufan Zhao, Yuichiro Koizumi, Kenta Aoyagi, Kenta Yamanaka, Akihiko Chiba. Isothermal γ → ε phase transformation behavior in a Co-Cr-Mo alloy depending on thermal history during electron beam powder-bed additive manufacturing[J]. J. Mater. Sci. Technol., 2020, 50: 162-170.
Cr | Mo | Ni | Fe | Si | Mn | C | N | Co |
---|---|---|---|---|---|---|---|---|
27.7 | 6.1 | 0.02 | 0.05 | 0.57 | 0.6 | 0.05 | 0.1 | Bal. |
Table 1 Chemical composition of gas-atomized Co-28Cr-6Mo alloy powder (wt%).
Cr | Mo | Ni | Fe | Si | Mn | C | N | Co |
---|---|---|---|---|---|---|---|---|
27.7 | 6.1 | 0.02 | 0.05 | 0.57 | 0.6 | 0.05 | 0.1 | Bal. |
Fig. 1. (a) The samples with cube-shape and dimensions of 10 mm × 10 mm × 10 mm built on a base plate with the size of 150 mm × 150 mm × 10 mm and (b) process parameters of each sample shown in the corresponding position.
Fig. 2. Schematic diagrams of the modeling simplification for numerical simulation of thermal history: (a) the moving-spot heat source was approximated as an equivalent plane heat source; (b) the layer-by-layer building was simplified as bulk-increment.
Fig. 3. (a) EBSD phase map of vertical cross-sectional microstructure and (b, c) EBSD pole figures of selected ε grain and original γ grain at the lower part of the as-PBF-EB-built sample. The process parameter is P = 600 W, V = 300 mm/s, loff=455 μm.
Fig. 4. Selected samples exhibiting typical microstructure locates at (a) axisymmetric positions with respect to the base plate; (b) the field-of-view; (c, d) EBSD IPF maps and phase maps of vertical cross-sectional microstructure in different depicted in (b) parts along the building height. The process parameters are: P = 100 W, V = 300 mm/s, loff = 125 μm (Sample A); P = 1000 W, V = 300 mm/s, loff =750 μm (Sample B).
Fig. 5. Experimental thermal history during the PBF-EB process at the bottom center of the base plate measured by a thermo-couple equipped in the building chamber.
Fig. 6. Top view of the simulated temperature field of the base plate. The base plate was heated by an equivalent plane heat source until the temperature in the bottom center reached 1098 K.
Fig. 7. Simulated temperature fields of (a) Sample A and (b) Sample B during the building process. (c, d) The evolution of temperature at the center position in each increment of (c) Sample A and (d) Sample B.
Fig. 8. Isothermal TTT curve of the γ → ε diffusional-massive transformation. The red and green curves present the start and end of the transformation, respectively. The building period of PBF-EB was additionally annotated. The temperature ranges that Sample A and Sample B underwent during PBF-EB are annotated on the right side.
Fig. 11. EBSD IPF maps and phase maps of vertical cross-sectional microstructure in the sample almost without the ε phase. The process parameter is p = 1000 W, V = 100 mm/s, loff=900 μm.
[1] | B. Almangour, Additive Manufacturing of Emerging Materials, Springer International Publishing, Cham, 2018. |
[2] |
T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, W. Zhang, Prog. Mater. Sci. 92 2018 112-224.
DOI URL |
[3] |
C. Körner, Int. Mater. Rev. 61 2016 361-377.
DOI URL |
[4] |
L.E. Murr, J. Mater. Sci. Technol. 32 2016 987-995.
DOI URL |
[5] |
C. Petit, E. Maire, S. Meille, J. Adrien, S. Kurosu, A. Chiba, Mater. Charact. 116 2016 48-54.
DOI URL |
[6] | Y. Koizumi, A. Okazaki, A. Chiba, T. Kato, A. Takezawa, Addit. Manuf. 12 2016 305-313. |
[7] | X. Tan, P. Wang, S. Nai, E. Liu, S.B. Tor, Pro-AM, 2018, pp. 535-540. |
[8] |
X.P. Tan, P. Wang, Y. Kok, W.Q. Toh, Z. Sun, S.M.L. Nai, M. Descoins, D. Mangelinck, E. Liu, S.B. Tor, Scr. Mater. 143 2018 117-121.
DOI URL |
[9] |
D.D. Xiang, P. Wang, X.P. Tan, S. Chandra, C. Wang M.L.S. Nai, S.B. Tor, W.Q. Liu, E. Liu, Mater. Sci. Eng. A 765 (2019), 138270.
DOI URL |
[10] |
Y. Kok, X.P. Tan, P. Wang M.L.S. Nai, N.H. Loh, E. Liu, S.B. Tor, Mater. Des. 139 2018 565-586.
DOI URL |
[11] |
W. Xu, M. Brandt, S. Sun, J. Elambasseril, Q. Liu, K. Latham, K. Xia, M. Qian, Acta Mater. 85 2015 74-84.
DOI URL |
[12] |
X. Tan, Y. Kok, W.Q. Toh, Y.J. Tan, M. Descoins, D. Mangelinck, S.B. Tor, K.F. Leong, C.K. Chua, Sci. Rep. 6 2016 26039.
DOI URL PMID |
[13] |
S.H. Sun, Y. Koizumi, S. Kurosu, Y.P. Li, A. Chiba, Acta Mater. 86 2015 305-318.
DOI URL |
[14] | D. Wei, Y. Koizumi, A. Chiba, K. Ueki, K. Ueda, T. Narushima, Y. Tsutsumi, T. Hanawa, Addit. Manuf. 24 2018 103-114. |
[15] |
T. Takashima, Y. Koizumi, Y. Li, K. Yamanaka, T. Saito, A. Chiba, Mater. Trans. 57 2016 2041-2047.
DOI URL |
[16] |
K. Yamanaka, M. Mori, A. Chiba, Metall. Mater. Trans. A 43 (2012) 5243-5257.
DOI URL |
[17] |
H.F. López, A.J. Saldivar-Garcia, Metall. Mater. Trans. A 39 (2008) 8-18.
DOI URL |
[18] |
A.L. Ramirez-Ledesma, E. Lopez-Molina, H.F. Lopez, J.A. Juarez-Islas, Acta Mater. 111 2016 138-147.
DOI URL |
[19] |
S. Kurosu, H. Matsumoto, A. Chiba, Metall. Mater. Trans. A 41 (2010) 2613-2625.
DOI URL |
[20] |
C.B. Song, H.B. Park, H.G. Seong, H.F. López, Metall. Mater. Trans. A 37 (2006) 3197-3204.
DOI URL |
[21] |
G. Barucca, E. Santecchia, G. Majni, E. Girardin, E. Bassoli, L. Denti, A. Gatto, L. Iuliano, T. Moskalewicz, P. Mengucci, Mater. Sci. Eng. C 48 (2015) 263-269.
DOI URL |
[22] |
Y. Kajima, A. Takaichi, N. Kittikundecha, T. Nakamoto, T. Kimura, N. Nomura, A. Kawasaki, T. Hanawa, H. Takahashi, N. Wakabayashi, Mater. Sci. Eng. A 726 (2018) 21-31.
DOI URL |
[23] |
K. Ren, Y. Chew, Y.F. Zhang, G.J. Bi, J.Y.H. Fuh, J. Mater. Process. Technol. 271 2019 178-188.
DOI URL |
[24] |
P. Promoppatum S.-C. Yao, P.C. Pistorius, A.D. Rollett, P.J. Coutts, F. Lia, R. Martukanitz, Prog. Addit. Manuf. 3 2018 15-32.
DOI URL |
[25] |
W. Yan, Y. Lian, C. Yu, O.L. Kafka, Z. Liu, W.K. Liu, G.J. Wagner, Comput. Methods Appl. Mechanics Eng. 339 2018 184-204.
DOI URL |
[26] |
W.K. Liu, Y.C. Shin, Comput. Mech. 61 2018 519-520.
DOI URL |
[27] |
Y. Zhao, Y. Koizumi, K. Aoyagi, D. Wei, K. Yamanaka, A. Chiba, Materialia 6 (2019), 100346.
DOI URL |
[28] | FLOW-3D® ersion 11.2 (Computer software), NM: Flow Science, Inc, Santa Fe, 2017 https://www.flow3d.com. |
[29] | R.W. Messler, Principles of Welding, Wiley-VCH Verlag GmbH, Weinheim, Germany, 1999. |
[30] | Y. Zhao, Y. Koizumi, K. Aoyagi, D. Wei, K. Yamanaka, A. Chiba, Addit. Manuf. 26 2019 202-214. |
[31] |
S. Loewy, B. Rheingans, S.R. Meka, E.J. Mittemeijer, Acta Mater. 64 2014 93-99.
DOI URL |
[32] | K. Aoyagi, H. Wang, H. Sudo, A. Chiba, Addit. Manuf. 27 2019 353-362. |
[33] |
S. Cao, J.C. Zhao, Acta Mater. 88 2015 196-206.
DOI URL |
[34] |
S. Mayer, M. Petersmann, F.D. Fischer, H. Clemens, T. Waitz, T. Antretter, Acta Mater. 115 2016 242-249.
DOI URL |
[35] | J.W. Christian, H.M. Otte, Phys. Today 19 (1966) 78-81. |
[36] | The Japan Institute of Metals and Materials, Thermodynamics of Microstructure, 1st ed., The Japan Institute of Metals and Materials, Sendai, 2005. |
[37] |
S.S. Naghavi, V.I. Hegde, C. Wolverton, Acta Mater. 132 2017 467-478.
DOI URL |
[38] |
J.O. Andersson, T. Helander, L. Hölund, P. Shi, B. Sundman, CALPHAD: Comput. Coupling Phase Diagrams Thermochem. 26 2002 273-312.
DOI URL |
[39] | The Japan Institute of Metals and Materials, Thermal Dynamics of Microstructure, Maruzen, Tokyo, 2005. |
[40] | Z. Nishiyama, Martensitic Transformation, Academic Press, New York, 1978. |
[41] | G.B. Olson, M. Cohen, Metall. Trans. A 7 (1976) 1897-1904. |
[42] | S. Kajiwara, Mater. Trans. 33 1992 1027-1034. |
[43] |
C.H. Shih, B.L. Averbach, M. Cohen, JOM 7 (1955) 183-187.
DOI URL |
[1] | Pan Xie, Shucheng Shen, Cuilan Wu, Jianghua Chen. Abnormal orientation relation between fcc and hcp structures revealed in a deformed high manganese steel [J]. J. Mater. Sci. Technol., 2021, 60(0): 156-161. |
[2] | Xuewei Yan, Qingyan Xu, Guoqiang Tian, Quanwei Liu, Junxing Hou, Baicheng Liu. Multi-scale modeling of liquid-metal cooling directional solidification and solidification behavior of nickel-based superalloy casting [J]. J. Mater. Sci. Technol., 2021, 67(0): 36-49. |
[3] | Chendong Zhao, Jinshan Li, Yudong Liu, William Yi Wang, Hongchao Kou, Eric Beaugnon, Jun Wang. Tailoring mechanical and magnetic properties of AlCoCrFeNi high-entropy alloy via phase transformation [J]. J. Mater. Sci. Technol., 2021, 73(0): 83-90. |
[4] | Huabei Peng, Dian Wang, Qi Liao, Yuhua Wen. Degeneration and rejuvenation of shape memory effect associated with the precipitation of coherent nano-particles in a Co-Ni-Si shape memory alloy [J]. J. Mater. Sci. Technol., 2021, 76(0): 150-155. |
[5] | Lin Gao, Kai Li, Song Ni, Yong Du, Min Song. The growth mechanisms of θ′ precipitate phase in an Al-Cu alloy during aging treatment [J]. J. Mater. Sci. Technol., 2021, 61(0): 25-32. |
[6] | Piao Gao, Wenpu Huang, Huihui Yang, Guanyi Jing, Qi Liu, Guoqing Wang, Zemin Wang, Xiaoyan Zeng. Cracking behavior and control of β-solidifying Ti-40Al-9V-0.5Y alloy produced by selective laser melting [J]. J. Mater. Sci. Technol., 2020, 39(0): 144-154. |
[7] | S.J. Tsianikas, Y. Chen, Z. Xie. Deciphering deformation mechanisms of hierarchical dual-phase CrCoNi coatings [J]. J. Mater. Sci. Technol., 2020, 39(0): 183-189. |
[8] | Ruifeng Dong, Jinshan Li, Hongchao Kou, Jiangkun Fan, Yuhong Zhao, Hua Hou, Li Wu. ω-Assisted refinement of α phase and its effect on the tensile properties of a near β titanium alloy [J]. J. Mater. Sci. Technol., 2020, 44(0): 24-30. |
[9] | S.J. Tsianikas, Y. Chen, Z. Xie. Deciphering deformation mechanisms of hierarchical dual-phase CrCoNi coatings [J]. J. Mater. Sci. Technol., 2020, 39(0): 7-13. |
[10] | Fan Jiangkun, Zhang Zhixin, Gao Puyi, Yang Ruimeng, Li Huan, Tang Bin, Kou Hongchao, Zhang Yudong, Esling Claude, Li Jinshan. On the nature of a peculiar initial yield behavior in metastable β titanium alloy Ti-5Al-5Mo-5V-3Cr-0.5Fe with different initial microstructures [J]. J. Mater. Sci. Technol., 2020, 38(0): 135-147. |
[11] | Jia Li, Li Li, Chao Jiang, Qihong Fang, Feng Liu, Yong Liu, Peter K. Liaw. Probing deformation mechanisms of gradient nanostructured CrCoNi medium entropy alloy [J]. J. Mater. Sci. Technol., 2020, 57(0): 85-91. |
[12] | Di Zhang, Zhen Zhang, Yanlin Pan, Yanbin Jiang, Linzhong Zhuang, Jishan Zhang, Xinfang Zhang. Current-driving intergranular corrosion performance regeneration below the precipitates solvus temperature in Al-Mg alloy [J]. J. Mater. Sci. Technol., 2020, 53(0): 132-139. |
[13] | Bingqiang Wei, Song Ni, Yong Liu, Xiaozhou Liao, Min Song. Phase transformation and structural evolution in a Ti-5at.% Al alloy induced by cold-rolling [J]. J. Mater. Sci. Technol., 2020, 49(0): 211-223. |
[14] | Huahai Shen, Jutao Hu, Pengcheng Li, Gang Huang, Jianwei Zhang, Jinchao Zhang, Yiwu Mao, Haiyan Xiao, Xiaosong Zhou, Xiaotao Zu, Xinggui Long, Shuming Peng. Compositional dependence of hydrogenation performance of Ti-Zr-Hf-Mo-Nb high-entropy alloys for hydrogen/tritium storage [J]. J. Mater. Sci. Technol., 2020, 55(0): 116-125. |
[15] | Xinglong An, Hao Zhang, Song Ni, Xiaoqin Ou, Xiaozhou Liao, Min Song. Effects of temperature and alloying content on the phase transformation and {10$\bar{1}$1} twinning in Zr during rolling [J]. J. Mater. Sci. Technol., 2020, 41(0): 76-80. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||