J. Mater. Sci. Technol. ›› 2021, Vol. 77: 244-251.DOI: 10.1016/j.jmst.2020.09.048
• Research Article • Previous Articles Next Articles
Lakshitha Jasin Arachchigea,b, Yongjun Xua, Zhongxu Daic,*, Xiao Li Zhangd, Feng Wangb, Chenghua Suna,b,**()
Received:
2020-07-29
Revised:
2020-09-19
Accepted:
2020-09-19
Published:
2021-06-30
Online:
2020-11-22
Contact:
Zhongxu Dai,Chenghua Sun
About author:
** School of Chemical Engineering and Energy Technol-ogy, Dongguan University of Technology, Dongguan 523808, China. E-mail address: chenghuasun@swin.edu.au (C. Sun).Lakshitha Jasin Arachchige, Yongjun Xu, Zhongxu Dai, Xiao Li Zhang, Feng Wang, Chenghua Sun. Double transition metal atoms anchored on Graphdiyne as promising catalyst for electrochemical nitrogen reduction reaction[J]. J. Mater. Sci. Technol., 2021, 77: 244-251.
Fig. 1. (a) The comparison of N2 and H adsorption energies on TM2@GDY. (b) The change in Gibbs free energies (ΔG) for selected elementary steps of the reaction.
Fig. 2. The end-on (a), (c) and side-on (b), (d) N2 adsorption models on GDY 2 × 2 supercell. The corresponding charge density fluctuation at the catalytic site upon N2 adsorption given in blue circles. Charge accumulation and depletion shown in blue and red, respectively.
Fig. 3. Partial density of states (PDOS) of (a) Co and Ni atoms and (b) two Mo atoms at two different N2 adsorption configurations, with d-band centre (εd) shown in unit of eV.
Fig. 5. The Gibbs free energy diagrams of distal (a) and alternating (b) reaction mechanisms and corresponding DFT optimized geometries of each elementary step (c). * refers to the adsorption site.
Fig. 6. The Gibbs free energy diagrams of consecutive (a) and enzymatic (b) reaction mechanisms and their corresponding DFT optimized geometries (c). * refers to the adsorption site.
Fig. 8. Ab-initio molecular dynamics simulations (AIMD) of (a) CoNi@GDY and (b) Mo2@GDY at the temperature of 400 K. (A high-resolution version of this figure available in supplementary information.).
[1] |
J.H. Montoya, C. Tsai, A. Vojvodic, J.K. Norskov, ChemSusChem 8 (2015) 2180-2186.
DOI URL PMID |
[2] |
F. Zhou, L.M. Azofra, M. Ali, M. Kar, A.N. Simonov, C. McDonnell-Worth, C. Sun, X. Zhang, D.R. MacFarlane, Energy Environ. Sci. 10 (2017) 2516-2520.
DOI URL |
[3] |
S.L. Foster, S.I.P. Bakovic, R.D. Duda, S Maheshwari, R.D. Milton, S.D. Minteer, M.J. Janik, J.N. Renner, L.F. Greenlee, Nat. Catal. 1 (2018) 490-500.
DOI URL |
[4] |
A. Vojvodic, A.J. Medford, F. Studt, F. Abild-Pedersen, T.S. Khan, T. Bligaard, J.K. Nørskov, Chem. Phys. Lett. 598 (2014) 108-112.
DOI URL |
[5] |
J.W. Erisman, M.A. Sutton, J. Galloway, Z. Klimont, W. Winiwarter, Nat. Geosci. 1 (2008) 636-639.
DOI URL |
[6] |
D.E. Canfield, A.N. Glazer, P.G. Falkowski, Science 330 (2010) 192-196.
DOI URL |
[7] |
A. Klerke, C.H. Christensen, J.K. Nørskov, T. Vegge, J. Mater. Chem. 18 (2008) 2304-2310.
DOI URL |
[8] |
Q. Li, L. He, C. Sun, X. Zhang, J. Phys. Chem. C 121 (2017) 27563-27568.
DOI URL |
[9] |
Q. Li, S. Qiu, L. He, X. Zhang, C. Sun, Phys. Chem. Chem. Phys. 20 (2018) 23338-23343.
DOI URL |
[10] | Y. Qiu, X. Peng, F. Lü, Y. Mi, L. Zhuo, J. Ren, X. Liu, J. Luo, Chem. Asian J. 14 (2019) 2770-2779. |
[11] | L.M. Azofra, C. Sun, L. Cavallo, D.R. MacFarlane, Chemistry 23 (2017) 8275-8279. |
[12] |
Q. Li, S. Qiu, C. Liu, M. Liu, L. He, X. Zhang, C. Sun, J. Phys. Chem. C 123 (2019) 2347-2352.
DOI URL |
[13] |
M. Yao, Z. Shi, P. Zhang, W.-J. Ong, J. Jiang, W.-Y. Ching, N. Li, ACS Appl. Nano Mater. 3 (2020) 9870-9879.
DOI URL |
[14] |
X. Liu, Y. Jiao, Y. Zheng, M. Jaroniec, S.-Z. Qiao, J. Am. Chem. Soc. 141 (2019) 9664-9672.
DOI URL |
[15] |
Z.W. Chen, J.M. Yan, Q. Jiang, Small Methods 3 (2018), 1800291.
DOI URL |
[16] |
D. Ma, Z. Zeng, L. Liu, X. Huang, Y. Jia, J. Phys. Chem. C 123 (2019) 19066-19076.
DOI URL |
[17] |
W. Yang, H. Huang, X. Ding, Z. Ding, C. Wu, I.D. Gates, Z. Gao, Electrochim. Acta 335 (2020), 135667.
DOI URL |
[18] |
T. He, A.R. Puente Santiago, A. Du, J. Catal. 388 (2020) 77-83.
DOI URL |
[19] |
L.Jasi. Arachchige, Y. Xu, Z. Dai, X. Zhang, F. Wang, C. Sun, J. Phys. Chem. C 124 (2020) 15295-15301.
DOI URL |
[20] |
Y. Yang, J. Liu, Z. Wei, S. Wang, J. Ma, ChemCatChem 11 (2019) 2821-2827.
DOI URL |
[21] |
C. Ling, X. Bai, Y. Ouyang, A. Du, J. Wang, J. Phys. Chem. C 122 (2018) 16842-16847.
DOI URL |
[22] |
X. Guo, S. Huang, Electrochim. Acta 284 (2018) 392-399.
DOI URL |
[23] |
T. Di, L. Zhang, B. Cheng, J. Yu, J. Fan, J. Mater. Sci. Technol. 56 (2020) 170-178.
DOI URL |
[24] |
M.-S. Chae, T.H. Lee, K.R. Son, T.H. Park, K.S. Hwang, T.G. Kim, J. Mater. Sci. Technol. 40 (2020) 72-80.
DOI URL |
[25] |
C. Liu, Q. Li, J. Zhang, Y. Jin, D.R. MacFarlane, C. Sun, J. Mater. Chem. A 7 (2019) 4771-4776.
DOI URL |
[26] |
C. Liu, Q. Li, J. Zhang, Y. Jin, D.R. MacFarlane, C. Sun, J. Phys. Chem. C 122 (2018) 25268-25273.
DOI URL |
[27] |
L.M. Azofra, N. Li, D.R. MacFarlane, C. Sun, Energy Environ. Sci. 9 (2016) 2545-2549.
DOI URL |
[28] |
L.R. Johnson, S. Sridhar, L. Zhang, K.D. Fredrickson, A.S. Raman, J. Jang, C. Leach, A. Padmanabhan, C.C. Price, N.C. Frey, A. Raizada, V. Rajaraman, S.A. Saiprasad, X. Tang, A. Vojvodic, ACS Catal. 10 (2020) 253-264.
DOI URL |
[29] |
P. Kuang, J. Low, B. Cheng, J. Yu, J. Fan, J. Mater. Sci. Technol. 56 (2020) 18-44.
DOI URL |
[30] |
N. Zhao, F. Zhang, F. Zhan, D. Yi, Y. Yang, W. Cui, X. Wang, J. Mater. Sci. Technol. 67 (2020) 156-164.
DOI URL |
[31] |
B. Huang, N. Li, W.-J. Ong, N. Zhou, J. Mater. Chem. A 7 (2019) 27620-27631.
DOI URL |
[32] |
R. Zhang, L. Jiao, W. Yang, G. Wan, H.-L. Jiang, J. Mater. Chem. A 7 (2019) 26371-26377.
DOI URL |
[33] |
Y. Gao, Z. Cai, X. Wu, Z. Lv, P. Wu, C. Cai, ACS Catal. 8 (2018) 10364-10374.
DOI URL |
[34] |
Y. Xue, B. Huang, Y. Yi, Y. Guo, Z. Zuo, Y. Li, Z. Jia, H. Liu, Y. Li, Nat. Commun. 9 (2018) 1460.
DOI URL |
[35] |
X.-Q. Han, Z.-L. Lang, L.-K. Yan, W. Guan, C.-G. Ci, Z.-M. Su, Adv. Theory Simul. 2 (2019), 1900132.
DOI URL |
[36] |
Z. Feng, Y. Tang, W. Chen, Y. Li, R. Li, Y. Ma, X. Dai, Phys. Chem. Chem. Phys. 22 (2020) 9216-9224.
DOI URL |
[37] |
L. Li, W. Qiao, H. Bai, Y. Huang, RSC Adv. 10 (2020) 16709-16717.
DOI URL |
[38] |
Y. Li, L. Xu, H. Liu, Y. Li, Chem. Soc. Rev. 43 (2014) 2572-2586.
DOI URL |
[39] |
X. Chen, W.-J. Ong, Z. Kong, X. Zhao, N. Li, Sci. Bull. 65 (2020) 45-54.
DOI URL |
[40] |
S. Liu, Y. Liu, X. Gao, Y. Tan, Z. Shen, M. Fan, Appl. Surf. Sci. 500 (2020), 144032.
DOI URL |
[41] |
Y. Tan, Y. Xu, Z. Ao, Phys. Chem. Chem. Phys. 22 (2020) 13981-13988.
DOI URL |
[42] |
J. Zhao, Z. Chen, J. Am. Chem. Soc. 139 (2017) 12480-12487.
DOI URL |
[43] |
M. Li, Y. Cui, X. Zhang, Y. Luo, Y. Dai, Y. Huang, J. Phys. Chem. Lett. 11 (2020) 8128-8137.
DOI URL |
[44] |
G. Kresse, J. Hafner, Phys. Rev. B 47 (1993) 558-561.
DOI URL |
[45] |
J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865-3868.
DOI URL |
[46] |
G. Kresse, D. Joubert, Phys. Rev. B 59 (1999) 1758-1775.
DOI URL |
[47] |
S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 132 (2010), 154104.
DOI URL |
[48] |
E. Sanville, S.D. Kenny, R. Smith, G. Henkelman, J. Comput. Chem. 28 (2007) 899-908.
URL PMID |
[49] |
W. Tang, E. Sanville, G. Henkelman, J. Phys.-Condens. Matter 21 (2009), 084204.
DOI URL |
[50] |
J.K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J.R. Kitchin, T. Bligaard, H. Jónsson, J. Phys. Chem. B 108 (2004) 17886-17892.
DOI URL |
[51] |
A.A. Peterson, F. Abild-Pedersen, F. Studt, J. Rossmeisl, J.K. Nørskov, Energy Environ. Sci. 3 (2010) 1311-1315.
DOI URL |
[52] | NIST Chemistry Webbook, https://webbook.nist.gov/chemistry/. |
[53] |
G.J. Martyna, M.L. Klein, M. Tuckerman, J. Chem. Phys. 97 (1992) 2635-2643.
DOI URL |
[54] |
E. Skúlason, T. Bligaard, S. Gudmundsdóttir, F. Studt, J. Rossmeisl, F. Abild-Pedersen, T. Vegge, H. Jónsson, J.K. Nørskov, Phys. Chem. Chem. Phys. 14 (2012) 1235-1245.
DOI URL PMID |
[55] |
L. Zhang, J.M.T.A. Fischer, Y. Jia, X. Yan, W. Xu, X. Wang, J. Chen, Y. Wu, D. Yang, H. Liu, L. Zhuang, M. Hankel, D.J. Searles, K. Huang, S. Feng, C.L. Brown, X. Yao, J. Am. Chem. Soc. 140 (2018) 10757-10763.
DOI URL |
[56] |
J. Wang, Z. Huang, W. Liu, C. Chang, H. Tang, Z. Li, W. Chen, C. Jia, T. Yao, S. Wei, Y. Wu, Y. Li, J. Am. Chem. Soc. 139 (2017) 17281-17284.
DOI URL |
[57] |
W. Ren, X. Tan, W. Yang, C. Jia, S. Xu, K. Wang, S.C. Smith, C. Zhao, Angew. Chem. -Int. Edit. 58 (2019) 6972-6976.
DOI URL |
[58] |
C. Ling, Y. Ouyang, Q. Li, X. Bai, X. Mao, A. Du, J. Wang, Small Methods 3 (2019), 1800376.
DOI URL |
[59] |
J.G. Howalt, T. Bligaard, J. Rossmeisl, T. Vegge, Phys. Chem. Chem. Phys. 15 (2013) 7785-7795.
DOI URL PMID |
[60] | B. Hammer, J. Nørskov, Adv. Catal.: Impact of Surface Science on Catalysis 45 (2001) 71-129. |
[61] |
B. Hammer, J.K. Norskov, Nature 376 (1995) 238-240.
DOI URL |
[62] |
C. Choi, S. Back, N.-Y. Kim, J. Lim, Y.-H. Kim, Y. Jung, ACS Catal. 8 (2018) 7517-7525.
DOI URL |
[63] |
Q. Li, C. Liu, S. Qiu, F. Zhou, L. He, X. Zhang, C. Sun, J. Mater. Chem. A 7 (2019) 21507-21513.
DOI URL |
[64] |
Z. Guo, S. Qiu, H. Li, Y. Xu, S.J. Langford, C. Sun, Phys. Chem. Chem. Phys. 22 (2020) 21761-21767.
DOI URL |
[1] | Ziqi Guan, Jing Bai, Jianglong Gu, Xinzeng Liang, Die Liu, Xinjun Jiang, Runkai Huang, Yudong Zhang, Claude Esling, Xiang Zhao, Liang Zuo. First-principles investigation of B2 partial disordered structure, martensitic transformation, elastic and magnetic properties of all-d-metal Ni-Mn-Ti Heusler alloys [J]. J. Mater. Sci. Technol., 2021, 68(0): 103-111. |
[2] | Lin Gao, Kai Li, Song Ni, Yong Du, Min Song. The growth mechanisms of θ′ precipitate phase in an Al-Cu alloy during aging treatment [J]. J. Mater. Sci. Technol., 2021, 61(0): 25-32. |
[3] | Hai-Le Yan, Hao-Xuan Liu, Ying Zhao, Nan Jia, Jing Bai, Bo Yang, Zongbin Li, Yudong Zhang, Claude Esling, Xiang Zhao, Liang Zuo. Impact of B alloying on ductility and phase transition in the Ni-Mn-based magnetic shape memory alloys: Insights from first-principles calculation [J]. J. Mater. Sci. Technol., 2021, 74(0): 27-34. |
[4] | Boon Teoh Tan, Shunnian Wu, Franklin Anariba, Ping Wu. A DFT study on brittle-to-ductile transition of D022-TiAl3 using multi-doping and strain-engineered effects [J]. J. Mater. Sci. Technol., 2020, 51(0): 180-192. |
[5] | Jinlong Wang, Jing Bai, Jianglong Gu, Haile Yan, Yudong Zhang, Claude Esling, Xiang Zhao, Liang Zuo. Investigation of martensitic transformation behavior in Ni-Mn-In Heusler alloy from a first-principles study [J]. J. Mater. Sci. Technol., 2020, 58(0): 100-106. |
[6] | T. Cai, K.Q. Li, Z.J. Zhang, P. Zhang, R. Liu, J.B. Yang, Z.F. Zhang. Predicting the variation of stacking fault energy for binary Cu alloys by first-principles calculations [J]. J. Mater. Sci. Technol., 2020, 53(0): 61-65. |
[7] | Xinzeng Liang, Jing Bai, Jianglong Gu, Haile Yan, Yudong Zhang, Claude Esling, Xiang Zhao, Liang Zuo. Probing martensitic transformation, kinetics, elastic and magnetic properties of Ni2-xMn1.5In0.5Cox alloys [J]. J. Mater. Sci. Technol., 2020, 44(0): 31-41. |
[8] | Zhe Xue, Xinyu Zhang, Jiaqian Qin, Mingzhen Ma, Riping Liu. Controlling the strength of Zr (10 $\bar{1}$ 2) grain boundary by nonmetallic impurities doping: A DFT study [J]. J. Mater. Sci. Technol., 2020, 36(0): 140-148. |
[9] | Ke Yue, Jianrong Liu, Haijun Zhang, Hui Yu, Yuanyuan Song, Qingmiao Hu, Qingjiang Wang, Rui Yang. Precipitates and alloying elements distribution in near α titanium alloy Ti65 [J]. J. Mater. Sci. Technol., 2020, 36(0): 91-96. |
[10] | Shijun Zhao. Defect properties in a VTaCrW equiatomic high entropy alloy (HEA) with the body centered cubic (bcc) structure [J]. J. Mater. Sci. Technol., 2020, 44(0): 133-139. |
[11] | Wei Sun, Fuzhi Dai, Huimin Xiang, Jiachen Liu, Yanchun Zhou. General trends in surface stability and oxygen adsorption behavior of transition metal diborides (TMB2) [J]. J. Mater. Sci. Technol., 2019, 35(4): 584-590. |
[12] | Liu Linghong, Chen Jianghua, Fan Touwen, Shang Shunli, Shao Qinqin, Yuan Dingwang, Dai Yu. The stability of deformation twins in aluminum enhanced by alloying elements [J]. J. Mater. Sci. Technol., 2019, 35(11): 2625-2629. |
[13] | Jialong Tian, M. Babar Shahzad, Wei Wang, Lichang Yin, Zhouhua Jiang, Ke Yang. Role of Co in formation of Ni-Ti clusters in maraging stainless steel [J]. J. Mater. Sci. Technol., 2018, 34(9): 1671-1675. |
[14] | Yanchun Zhou, Huimin Xiang, Fu-Zhi Dai, Zhihai Feng. Cr5Si3B and Hf5Si3B: New MAB phases with anisotropic electrical, mechanical properties and damage tolerance [J]. J. Mater. Sci. Technol., 2018, 34(8): 1441-1448. |
[15] | Yanli Lu, Fang Liu, Xiang Li, Feng Gao, Zheng Chen. First-Principles Study on the Stability and Electronic Properties of Bi-Doped Sr3Ti2O7 [J]. J. Mater. Sci. Technol., 2018, 34(5): 891-898. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||