J. Mater. Sci. Technol. ›› 2022, Vol. 105: 68-80.DOI: 10.1016/j.jmst.2021.06.071
• Research Article • Previous Articles Next Articles
Bo Hua, Zixin Lia, Dejiang Lia,*(
), Tao Yinga, Xiaoqin Zengb,*(
), Wenjiang Dinga,b
Received:2021-03-23
Revised:2021-06-01
Accepted:2021-06-14
Published:2021-09-12
Online:2021-09-12
Contact:
Dejiang Li,Xiaoqin Zeng
About author:The State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China (Xiaoqin Zeng). E-mail addresses: xqzeng@sjtu.edu.cn (X. Zeng).Bo Hu, Zixin Li, Dejiang Li, Tao Ying, Xiaoqin Zeng, Wenjiang Ding. A hot tearing criterion based on solidification microstructure in cast alloys[J]. J. Mater. Sci. Technol., 2022, 105: 68-80.
| Parameters | c | dT/dt (K/s) | g (kg m/s2) | P0 (Pa) | γ (N/m) |
|---|---|---|---|---|---|
| Values | 4.6 | 15 | 9.8 | 101,300 | 0.09 |
Table 1. Parameters used for calculation applying this hot tearing criterion.
| Parameters | c | dT/dt (K/s) | g (kg m/s2) | P0 (Pa) | γ (N/m) |
|---|---|---|---|---|---|
| Values | 4.6 | 15 | 9.8 | 101,300 | 0.09 |
| Ce content (wt.%) | 0.5 | 1.0 | 1.5 | 2.0 | 3.0 | 4.0 |
|---|---|---|---|---|---|---|
| Grain size, d (μm) | 964 ± 102 | 451 ± 53 | 272 ± 41 | 128 ± 19 | 386 ± 35 | 412 ± 46 |
Table 2. Grain size of each alloy.
| Ce content (wt.%) | 0.5 | 1.0 | 1.5 | 2.0 | 3.0 | 4.0 |
|---|---|---|---|---|---|---|
| Grain size, d (μm) | 964 ± 102 | 451 ± 53 | 272 ± 41 | 128 ± 19 | 386 ± 35 | 412 ± 46 |
Fig. 6. The occurrence of hot tearing in the (a) Mg-0.5Ce, (b) Mg-1.0Ce, (c) Mg-1.5Ce, (d) Mg-2.0Ce, (e) Mg-3.0Ce and (f) Mg-4.0Ce alloys predicted by this criterion.
Fig. 8. Volumetric contraction force-temperature-time curves of the (a) Mg-0.5Ce, (b) Mg-1.0Ce, (c) Mg-1.5Ce, (d) Mg-2.0Ce, (e) Mg-3.0Ce and (f) Mg-4.0Ce alloys.
| Alloys | Rods predicted | Rods observed | fs predicted | fs recorded |
|---|---|---|---|---|
| Mg-0.5Ce | 1/2/3/4 | 1/2/3/4 | 0.96/0.95/0.94/0.93 | 0.93 |
| Mg-1.0Ce | 1/2/3/4 | 1/2/3/4 | 0.95/0.93/0.91/0.90 | 0.87 |
| Mg-1.5Ce | 2/3/4 | 2/3/4 | 0.91/0.89/0.88 | 0.87 |
| Mg-2.0Ce | 2/3/4 | 2/3/4 | 0.89/0.87/0.85 | 0.83 |
| Mg-3.0Ce | 3/4 | 3/4 | 0.85/0.84 | 0.81 |
| Mg-4.0Ce | No | No | No | No |
Table 3. The prediction and experimental results of hot tear cracks and solid fractions.
| Alloys | Rods predicted | Rods observed | fs predicted | fs recorded |
|---|---|---|---|---|
| Mg-0.5Ce | 1/2/3/4 | 1/2/3/4 | 0.96/0.95/0.94/0.93 | 0.93 |
| Mg-1.0Ce | 1/2/3/4 | 1/2/3/4 | 0.95/0.93/0.91/0.90 | 0.87 |
| Mg-1.5Ce | 2/3/4 | 2/3/4 | 0.91/0.89/0.88 | 0.87 |
| Mg-2.0Ce | 2/3/4 | 2/3/4 | 0.89/0.87/0.85 | 0.83 |
| Mg-3.0Ce | 3/4 | 3/4 | 0.85/0.84 | 0.81 |
| Mg-4.0Ce | No | No | No | No |
Fig. 9. The ratio values of thermal contraction rate (Vc), solidification shrinkage rate (Vs), grain growing rate (Vg), and liquid feeding rate (Vf) to grain size (d) when occurring hot tearing in (a) Mg-0.5Ce, (b) Mg-1.0Ce, (c) Mg-1.5Ce, (d) Mg-2.0Ce and (e) Mg-3.0Ce alloys.
Fig. 10. The occurrence of hot tearing in (a) Mg-0.5Ce, (b) Mg-1.0Ce, (c) Mg-1.5Ce, (d) Mg-2.0Ce, (e) Mg-3.0Ce and (f) Mg-4.0Ce predicted by the simplified criterion.
| Alloys | Rcc | Rsc | fcc | fsc | Fel |
|---|---|---|---|---|---|
| Mg-0.5Ce | 1/2/3/4 | 1/2/3/4 | 0.96/0.95/0.94/0.93 | 0.96/0.95/0.94/0.93 | 2.3% |
| Mg-1.0Ce | 1/2/3/4 | 1/2/3/4 | 0.95/0.93/0.91/0.90 | 0.95/0.92/0.91/0.90 | 4.7% |
| Mg-1.5Ce | 2/3/4 | 2/3/4 | 0.91/0.89/0.88 | 0.90/0.88/0.87 | 7.2% |
| Mg-2.0Ce | 2/3/4 | 2/3/4 | 0.89/0.87/0.85 | 0.88/0.86/0.85 | 9.6% |
| Mg-3.0Ce | 3/4 | 2/3/4 | 0.85/0.84 | 0.85/0.82/0.80 | 14.5% |
| Mg-4.0Ce | No | 3/4 | No | 0.79/0.77 | 19.4% |
Table 4. The results predicted by the comprehensive criterion and the simplified criterion (Rcc and fcc are the rod and solid fraction predicted by the comprehensive criterion, Rsc and fsc are the rod and solid fraction predicted by the simplified criterion, Fel is the eutectic liquid fraction).
| Alloys | Rcc | Rsc | fcc | fsc | Fel |
|---|---|---|---|---|---|
| Mg-0.5Ce | 1/2/3/4 | 1/2/3/4 | 0.96/0.95/0.94/0.93 | 0.96/0.95/0.94/0.93 | 2.3% |
| Mg-1.0Ce | 1/2/3/4 | 1/2/3/4 | 0.95/0.93/0.91/0.90 | 0.95/0.92/0.91/0.90 | 4.7% |
| Mg-1.5Ce | 2/3/4 | 2/3/4 | 0.91/0.89/0.88 | 0.90/0.88/0.87 | 7.2% |
| Mg-2.0Ce | 2/3/4 | 2/3/4 | 0.89/0.87/0.85 | 0.88/0.86/0.85 | 9.6% |
| Mg-3.0Ce | 3/4 | 2/3/4 | 0.85/0.84 | 0.85/0.82/0.80 | 14.5% |
| Mg-4.0Ce | No | 3/4 | No | 0.79/0.77 | 19.4% |
Fig. 12. (a) The solidification path of Mg-Al alloy system calculated by Pandat using back diffusion model with a cooling rate of 15 K/s. The occurrence of hot tearing in (b) Mg-1.0Al, (c) Mg-1.5Al, (d) Mg-2.0Al and (e) Mg-3.0Al predicted by the simplified criterion. Volumetric contraction force-temperature-time curves of the (f) Mg-1.0Al, (g) Mg-1.5Al, (h) Mg-2.0Al and (i) Mg-3.0Al.
| Alloys | Rods predicted | Rods observed | fs predicted | fs recorded |
|---|---|---|---|---|
| Mg-1.0Al | 2/3/4 | 2/3/4 | 0.99/0.99/0.98 | 0.98 |
| Mg-1.5Al | 2/3/4 | 2/3/4 | 0.99/0.98/0.97 | 0.97 |
| Mg-2.0Al | 2/3/4 | 2/3/4 | 0.99/0.97/0.96 | 0.95 |
| Mg-3.0Al | 2/3/4 | 2/3/4 | 0.98/0.96/0.95 | 0.92 |
Table 5. The prediction and experimental results of hot tear cracks and solid fractions.
| Alloys | Rods predicted | Rods observed | fs predicted | fs recorded |
|---|---|---|---|---|
| Mg-1.0Al | 2/3/4 | 2/3/4 | 0.99/0.99/0.98 | 0.98 |
| Mg-1.5Al | 2/3/4 | 2/3/4 | 0.99/0.98/0.97 | 0.97 |
| Mg-2.0Al | 2/3/4 | 2/3/4 | 0.99/0.97/0.96 | 0.95 |
| Mg-3.0Al | 2/3/4 | 2/3/4 | 0.98/0.96/0.95 | 0.92 |
Fig. 14. (a) Temperature T vs (fs)1/3 for Mg-Ce alloys; (b) hot tearing index for Mg-Ce alloys; (c) comparison plots of hot tearing index with the hot tearing susceptibility.
| [1] |
D. Suyitno, W.H. Kool, L. Katgerman, Metall. Mater. Trans. A 40 (2009) 2388-2400.
DOI URL |
| [2] | I.I. Nivikov, Russ. Cast. Prod. 4 (1962) 167-172. |
| [3] |
S. Kou, Acta Mater. 88 (2015) 366-374.
DOI URL |
| [4] |
Y. Li, H.X. Li, L. Katgerman, Q. Du, J.S. Zhang, L.Z. Zhuang, Prog. Mater. Sci. 117 (2020) 100741.
DOI URL |
| [5] | U. Feurer, in: Proceedings of the International Symposium, Delft University of Technology, Delft, The Netherlands, 1977, pp. 131-145. |
| [6] | T.W. Clyne, G.J. Davies, Br. Foundryman 74 (1981) 65-69. |
| [7] | L. Katgerman, J. Metall. 34 (1982) 46-49. |
| [8] | N.N. Prokhorov, Russ. Cast. Prod. 2 (1962) 172-175. |
| [9] | B. Magnin, L. Katgerman, B. Hannart, in: M. Cross, J. Campbell (eds.), Modeling of Casting Welding and Advanced Solidification Processes VII, TMS, Warren- dale, PA, 1995, pp. 303-310. |
| [10] |
D.J. Lahaie, M. Bouchard, Metall. Mater. Trans. B 32 (2001) 697-705.
DOI URL |
| [11] |
B. Magnin, L. Maenner, L. Katgerman, S. Engler, Mater. Sci. Forum 217-222 (1996) 1209-1214.
DOI URL |
| [12] |
M. Rappaz, J.M. Drezet, M. Gremaud, Metall. Mater. Trans. A 30 (1999) 449-455.
DOI URL |
| [13] | M. Braccini, C.L. Martin, M. Suery, in: P.R. Sahm, P.N. Hansen, J.G. Conley (Eds.), Modeling of Casting Welding and Advanced Solidification Processes IX, Shaker Verlag, Aachen, Germany, 2000, pp. 18-24. |
| [14] |
G. Vinodh, H.R. Jafari Nodooshan, D.J. Li, X.Q. Zeng, B. Hu, J.T. Carter, A.K. Sachdev, Metall. Mater. Trans. A 51 (2020) 1897-1910.
DOI URL |
| [15] |
B. Hu, D.J. Li, J.Y. Wang, Z.X. Li, X.Y. Wang, X.Q. Zeng, Metall. Mater. Trans. A 51 (2020) 6658-6669.
DOI URL |
| [16] |
B. Hu, D.J. Li, Z.X. Li, J.K. Xu, X.Y. Wang, X.Q. Zeng, Metall. Mater. Trans. A 52 (2021) 789-805.
DOI URL |
| [17] | D. Argo, M. Pekguleryuz, P. Vermette, M. Lefebvre, in: Die Casting, Cincinnati, OH, 2001, pp. 181-186. Oct. 29-Nov. 1, 2001. |
| [18] | J. Campbell, in: Castings, 2nd ed., Butterworth Heinemann, Oxford, 2003, p. 247. |
| [19] | M.C. Flemings, in: Solidification Processing, McGraw-Hill, New York, 1974, pp. 252-256. (Appendix). |
| [20] |
M.A. Easton, H. Wang, J. Grandfield, C.J. Davidson, D.H. StJohn, L.D. Sweet, M.J. Couper, Metall. Mater. Trans. A 43 (2012) 3227-3238.
DOI URL |
| [21] |
Z. Wang, Y.D. Huang, A. Srinivasan, Z. Liu, K.U. Kainer, N. Hort, Mater. Sci. Forum 765 (2013) 306-310.
DOI URL |
| [22] |
G. Cao, S. Kou, Metall. Mater. Trans. A 37 (2006) 3647-3663.
DOI URL |
| [23] | T.W. Clyne, G.J. Davies, in: Solidification and Casting of Metals, The Metals So- ciety, London, 1979, pp. 275-278. |
| [24] | J.F. Song, F.S. Pan, B. Jiang, A. Atrens, M.X. Zhang, Y. Lu, J. Magnes. Alloys 4 (2016) 151-172. |
| [25] | T.W. Clyne, G.J. Davies, Br. Foundryman 74 (1981) 65-73. |
| [26] |
J.W. Liu, S. Kou, Acta Mater. 125 (2017) 513-523.
DOI URL |
| [27] |
J.W. Liu, S. Kou, Acta Mater. 110 (2016) 84-94.
DOI URL |
| [28] |
J.W. Liu, S. Kou, Acta Mater. 100 (2015) 359-368.
DOI URL |
| [29] |
H. Huang, P.H. Fu, Y.X. Wang, L.M. Peng, H.Y. Jiang, Trans. Nonferrous Metals Soc. 24 (2014) 922-929.
DOI URL |
| [30] | J.F. Grandfield, C.J. Davidson, J.A. Taylor, Light Metals (2001) 911-917. |
| [31] | M.A. Easton, J. Grandfield, D.S. John, B. Rinderer, Mater. Sci. Forum 30 (2006) 1675-1680. |
| [32] |
M. Paliwal, I.H. Jung, Metall. Mater. Trans. A 44 (2013) 1636-1640.
DOI URL |
| [33] |
Z. Wang, Y.D. Huang, A. Srinivasan, Z. Liu, F. Beckmann, K.U. Kainer, N. Hort, Mater. Des. 47 (2013) 90-100.
DOI URL |
| [34] |
J.F. Song, Z. Wang, Y.D. Huang, A. Srinivasan, F. Beckmann, K.U. Kainer, N. Hort, Mater. Des. 87 (2015) 157-170.
DOI URL |
| [35] |
G. Cao, C. Zhang, H. Cao, Y.A. Chang, S. Kou, Metall. Mater. Trans. A 41 (2010) 706-716.
DOI URL |
| [1] | Yue Wu, Xiaofan Zhang, Boyi Wang, Jingxuan Liang, Zipei Zhang, Jiawei Yang, Ximeng Dong, Shuqi Zheng, Huai-zhou Zhao. Decoupling of thermoelectric transport performance of Ag doped and Se alloyed tellurium induced by carrier mobility compensation [J]. J. Mater. Sci. Technol., 2022, 101(0): 71-79. |
| [2] | Yingmei Tan, Ruirun Chen, Hongze Fang, Yangli Liu, Hongzhi Cui, Yanqing Su, Jingjie Guo, Hengzhi Fu. Enhanced strength and ductility in Ti46Al4Nb1Mo alloys via boron addition [J]. J. Mater. Sci. Technol., 2022, 102(0): 16-23. |
| [3] | Xu Liu, Lin Song, Andreas Stark, Uwe Lorenz, Zhanbing He, Junpin Lin, Florian Pyczak, Tiebang Zhang. Deformation and phase transformation behaviors of a high Nb-containing TiAl alloy compressed at intermediate temperatures [J]. J. Mater. Sci. Technol., 2022, 102(0): 89-96. |
| [4] | Haoming Pang, Zhenbang Xu, Longjiang Shen, Jun Li, Junshuo Zhang, Zhiyuan Li, Shouhu Xuan, Xinglong Gong. The dynamic compressive properties of magnetorheological plastomers: enhanced magnetic-induced stresses by non-magnetic particles [J]. J. Mater. Sci. Technol., 2022, 102(0): 195-203. |
| [5] | Z.W. Wang, J.F. Zhang, G.M. Xie, L.H. Wu, H. Zhang, P. Xue, D.R. Ni, B.L. Xiao, Z.Y. Ma. Evolution mechanisms of microstructure and mechanical properties in a friction stir welded ultrahigh-strength quenching and partitioning steel [J]. J. Mater. Sci. Technol., 2022, 102(0): 213-223. |
| [6] | Hanchen Feng, Lei Cai, Linfeng Wang, Xiaodan Zhang, Feng Fang. Microstructure and strength in ultrastrong cold-drawn medium carbon steel [J]. J. Mater. Sci. Technol., 2022, 97(0): 89-100. |
| [7] | Shiyu Wu, Dongxu Qiao, Haitao Zhang, Junwei Miao, Hongliang Zhao, Jun Wang, Yiping Lu, Tongmin Wang, Tingju Li. Microstructure and mechanical properties of CxHf0.25NbTaW0.5 refractory high-entropy alloys at room and high temperatures [J]. J. Mater. Sci. Technol., 2022, 97(0): 229-238. |
| [8] | H.Y. Wan, W.K. Yang, L.Y. Wang, Z.J. Zhou, C.P. Li, G.F. Chen, L.M. Lei, G.P. Zhang. Toward qualification of additively manufactured metal parts: Tensile and fatigue properties of selective laser melted Inconel 718 evaluated using miniature specimens [J]. J. Mater. Sci. Technol., 2022, 97(0): 239-253. |
| [9] | Xing Qi, Naoki Takata, Asuka Suzuki, Makoto Kobashi, Masaki Kato. Change in microstructural characteristics of laser powder bed fused Al-Fe binary alloy at elevated temperature [J]. J. Mater. Sci. Technol., 2022, 97(0): 38-53. |
| [10] | Yanxi Li, Pengfei Gao, Jingyue Yu, Shuo Jin, Shuqun Chen, Mei Zhan. Mesoscale deformation mechanisms in relation with slip and grain boundary sliding in TA15 titanium alloy during tensile deformation [J]. J. Mater. Sci. Technol., 2022, 98(0): 72-86. |
| [11] | Renquan Wang, Tingchuan Zhou, Zhiyong Zhong. Low-temperature processing of LiZn-based ferrite ceramics by co-doping of V2O5 and Sb2O3: Composition, microstructure and magnetic properties [J]. J. Mater. Sci. Technol., 2022, 99(0): 1-8. |
| [12] | Huang Chunping, Liang Renyu, Liu Fenggang, Yang Haiou, Lin Xin. Effect of dimensionless heat input during laser solid forming of high-strength steel [J]. J. Mater. Sci. Technol., 2022, 99(0): 127-137. |
| [13] | Tianyi Han, Yong Liu, Mingqing Liao, Danni Yang, Nan Qu, Zhonghong Lai, Jingchuan Zhu. Refined microstructure and enhanced mechanical properties of AlCrFe2Ni2 medium entropy alloy produced via laser remelting [J]. J. Mater. Sci. Technol., 2022, 99(0): 18-27. |
| [14] | Hao Guo, Shufeng Yang, Tiantian Wang, Hang Yuan, Yanling Zhang, Jingshe Li. Microstructure evolution and acicular ferrite nucleation in inclusion-engineered steel with modified MgO@C nanoparticle addition [J]. J. Mater. Sci. Technol., 2022, 99(0): 277-287. |
| [15] | Shiwei Li, Jinglong Li, Junmiao Shi, Yu Peng, Xuan Peng, Xianjun Sun, Feng Jin, Jiangtao Xiong, Fusheng Zhang. Microstructure and mechanical properties of transient liquid phase bonding DD5 single-crystal superalloy to CrCoNi-based medium-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 96(0): 140-150. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
