J. Mater. Sci. Technol. ›› 2022, Vol. 110: 269-282.DOI: 10.1016/j.jmst.2021.09.031
• Research Article • Previous Articles
L. Zhaoa, L. Jiangb, L.X. Yanga, H. Wanga, W.Y. Zhangc, G.Y. Jib, X. Zhoud, W.A. Curtind, X.B. Chene, P.K. Liawf, S.Y. Chenb(), H.Z. Wanga(
)
Received:
2021-07-05
Revised:
2021-09-02
Accepted:
2021-09-05
Published:
2021-11-28
Online:
2021-11-28
Contact:
S.Y. Chen,H.Z. Wang
About author:
wanghaizhou@ncschina.com (H.Z. Wang).L. Zhao, L. Jiang, L.X. Yang, H. Wang, W.Y. Zhang, G.Y. Ji, X. Zhou, W.A. Curtin, X.B. Chen, P.K. Liaw, S.Y. Chen, H.Z. Wang. High throughput synthesis enabled exploration of CoCrFeNi-based high entropy alloys[J]. J. Mater. Sci. Technol., 2022, 110: 269-282.
Fig. 1. CoCrFeMn-Based HEA design strategy: (a) CoCrFeNi-Rx, i.e., R (replacement alloying element) with x (alloying variation in atomic ratio); (b) CoCrFeNi-R-A (addition alloying element).
Cell No. | Designed atomic percentage | Experimental Phases | Literature's Phases | Calculated phases | Experimental Hardness (HV) |
---|---|---|---|---|---|
1 | Fe1Cr1Co1Ni1 | FCC | FCC [ | FCC | |
2 | FeCrCoNiMo0.5 | FCC+μ | FCC+σ [ | FCC+σ | 403 |
3 | FeCrCoNiMo1.0 | FCC+μ | FCC+σ+μ [ | FCC+σ | 619 |
4 | FeCrCoNiMo1.5 | FCC+μ | - | FCC+σ | 783 |
5 | FeCrCoNiMo2.0 | FCC+BCC (Mo) +μ | - | FCC+σ | 845 |
6 | FeCrCoNiMo2.5 | FCC+BCC (Mo) +μ | - | FCC+σ1+σ2 | 857 |
7 | FeCrCoNiMn0.5 | FCC | - | FCC | 268 |
8 | FeCrCoNiMn1.0 | FCC | FCC [ | FCC | 266 |
9 | FeCrCoNiMn1.5 | FCC | - | FCC | 266 |
10 | FeCrCoNiMn2.0 | FCC | - | FCC | 254 |
11 | FeCrCoNiMn2.5 | FCC | - | FCC | 248 |
12 | FeCrCoNiMn3.0 | FCC | - | FCC | 251 |
13 | FeCrCoNiW0.5 | FCC+BCC (W) +μ | FCC+μ [ | FCC+σ+μ | 410 |
14 | FeCrCoNiW1.0 | FCC+BCC (W) +μ | - | FCC+σ+μ | 550 |
15 | FeCrCoNiW1.5 | FCC+BCC (W) +μ | - | - | 539 |
16 | FeCrCoNiW2.0 | FCC+BCC (W) +μ | - | σ+μ | 693 |
17 | FeCrCoNiW2.5 | FCC+BCC (W) +μ | - | BCC+σ+μ | 648 |
18 | FeCrCoNiSi0.5 | FCC+IM | Si0.2 FCC+Unknown [ | FCC+Cr3Si | 728 |
19 | FeCrCoNiSi1.0 | BCC+IM | - | FCC+Co2Si+Cr3Si | 748 |
20 | FeCrCoNiSi1.5 | IM | - | BCC+Co2Si+Cr3Si | 911 |
21 | FeCrCoNiSi2.0 | IM | - | Co2Si+Cr3Si+MSi | 727 |
22 | FeCrCoNiSi2.5 | IM | - | Co2Si+MSi+Cr3Si | 850 |
23 | FeCrCoNiSi3.0 | IM | - | MSi+Co2Si+Cr3Si | 912 |
24 | FeCrCoNiNb0.5 | FCC+Laves | FCC+Laves [ | FCC+Laves | 441 |
25 | FeCrCoNiNb1.0 | FCC+Laves | FCC+Laves [ | FCC+Laves | 588 |
26 | FeCrCoNiNb1.5 | FCC+Laves | - | FCC+Laves | 658 |
27 | FeCrCoNiNb2.0 | BCC (Nb) +Laves | - | Laves | 650 |
28 | FeCrCoNiNb2.5 | BCC (Nb) +Laves | - | Laves+μ | 627 |
29 | FeCrCoNiTi0.5 | FCC+HCP | FCC+Laves+R+σ [ | FCC+BCC+Ni3Ti | 416 |
30 | FeCrCoNiTi1.0 | FCC+BCC+IMs | FCC [ | FCC+BCC+σ | 627 |
31 | FeCrCoNiTi1.5 | BCC+ IMs | - | BCC1+BCC2 | 652 |
32 | FeCrCoNiTi2.0 | BCC+ IMs | - | BCC1+BCC2+Laves | 690 |
33 | FeCrCoNiTi2.5 | BCC+ IMs | - | BCC1+BCC2+Laves | 665 |
34 | FeCrCoNiTa0.5 | FCC+Laves | FCC+Laves [ | FCC+Laves | 458 |
35 | FeCrCoNiTa1.0 | FCC+Laves | FCC+Laves [ | FCC+σ+Laves | 643 |
36 | FeCrCoNiTa1.5 | FCC+Laves | - | BCC+Laves | 740 |
37 | FeCrCoNiTa2.0 | BCC+Laves | - | Laves | 730 |
38 | FeCrCoNiTa2.5 | BCC+Laves | - | Laves+μ | 706 |
39 | FeCrCoNiCu0.5 | FCC1+FCC2 | FCC [ | FCC1+FCC2 | 218 |
40 | FeCrCoNiCu1.0 | FCC1+FCC2 | FCC1+FCC2 [ | FCC1+FCC2 | 196 |
41 | FeCrCoNiCu1.5 | FCC1+FCC2 | - | FCC1+FCC2 | 184 |
42 | FeCrCoNiCu2.0 | FCC1+FCC2 | FCC1+FCC2 [ | FCC1+FCC2 | 170 |
43 | FeCrCoNiCu2.5 | FCC1+FCC2 | Cu4 FCC1+FCC2 [ | FCC1+FCC2 | 160 |
44 | FeCrCoNiAl0.5 | FCC | FCC [ | FCC+BCC | 332 |
45 | FeCrCoNiAl1.0 | FCC+BCC+Order BCC | FCC+BCC [ | BCC1+BCC2+σ | 432 |
46 | FeCrCoNiAl1.5 | BCC+Order BCC | BCC+OrderBCC [ | BCC1+BCC2 | 463 |
47 | FeCrCoNiAl2.0 | BCC+Order BCC | BCC+orderBCC [ | BCC1+BCC2 | 481 |
48 | FeCrCoNiAl2.5 | BCC+Order BCC | BCC [ | BCC1+BCC3 | 478 |
49 | FeCrCoNiAl3.0 | BCC+Order BCC | BCC [ | BCC1+BCC3 | 535 |
50 | FeCrCoNiMoMn | FCC+Oxide | FCC+BCC [ | FCC+σ | 479 |
51 | FeCrCoNiMoW | FCC+BCC+Unknown | FCC+BCC [ | BCC+FCC+σ | 669 |
52 | FeCrCoNiMoSi | FCC+HCP (Ni) +IM+Unknown | - | Cr3Si+Co2Si+σ | 722 |
53 | FeCrCoNiMoNb | Unknown | - | σ+Laves+Ni3Nb | 726 |
54 | FeCrCoNiMoTi | FCC+BCC+HCP (Cr) | FCC+BCC [ | BCC+Ni3Ti+σ | 757 |
55 | FeCrCoNiMoCu | FCC+Unknown | - | FCC1+FCC2+σ | 391 |
56 | FeCrCoNiMoTa | BCC(Mo)+FCC+HCP+Unknown | - | Laves+σ+μ+Ni3Ta | 791 |
57 | FeCrCoNiMoAl | BCC+σ | Mo0.5Al BCC+σ [ | BCC+σ | 626 |
58 | FeCrCoNiMnW | BCC (W) +FCC+HCP (Cr) | FCC+BCC [ | FCC+BCC | 453 |
59 | FeCrCoNiMnSi | BCC+IM | - | FCC+Cr3Si+MnNiSi | 560 |
60 | FeCrCoNiMnNb | FCC+HCP (Cr) +Unknown | - | FCC+Laves | 549 |
61 | FeCrCoNiMnTi | FCC+HCP (Mn) +IM | FCC [ | FCC+BCC1+BCC2+σ | 521 |
62 | FeCrCoNiMnTa | FCC+BCC+HCP(Cr)+Unknown | - | FCC+σ+Laves | 672 |
63 | FeCrCoNiMnCu | FCC1(Cu)+FCC2 | - | FCC1+FCC2 | 261 |
64 | FeCrCoNiMnAl | FCC+BCC+Oxide | FCC+BCC [ | BCC1+BCC2+σ | 471 |
65 | FeCrCoNiWSi | FCC+BCC+IM | - | FCC+Laves+Ni5Si2 | 737 |
66 | FeCrCoNiWNb | BCC(W)+Unknown | - | FCC+Laves+μ | 680 |
67 | FeCrCoNiWTi | BCC(W)+HCP(Cr) | FCC+BCC [ | BCC1+BCC2+Laves+Ni3Ti | 735 |
68 | FeCrCoNiWTa | BCC+Unknown | - | FCC+μ+σ+Laves | 715 |
69 | FeCrCoNiWCu | BCC+FCC+Unknown | - | FCC+μ+σ+CuB_A13 | 392 |
70 | FeCrCoNiWAl | BCC(W)+BCC(Fe,Cr)+Unknown | - | BCC+R+μ+σ | 566 |
71 | FeCrCoNiSiNb | FCC +BCC+IM | - | Liquid+Laves+M11Si8+Cr3Si | 794 |
72 | FeCrCoNiSiTi | BCC(Fe,Cr)+FCC(Ti)+Oxide | - | Liquid+Laves+Cr3Si+G | 749 |
73 | FeCrCoNiSiTa | BCC+IM+Unknown | - | Liquid+Laves+Cr3Si | 881 |
74 | FeCrCoNiSiCu | FCC+IM | FCC1+FCC2+σ [ | FCC1+FCC2+Co2Si+Cr3Si | 574 |
75 | FeCrCoNiSiAl | BCC+IM | BCC+σ [ | BCC3+BCC2+Cr3Si+Co2Si | 779 |
76 | FeCrCoNiNbTi | BCC+IM | - | BCC+Laves+Ni3Ti | 573 |
77 | FeCrCoNiNbTa | BCC+IM+Unknown | - | Laves+σ+μ | 650 |
78 | FeCrCoNiNbCu | FCC+Laves+Unknown | - FCC+Laves [ | FCC1+FCC2+Laves | 438 |
79 | FeCrCoNiNbAl | BCC+Unknown | BCC+Laves+B2 [ | BCC1+BCC2+Laves | 555 |
80 | FeCrCoNiTiCu | FCC+Unknown | FCC+Laves [ | BCC+FCC1+FCC2+σ+T6CuNiTi | 488 |
81 | FeCrCoNiTiAl | BCC | BCC1+BCC2 [ | BCC1+BCC3 | 584 |
82 | FeCrCoNiTiTa | FCC+BCC+HCP+Unknown | - | BCC+Laves+Liquid | 680 |
83 | FeCrCoNiTaCu | FCC+BCC+IM+Unknown | - | FCC1+FCC2+Laves+σ | 485 |
84 | FeCrCoNiTaAl | BCC +Oxide | - | BCC1+BCC3+Laves | 614 |
85 | FeCrCoNiAlCu | FCC1(Cu)+FCC2+BCC+IM | FCC+BCC [ | FCC+BCC+σ+Liquid | 385 |
Table 1. The summary of experimental phases, phases from literatures, phases by Calphad, experimental hardness, and calculated hardness.
Cell No. | Designed atomic percentage | Experimental Phases | Literature's Phases | Calculated phases | Experimental Hardness (HV) |
---|---|---|---|---|---|
1 | Fe1Cr1Co1Ni1 | FCC | FCC [ | FCC | |
2 | FeCrCoNiMo0.5 | FCC+μ | FCC+σ [ | FCC+σ | 403 |
3 | FeCrCoNiMo1.0 | FCC+μ | FCC+σ+μ [ | FCC+σ | 619 |
4 | FeCrCoNiMo1.5 | FCC+μ | - | FCC+σ | 783 |
5 | FeCrCoNiMo2.0 | FCC+BCC (Mo) +μ | - | FCC+σ | 845 |
6 | FeCrCoNiMo2.5 | FCC+BCC (Mo) +μ | - | FCC+σ1+σ2 | 857 |
7 | FeCrCoNiMn0.5 | FCC | - | FCC | 268 |
8 | FeCrCoNiMn1.0 | FCC | FCC [ | FCC | 266 |
9 | FeCrCoNiMn1.5 | FCC | - | FCC | 266 |
10 | FeCrCoNiMn2.0 | FCC | - | FCC | 254 |
11 | FeCrCoNiMn2.5 | FCC | - | FCC | 248 |
12 | FeCrCoNiMn3.0 | FCC | - | FCC | 251 |
13 | FeCrCoNiW0.5 | FCC+BCC (W) +μ | FCC+μ [ | FCC+σ+μ | 410 |
14 | FeCrCoNiW1.0 | FCC+BCC (W) +μ | - | FCC+σ+μ | 550 |
15 | FeCrCoNiW1.5 | FCC+BCC (W) +μ | - | - | 539 |
16 | FeCrCoNiW2.0 | FCC+BCC (W) +μ | - | σ+μ | 693 |
17 | FeCrCoNiW2.5 | FCC+BCC (W) +μ | - | BCC+σ+μ | 648 |
18 | FeCrCoNiSi0.5 | FCC+IM | Si0.2 FCC+Unknown [ | FCC+Cr3Si | 728 |
19 | FeCrCoNiSi1.0 | BCC+IM | - | FCC+Co2Si+Cr3Si | 748 |
20 | FeCrCoNiSi1.5 | IM | - | BCC+Co2Si+Cr3Si | 911 |
21 | FeCrCoNiSi2.0 | IM | - | Co2Si+Cr3Si+MSi | 727 |
22 | FeCrCoNiSi2.5 | IM | - | Co2Si+MSi+Cr3Si | 850 |
23 | FeCrCoNiSi3.0 | IM | - | MSi+Co2Si+Cr3Si | 912 |
24 | FeCrCoNiNb0.5 | FCC+Laves | FCC+Laves [ | FCC+Laves | 441 |
25 | FeCrCoNiNb1.0 | FCC+Laves | FCC+Laves [ | FCC+Laves | 588 |
26 | FeCrCoNiNb1.5 | FCC+Laves | - | FCC+Laves | 658 |
27 | FeCrCoNiNb2.0 | BCC (Nb) +Laves | - | Laves | 650 |
28 | FeCrCoNiNb2.5 | BCC (Nb) +Laves | - | Laves+μ | 627 |
29 | FeCrCoNiTi0.5 | FCC+HCP | FCC+Laves+R+σ [ | FCC+BCC+Ni3Ti | 416 |
30 | FeCrCoNiTi1.0 | FCC+BCC+IMs | FCC [ | FCC+BCC+σ | 627 |
31 | FeCrCoNiTi1.5 | BCC+ IMs | - | BCC1+BCC2 | 652 |
32 | FeCrCoNiTi2.0 | BCC+ IMs | - | BCC1+BCC2+Laves | 690 |
33 | FeCrCoNiTi2.5 | BCC+ IMs | - | BCC1+BCC2+Laves | 665 |
34 | FeCrCoNiTa0.5 | FCC+Laves | FCC+Laves [ | FCC+Laves | 458 |
35 | FeCrCoNiTa1.0 | FCC+Laves | FCC+Laves [ | FCC+σ+Laves | 643 |
36 | FeCrCoNiTa1.5 | FCC+Laves | - | BCC+Laves | 740 |
37 | FeCrCoNiTa2.0 | BCC+Laves | - | Laves | 730 |
38 | FeCrCoNiTa2.5 | BCC+Laves | - | Laves+μ | 706 |
39 | FeCrCoNiCu0.5 | FCC1+FCC2 | FCC [ | FCC1+FCC2 | 218 |
40 | FeCrCoNiCu1.0 | FCC1+FCC2 | FCC1+FCC2 [ | FCC1+FCC2 | 196 |
41 | FeCrCoNiCu1.5 | FCC1+FCC2 | - | FCC1+FCC2 | 184 |
42 | FeCrCoNiCu2.0 | FCC1+FCC2 | FCC1+FCC2 [ | FCC1+FCC2 | 170 |
43 | FeCrCoNiCu2.5 | FCC1+FCC2 | Cu4 FCC1+FCC2 [ | FCC1+FCC2 | 160 |
44 | FeCrCoNiAl0.5 | FCC | FCC [ | FCC+BCC | 332 |
45 | FeCrCoNiAl1.0 | FCC+BCC+Order BCC | FCC+BCC [ | BCC1+BCC2+σ | 432 |
46 | FeCrCoNiAl1.5 | BCC+Order BCC | BCC+OrderBCC [ | BCC1+BCC2 | 463 |
47 | FeCrCoNiAl2.0 | BCC+Order BCC | BCC+orderBCC [ | BCC1+BCC2 | 481 |
48 | FeCrCoNiAl2.5 | BCC+Order BCC | BCC [ | BCC1+BCC3 | 478 |
49 | FeCrCoNiAl3.0 | BCC+Order BCC | BCC [ | BCC1+BCC3 | 535 |
50 | FeCrCoNiMoMn | FCC+Oxide | FCC+BCC [ | FCC+σ | 479 |
51 | FeCrCoNiMoW | FCC+BCC+Unknown | FCC+BCC [ | BCC+FCC+σ | 669 |
52 | FeCrCoNiMoSi | FCC+HCP (Ni) +IM+Unknown | - | Cr3Si+Co2Si+σ | 722 |
53 | FeCrCoNiMoNb | Unknown | - | σ+Laves+Ni3Nb | 726 |
54 | FeCrCoNiMoTi | FCC+BCC+HCP (Cr) | FCC+BCC [ | BCC+Ni3Ti+σ | 757 |
55 | FeCrCoNiMoCu | FCC+Unknown | - | FCC1+FCC2+σ | 391 |
56 | FeCrCoNiMoTa | BCC(Mo)+FCC+HCP+Unknown | - | Laves+σ+μ+Ni3Ta | 791 |
57 | FeCrCoNiMoAl | BCC+σ | Mo0.5Al BCC+σ [ | BCC+σ | 626 |
58 | FeCrCoNiMnW | BCC (W) +FCC+HCP (Cr) | FCC+BCC [ | FCC+BCC | 453 |
59 | FeCrCoNiMnSi | BCC+IM | - | FCC+Cr3Si+MnNiSi | 560 |
60 | FeCrCoNiMnNb | FCC+HCP (Cr) +Unknown | - | FCC+Laves | 549 |
61 | FeCrCoNiMnTi | FCC+HCP (Mn) +IM | FCC [ | FCC+BCC1+BCC2+σ | 521 |
62 | FeCrCoNiMnTa | FCC+BCC+HCP(Cr)+Unknown | - | FCC+σ+Laves | 672 |
63 | FeCrCoNiMnCu | FCC1(Cu)+FCC2 | - | FCC1+FCC2 | 261 |
64 | FeCrCoNiMnAl | FCC+BCC+Oxide | FCC+BCC [ | BCC1+BCC2+σ | 471 |
65 | FeCrCoNiWSi | FCC+BCC+IM | - | FCC+Laves+Ni5Si2 | 737 |
66 | FeCrCoNiWNb | BCC(W)+Unknown | - | FCC+Laves+μ | 680 |
67 | FeCrCoNiWTi | BCC(W)+HCP(Cr) | FCC+BCC [ | BCC1+BCC2+Laves+Ni3Ti | 735 |
68 | FeCrCoNiWTa | BCC+Unknown | - | FCC+μ+σ+Laves | 715 |
69 | FeCrCoNiWCu | BCC+FCC+Unknown | - | FCC+μ+σ+CuB_A13 | 392 |
70 | FeCrCoNiWAl | BCC(W)+BCC(Fe,Cr)+Unknown | - | BCC+R+μ+σ | 566 |
71 | FeCrCoNiSiNb | FCC +BCC+IM | - | Liquid+Laves+M11Si8+Cr3Si | 794 |
72 | FeCrCoNiSiTi | BCC(Fe,Cr)+FCC(Ti)+Oxide | - | Liquid+Laves+Cr3Si+G | 749 |
73 | FeCrCoNiSiTa | BCC+IM+Unknown | - | Liquid+Laves+Cr3Si | 881 |
74 | FeCrCoNiSiCu | FCC+IM | FCC1+FCC2+σ [ | FCC1+FCC2+Co2Si+Cr3Si | 574 |
75 | FeCrCoNiSiAl | BCC+IM | BCC+σ [ | BCC3+BCC2+Cr3Si+Co2Si | 779 |
76 | FeCrCoNiNbTi | BCC+IM | - | BCC+Laves+Ni3Ti | 573 |
77 | FeCrCoNiNbTa | BCC+IM+Unknown | - | Laves+σ+μ | 650 |
78 | FeCrCoNiNbCu | FCC+Laves+Unknown | - FCC+Laves [ | FCC1+FCC2+Laves | 438 |
79 | FeCrCoNiNbAl | BCC+Unknown | BCC+Laves+B2 [ | BCC1+BCC2+Laves | 555 |
80 | FeCrCoNiTiCu | FCC+Unknown | FCC+Laves [ | BCC+FCC1+FCC2+σ+T6CuNiTi | 488 |
81 | FeCrCoNiTiAl | BCC | BCC1+BCC2 [ | BCC1+BCC3 | 584 |
82 | FeCrCoNiTiTa | FCC+BCC+HCP+Unknown | - | BCC+Laves+Liquid | 680 |
83 | FeCrCoNiTaCu | FCC+BCC+IM+Unknown | - | FCC1+FCC2+Laves+σ | 485 |
84 | FeCrCoNiTaAl | BCC +Oxide | - | BCC1+BCC3+Laves | 614 |
85 | FeCrCoNiAlCu | FCC1(Cu)+FCC2+BCC+IM | FCC+BCC [ | FCC+BCC+σ+Liquid | 385 |
Element n | Apparent volume Ån(Å3) |
---|---|
Ni | 10.94 [ |
Co | 11.12 [ |
Fe | 12.09 [ |
Cr | 12.27 [ |
Mn | 12.60 [ |
Al | 14.10* |
Cu | 12.80*(11.80 [ |
Mo | 15.91* |
Ti | 16.02* |
Table 2. Apparent FCC volumes Vn for all alloying elements.
Element n | Apparent volume Ån(Å3) |
---|---|
Ni | 10.94 [ |
Co | 11.12 [ |
Fe | 12.09 [ |
Cr | 12.27 [ |
Mn | 12.60 [ |
Al | 14.10* |
Cu | 12.80*(11.80 [ |
Mo | 15.91* |
Ti | 16.02* |
Fig. 6. Normalized yield strength predicted by solute-strengthening model and normalized hardness from experiment; For CoCrFeNiCux, the predictions from different apparent volumes (12.8 Å3 and 11.8 Å3) are both presented in the figure.
Fig. 7. Honeycomb-array container preparation: (a-e) procedure of honeycomb-sample HIP preparation; (f) detail of HIP process g components of 85 HEAs; (h) honeycomb-structured HEAs library.
[1] | B. Cantor, Prog. Mater. Sci. 120 (2020) 100754. |
[2] |
J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Adv. Eng. Mater. 6 (2004) 299-303.
DOI URL |
[3] |
Y. Lederer, C. Toher, K.S. Vecchio, S. Curtarolo, Acta Mater. 159 (2018) 364-383.
DOI URL |
[4] |
O.N. Senkov, J.D. Miller, D.B. Miracle, C. Woodward, Nat. Commun. 6 (2015) 6529.
DOI PMID |
[5] |
F.G. Coury, K.D. Clarke, C.S. Kiminami, M.J. Kaufman, A.J. Clarke, Sci. Rep. 8 (2018) 8600.
DOI URL |
[6] |
C. Wen, Y. Zhang, C. Wang, D. Xue, Y. Bai, S. Antonov, L. Dai, T. Lookman, Y. Su, Acta Mater. 170 (2019) 109-117.
DOI URL |
[7] |
J.M. Rickman, H.M. Chan, M.P. Harmer, J.A. Smeltzer, C.J. Marvel, A. Roy, G. Bal- asubramanian, Nat. Commun. 10 (2019) 2618.
DOI PMID |
[8] |
G. Bracq, M. Laurent-Brocqa, C. Varvenne, L. Perrière, W.A. Curtin, J.M. Joubert, I. Guillot, Acta Mater. 177 (2019) 266-279.
DOI |
[9] |
T. Borkar, B. Gwalani, D. Choudhuri, C.V. Mikler, C.J. Yannetta, X. Chen, R.V. Ra- manujan, M.J. Styles, M.A. Gibson, R. Banerjee, Acta Mater. 116 (2016) 63-76.
DOI URL |
[10] |
A. Kauffmann, M. Stüber, H. Leiste, S. Ulrich, S. Schlabach, D.V. Szabó, S. Seils, B. Gorr, H. Chen, H.J. Seifert, M. Heilmaier, Surf. Coat. Technol. 325 (2017) 174-180.
DOI URL |
[11] | K.G. Pradeep, C.C. Tasan, M.J. Yao, Y. Deng, H. Springer, D. Raabe, Mater. Sci. Eng. A 648 (2015) 183-192. |
[12] | Z. Li, A. Ludwig, A. Savan, H. Springer, D. Raabe, J. Mater. Res. 33 (2018) 3156-3169. |
[13] |
Q. Ding, Y. Zhang, X. Chen, X. Fu, D. Chen, S. Chen, L. Gu, F. Wei, H. Bei, Y. Gao, M. Wen, J. Li, Z. Zhang, T. Zhu, R.O. Ritchie, Q. Yu, Nature 574 (2019) 223-227.
DOI URL |
[14] |
B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, Science 345 (2014) 1153-1158.
DOI PMID |
[15] |
T. Yang, Y.L. Zhao, Y. Tong, Z.B. Jiao, J. Wei, J.X. Cai, X.D. Han, D. Chen, A. Hu, J.J. Kai, K. Lu, Y. Liu, C.T. Liu, Science 362 (2018) 933-937.
DOI PMID |
[16] |
D.B. Miracle, Nat. Commun. 10 (2019) 1805.
DOI PMID |
[17] |
Y.H. Jo, S. Jung, W.M. Choi, S.S. Sohn, H.S. Kim, B.J. Lee, N.J. Kim, S. Lee, Nat. Commun. 8 (2017) 15719.
DOI URL |
[18] |
Z. Li, K.G. Pradeep, Y. Deng, D. Raabe, C.C. Tasan, Nature 534 (2016) 227-230.
DOI URL |
[19] |
S. Chen, H.S. Oh, B. Gludovatz, S.J. Kim, E.S. Park, Z. Zhang, R.O. Ritchie, Q. Yu, Nat. Commun. 11 (2020) 826.
DOI URL |
[20] |
Y. Shi, B. Yang, X. Xie, J. Brechtl, K.A. Dahmen, P.K. Liaw, Corros. Sci. 119 (2017) 33-45.
DOI URL |
[21] |
M.R. He, S. Wang, S. Shi, K. Jin, H. Bei, K. Yasuda, S. Matsumura, K. Higashida, I.M. Robertsona, Acta Mater. 126 (2017) 182-193.
DOI URL |
[22] | R.L. Livezey, Am. Midl. Nat. 49 (1953) 937. |
[23] | M.S. Lucas, G.B. Wilks, L. Mauger, J.A. Muñoz, O.N. Senkov, E. Michel, J. Hor- wath, S.L. Semiatin, M.B. Stone, D.L. Abernathy, E. Karapetrova, Appl. Phys. Lett. 100 (2012) 251907. |
[24] |
F. Otto, Y. Yang, H. Bei, E.P. George, Acta Mater. 61 (2013) 2628-2638.
DOI URL |
[25] |
C. Li, J.C. Li, M. Zhao, Q. Jiang, J. Alloy. Compd. 504 (2010) S515-S518.
DOI URL |
[26] |
F. He, Z. Wang, P. Cheng, Q. Wang. J. Li, Y. Dang, J. Wang, C.T. Liu, J. Alloy. Compd. 656 (2016) 284-289.
DOI URL |
[27] |
C. Ai, F. He, M. Guo, J. Zhou, Z. Wang, Z. Yuan, Y. Guo, Y. Liu, L. Liu, J. Alloy. Compd. 735 (2018) 2653-2662.
DOI URL |
[28] |
T.T. Shun, L.Y. Chang, M.H. Shiu, Mater. Sci. Eng. A 556 (2012) 170-174.
DOI URL |
[29] |
L. Jiang, Y. Lu, Y. Dong, T. Wang, Z. Cao, T. Li, Intermetallics 44 (2014) 37-43.
DOI URL |
[30] | H. Song, F. Tian, Q.M. Hu, L. Vitos, Y. Wang, J. Shen, N. Chen, Phys. Rev. Mater. 1 (2017) 023404. |
[31] |
X. Yang, Y. Zhang, Mater. Chem. Phys. 132 (2012) 233-238.
DOI URL |
[32] |
I. Toda-Caraballo, P. E.J. Rivera-Díaz-del-Castillo, Intermetallics 71 (2016) 76-87.
DOI URL |
[33] |
M. Calvo-Dahlborg, S. G.R. Brown, J. Alloy. Compd. 724 (2017) 353-364.
DOI URL |
[34] | https://thermocalc.com/content/uploads/Documentation/Databases/Thermodynamic/tchea4-technical-info.pdf. |
[35] |
C.M. Lin, H.L. Tsai, H.Y. Bor, Intermetallics 18 (2010) 1244-1250.
DOI URL |
[36] |
J.B. Cheng, X.B. Liang, Z.H. Wang, B.S. Xu, Plasma Chem. Plasma Process. 33 (2013) 979-992.
DOI URL |
[37] | Z. Niu, J. Xu, T. Wang, N. Wang, Z. Han, Y. Wang, Intermetallics 112 (2019) 106550. |
[38] |
H. Jiang, L. Jiang, D. Qiao, Y. Lu, T. Wang, Z. Cao, T. Li, J. Mater. Sci. Technol. 33 (2017) 712-717.
DOI |
[39] | G. Michael, J.W. Yeh, P.K. Liaw, Y. Zhang, High-Entropy Alloys, Springer, 2016. |
[40] |
C. Varvenne, G. P.M. Leyson, M. Ghazisaeidi, W.A. Curtin, Acta Mater. 124 (2017) 660-683.
DOI URL |
[41] | S. Nag, C. Varvenne, W.A. Curtin, Model. Simul. Mater. Sci. Eng. 28 (2020) 025007. |
[42] |
G. Bracq, M. Laurent-Brocq, C. Varvenne, L. Perrière, W.A. Curtin, J.M. Joubert, I. Guillot, Acta Mater. 177 (2019) 266-279.
DOI |
[43] |
B. Yin, W.A. Curtin, NPJ Comput. Mater. 5 (2019) 1-7.
DOI URL |
[44] |
Z. Wu, H. Bei, F. Otto, G.M. Pharr, E.P. George, Intermetallics 46 (2014) 131-140.
DOI URL |
[45] |
C. Varvenne, A. Luque, W.A. Curtin, Acta Mater. 118 (2016) 164-176.
DOI URL |
[46] |
C. Varvenne, W.A. Curtin, Scr. Mater. 138 (2017) 92-95.
DOI URL |
[47] | Thermo-Calc Software and Database, https://thermocalc.com/. |
[48] |
T.T. Shun, L.Y. Chang, M.H. Shiu, Mater. Charact. 70 (2012) 63-67.
DOI URL |
[49] | Z. Niu, Y. Wang, C. Geng, J. Xu, Y. Wang, J. Alloy. Compd. 820 (2020) 153273. |
[50] | X. Qiu, Mater. Res. Technol. 9 (2020) 5127-5133. |
[51] | M.J. Yao, K.G. Pradeep, C.C. Tasan, D. Raabe, Scr. Mater. 5-8 (2014) 72-73. |
[52] | G. Cui, B. Han, Y. Yang, M. Li, J. Li, Surf. Coat. Technol. 381 (2020) 125182. |
[53] | A.C. Fan, J.H. Li, M.H. Tsai, J. Alloy. Compd. 823 (2020) 153524. |
[54] |
K.B. Zhang, K.B. Zhang, Z.Y. Fu, J.Y. Zhang, W.M. Wang, H. Wang, Y.C. Wang, Q.J. Zhang, J. Shi, Mater. Sci. Eng. A 508 (2009) 214-219.
DOI URL |
[55] |
A. Verma, P. Tarate, A.C. Abhyankar, M.R. Mohape, D.S. Gowtam, V.P. Desh- mukh, T. Shanmugasundaram, Scr. Mater. 161 (2019) 28-31.
DOI URL |
[56] | W.L. Wang, Z. H.J. Kong, J. Alloy. Compd. 853 (2020) 156451. |
[57] |
Z. Xu, Z. Li, Y. Tong, W. Zhang, Z. Wu, J. Mater. Sci. Technol. 60 (2021) 35-43.
DOI URL |
[58] |
C.M. Lin, H.L. Tsai, Intermetallics 19 (2011) 288-294.
DOI URL |
[59] |
Y. Lv, R. Hu, Z. Yao, J. Chen, D. Xu, Y. Liu, X. Fan, Mater. Des. 132 (2017) 392-399.
DOI URL |
[60] | N. Haghdadi, T. Guo, A.A. Ghaderi, P.D. Hodgson, M.R. Barnett, D.M. Fabijanic, Wear 428-429 (2019) 293-301. |
[61] |
G. Liu, L. Liu, X. Liu, Z. Wang, Z. Han, G. Zhang, A. Kostka, Intermetallics 93 (2018) 93-100.
DOI URL |
[62] |
W.R. Wang, W.L. Wang, S.C. Wang, Y.C. Tsai, C.H. Lai, J.W. Yeh, Intermetallics 26 (2012) 44-51.
DOI URL |
[63] | C.D. Gómez-Esparza, R. Martínez-Sánchez, A.R-G Duarte-Moller, C.A. Microsc. Microanal. 25 (2019) 2416-2417. |
[64] |
J. Zhu, H.M. Fu, H.F. Zhang, A.M. Wang, H. Li, Z.Q. Hu, Mater. Sci. Eng. A 527 (2010) 6975-6979.
DOI URL |
[65] | S.A. Uporov, R.E. Ryltsev, V.A. Bykov, S.K. Estemirova, D.A. Zamyatin, J. Alloy. Compd. 820 (2020) 153228. |
[66] |
A. Kumar, A.K. Swarnakar, A. Basu, M.J. Chopkar, J. Alloy. Compd. 748 (2018) 889-897.
DOI URL |
[67] |
J. Zhu, H.M. Fu, H.F. Zhang, A.M. Wang, H. Li, Z.Q. Hu, Mater. Sci. Eng. A 527 (2010) 7210-7214.
DOI URL |
[68] | J. Cheng, D. Liu, X. Liang, B. Xu, Acta Metall. Sin. Engl. Lett. 27 (2014) 1031-1037. |
[69] |
X.F. Wang, Y. Zhang, Y. Qiao, G.L. Chen, Intermetallics 15 (2007) 357-362.
DOI URL |
[70] |
J. Liu, H. Liu, P. Chen, J. Hao, Surf. Coat. Technol. 361 (2019) 63-74.
DOI URL |
[71] |
X.W. Qiu, J. Alloy. Compd. 555 (2013) 246-249.
DOI URL |
[1] | Dong Huang, Yanxin Zhuang. Break the strength-ductility trade-off in a transformation-induced plasticity high-entropy alloy reinforced with precipitation strengthening [J]. J. Mater. Sci. Technol., 2022, 108(0): 125-132. |
[2] | Xuehui Yan, Peter K. Liaw, Yong Zhang. Ultrastrong and ductile BCC high-entropy alloys with low-density via dislocation regulation and nanoprecipitates [J]. J. Mater. Sci. Technol., 2022, 110(0): 109-116. |
[3] | Bang Xiao, Wenpeng Jia, Huiping Tang, Jian Wang, Lian Zhou. Microstructure and mechanical properties of WMoTaNbTi refractory high-entropy alloys fabricated by selective electron beam melting [J]. J. Mater. Sci. Technol., 2022, 108(0): 54-63. |
[4] | Yang Jianyan, Ren Weijun, Zhao Xinguo, Kikuchi Tatsuya, Miao Ping, Nakajima Kenji, Li Bing, Zhang Zhidong. Mictomagnetism and suppressed thermal conduction of the prototype high-entropy alloy CrMnFeCoNi [J]. J. Mater. Sci. Technol., 2022, 99(0): 55-60. |
[5] | Zejiang Yu, Wei Zheng, Zhiqiang Li, Yunzhuo Lu, Xinbing Yun, Zuoxiang Qin, Xing Lu. Accelerated exploration of TRIP metallic glass composite by laser additive manufacturing [J]. J. Mater. Sci. Technol., 2021, 78(0): 68-73. |
[6] | Muhammad Akmal, Ahtesham Hussain, Muhammad Afzal, Young Ik Lee, Ho Jin Ryu. Systematic study of (MoTa)xNbTiZr medium- and high-entropy alloys for biomedical implants- In vivo biocompatibility examination [J]. J. Mater. Sci. Technol., 2021, 78(0): 183-191. |
[7] | Tao Xiang, Zeyun Cai, Peng Du, Kun Li, Zongwei Zhang, Guoqiang Xie. Dual phase equal-atomic NbTaTiZr high-entropy alloy with ultra-fine grain and excellent mechanical properties fabricated by spark plasma sintering [J]. J. Mater. Sci. Technol., 2021, 90(0): 150-158. |
[8] | Yunli Lu, Fenghui Duan, Jie Pan, Yi Li. High-throughput screening of critical size of grain growth in gradient structured nickel [J]. J. Mater. Sci. Technol., 2021, 82(0): 33-39. |
[9] | Yufang Zhao, Jinyu Zhang, YaQiang Wang, Shenghua Wu, Xiaoqing Liang, Kai Wu, Gang Liu, Jun Sun. The metastable constituent effects on size-dependent deformation behavior of nanolaminated micropillars: Cu/FeCoCrNi vs Cu/CuZr [J]. J. Mater. Sci. Technol., 2021, 68(0): 16-29. |
[10] | Jia Li, Baobin Xie, Qihong Fang, Bin Liu, Yong Liu, Peter K. Liaw. High-throughput simulation combined machine learning search for optimum elemental composition in medium entropy alloy [J]. J. Mater. Sci. Technol., 2021, 68(0): 70-75. |
[11] | Jianping Lai, Wen Hu, Amit Datye, Jingbei Liu, Jan Schroers, Udo D. Schwarz, Jiaxin Yu. Revealing the relationships between alloy structure, composition and plastic deformation in a ternary alloy system by a combinatorial approach [J]. J. Mater. Sci. Technol., 2021, 84(0): 97-104. |
[12] | Bin Liu, Jifeng Wu, Yanwei Cui, Qinqing Zhu, Guorui Xiao, Siqi Wu, Guang-han Cao, Zhi Ren. Structural evolution and superconductivity tuned by valence electron concentration in the Nb-Mo-Re-Ru-Rh high-entropy alloys [J]. J. Mater. Sci. Technol., 2021, 85(0): 11-17. |
[13] | Yunjian Bai, Heng Jiang, Kuo Yan, Maohui Li, Yanpeng Wei, Kun Zhang, Bingchen Wei. Phase transition and heterogeneous strengthening mechanism in CoCrFeNiMn high-entropy alloy fabricated by laser-engineered net shaping via annealing at intermediate-temperature [J]. J. Mater. Sci. Technol., 2021, 92(0): 129-137. |
[14] | Tao Zheng, Xiaobing Hu, Feng He, Qingfeng Wu, Bin Han, Chen Da, Junjie Li, Zhijun Wang, Jincheng Wang, Ji-jung Kai, Zhenhai Xia, C.T. Liu. Tailoring nanoprecipitates for ultra-strong high-entropy alloys via machine learning and prestrain aging [J]. J. Mater. Sci. Technol., 2021, 69(0): 156-167. |
[15] | Raymond Kwesi Nutor, Q.P. Cao, X.D. Wang, D.X. Zhang, J.Z. Jiang. Tunability of the mechanical properties of (Fe50Mn27Ni10Cr13)100-xMox high-entropy alloys via secondary phase control [J]. J. Mater. Sci. Technol., 2021, 73(0): 210-217. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||