J. Mater. Sci. Technol. ›› 2021, Vol. 82: 33-39.DOI: 10.1016/j.jmst.2020.11.070
• Research Article • Previous Articles Next Articles
Yunli Lua,b, Fenghui Duana, Jie Pana,*(), Yi Lia,*(
)
Received:
2020-09-13
Revised:
2020-11-02
Accepted:
2020-11-11
Published:
2021-01-16
Online:
2021-01-16
Contact:
Jie Pan,Yi Li
About author:
liyi@imr.ac.cn (Y. Li).Yunli Lu, Fenghui Duan, Jie Pan, Yi Li. High-throughput screening of critical size of grain growth in gradient structured nickel[J]. J. Mater. Sci. Technol., 2021, 82: 33-39.
Fig. 2. TEM/SEM images at normalized distances x of (a) 0.08, (b) 0.25, (c) 0.40, (d) 0.53, (e) 0.67 and (f) 0.90 in GS specimen I. The top-right insets in (a-d) are the corresponding selected area electron diffraction (SAED) patterns, and the bottom-right insets in (a-f) are the distributions of grain size.
Fig. 3. (a) Hardness and (b) grain-size-distribution profiles of as-deposited GS specimens, where the grain sizes are calculated from the hardness profiles using the Hall-Petch relationship. The grain sizes in specimen I were also measured by TEM and SEM (red spheres).
Fig. 4. Hardness profiles of GS specimens after annealing at 503 K for 3 h, where the critical hardness values marked by the stars are identical for all three GS specimens.
Fig. 5. (a) Typical cross-sectional SEM image of the specimen I after annealing at 503 K for 3 h. (b) The magnified SEM image showing the original microstructural morphology at the specific location (i.e., the region c marked in (a) in the as-deposited specimen. (c-e) The enlarged SEM images at the regions marked in (a).
Fig. 6. TEM images at the critical position (x = 0.44 for GS specimen I) in the (a) as-deposited and (b) annealed specimens. The top-right and bottom-right insets in (a) and (b) show the corresponding SAED patterns and grain size distributions, respectively.
Fig. 7. Relationship between the critical size of grain growth dc and the grain coarsening temperature TGC in Ni. Data for ED Ni and severe plastic deformed (SPD) Ni [8,[10], [11], [12], [13], [14], [15], [16],[24], [25], [26], [27], [28], [29]] are also provided for comparison.
Fig. 10. (a) XRD patterns of GS specimen I at various positions along deposition direction, where the initial grain sizes are 31, 37, 45, 61, and 73 nm, respectively. (b) Grain boundary energy as a function of the initial grain size, and data for ED Ni [9,20,35,43,44] are also included for comparison.
[1] |
H. Gleiter, Prog. Mater. Sci. 33 (1989) 223-315.
DOI URL |
[2] |
M.A. Meyers, A. Mishra, D.J. Benson, Prog. Mater. Sci. 51 (2006) 427-556.
DOI URL |
[3] |
K. Pantleon, M.A.J. Somers, Scr. Mater. 55 (2006) 283-286.
DOI URL |
[4] |
K. Hansen, K. Pantleon, Scr. Mater. 58 (2008) 96-98.
DOI URL |
[5] |
M. Ames, J. Markmann, R. Karos, A. Michels, A. Tschoepe, R. Birringer, Acta Mater. 56 (2008) 4255-4266.
DOI URL |
[6] |
K. Lu, Nat. Rev. Mater. 1 (2016) 16019.
DOI URL |
[7] |
C.C. Koch, R.O. Scattergood, K.A. Darling, J.E. Semones, J. Mater. Sci. 43 (2008) 7264-7272.
DOI URL |
[8] |
F. Czerwinski, A. Zielinska-Lipiec, J.A. Szpunar, Acta Mater. 47 (1999) 2553-2566.
DOI URL |
[9] |
J. Hu, Y.N. Shi, K. Lu, Scr. Mater. 154 (2018) 182-185.
DOI URL |
[10] |
R.K. Islamgaliev, F. Chmelik, R. Kuzel, Mater. Sci. Eng. A 237 (1997) 43-51.
DOI URL |
[11] |
K.S. Raju, M.G. Krishna, K.A. Padmanabhan, V.S. Sarma, N.P. Gurao, G. Wilde, J. Mater. Sci. 46 (2011) 2662-2671.
DOI URL |
[12] |
A.P. Zhilyaev, G.V. Nurislamova, M.D. Baro, R.Z. Valiev, T.G. Langdon, Metall. Mater. Trans. A 33 (2002) 1865-1868.
DOI URL |
[13] | E. Schafler, R. Pippan, Mater. Sci. Eng. A 387 (2004) 799-804. |
[14] |
K. Oh-ishi, Z. Horita, D.J. Smith, R.Z. Valiev, M. Nemoto, T.G. Langdon, J. Mater. Res. 14 (1999) 4200-4207.
DOI URL |
[15] |
H. Natter, M. Schmelzer, R. Hempelmann, J. Mater. Res. 13 (1998) 1186-1197.
DOI URL |
[16] |
H.W. Zhang, X. Huang, R. Pippan, N. Hansen, Acta Mater. 58 (2010) 1698-1707.
DOI URL |
[17] | K. Lu, Acta Metall. Sin. 51 (2015) 1-10. |
[18] |
Y. Lin, J. Pan, H.F. Zhou, H.J. Gao, Y. Li, Acta Mater. 153 (2018) 279-289.
DOI URL |
[19] | Y. Lin, J. Pan, Z. Luo, Y. Lu, K. Lu, Y.J.N.M.S. Li, Nano Mater. Sci. 2 (2019) 39-49. |
[20] |
U. Klement, U. Erb, A.M. ElSherik, K.T. Aust, Mater. Sci. Eng. A 203 (1995) 177-186.
DOI URL |
[21] |
G.D. Hibbard, V. Radmilovic, K.T. Aust, U. Erb, Mater. Sci. Eng. A 494 (2008) 232-238.
DOI URL |
[22] |
G.D. Hibbard, J.L. McCrea, G. Palumbo, K.T. Aust, U. Erb, Scr. Mater. 47 (2002) 83-87.
DOI URL |
[23] |
K. Hattar, D.M. Follstaedt, J.A. Knapp, I.M. Robertson, Acta Mater. 56 (2008) 794-801.
DOI URL |
[24] |
M. Chauhan, F.A. Mohamed, Mater. Sci. Eng. A 427 (2006) 7-15.
DOI URL |
[25] |
A. Sarkar, K.L. Murty, Philos. Mag. Lett. 98 (2018) 494-501.
DOI URL |
[26] |
J.E. Darnbrough, P.E.J. Flewitt, Acta Mater. 79 (2014) 421-433.
DOI URL |
[27] |
Y.M. Wang, S. Cheng, Q.M. Wei, E. Ma, T.G. Nieh, A. Hamza, Scr. Mater. 51 (2004) 1023-1028.
DOI URL |
[28] |
A.A. Talin, E.A. Marquis, S.H. Goods, J.J. Kelly, M.K. Miller, Acta Mater. 54 (2006) 1935-1947.
DOI URL |
[29] | A.W. Thompson, H.J. Saxton, Metall. Trans. 4 (1973) 1599-1605. |
[30] |
G.W. Greenwood, Acta Metall. 4 (1956) 243-248.
DOI URL |
[31] |
M. Hillert, Acta Metall. 13 (1965) 227-238.
DOI URL |
[32] |
I.M. Lifshitz, V.V. Slyozov, J. Phys. Chem. Solids 19 (1961) 35-50.
DOI URL |
[33] |
G.T. Higgins, Met. Sci. 8 (1974) 143-150.
DOI URL |
[34] |
M.C. Iordache, S.H. Whang, Z. Jiao, Z.M. Wang, Nanostruct. Mater. 11 (1999) 1343-1349.
DOI URL |
[35] |
N. Wang, Z.R. Wang, K.T. Aust, U. Erb, Acta Mater. 45 (1997) 1655-1669.
DOI URL |
[36] |
G.D. Hibbard, K.T. Aust, U. Erb, J. Mater. Sci. 43 (2008) 6441-6452.
DOI URL |
[37] |
M.J. Xu, C. Hu, H.Y. Xiang, H.Z. Lu, T.S. Hu, B.N. Hu, S. Liu, G. Yu, J. Mater. Sci. Technol. 35 (2019) 727-732.
DOI URL |
[38] | W.G.I. Kaur, L. Kozma, Handbook of Grain and Interface Boundary Diffusion Data, Ziegler Press, Stuttgart, 1989. |
[39] |
Z. Chen, Y. Chen, Comput. Mater. Sci. 141 (2018) 282-292.
DOI URL |
[40] |
O. Hunderi, N. Ryum, H. Westengen, Acta Metall. 27 (1979) 161-165.
DOI URL |
[41] | P.A. Beck, J.C. Kremer, L.J. Demer, M.L. Holzworth, Trans. AIME 175 (1948) 372-400. |
[42] |
D. Prokoshkina, V.A. Esin, G. Wilde, S.V. Divinski, Acta Mater. 61 (2013) 5188-5197.
DOI URL |
[43] |
G.D. Hibbard, U. Erb, K.T. Aust, G. Palumbo, Mater. Res. Soc. Symp. Proc. 580 (2000) 183-188.
DOI URL |
[44] |
H.T. Ni, X.Y. Zhang, X. Chen, L. Yu, Mater. Sci. Technol. 28 (2012) 754-759.
DOI URL |
[45] |
S.G. Kim, Y.B. Park, Acta Mater. 56 (2008) 3739-3753.
DOI URL |
[46] |
J.B. Koo, D.Y. Yoon, Metall. Mater. Trans. A 32 (2001) 1911-1926.
DOI URL |
[47] |
X. Zhou, X.Y. Li, K. Lu, Science 360 (2018) 526-529.
DOI PMID |
[48] |
A. Kumpmann, B. Gunther, H.D. Kunze, Mater. Sci. Eng. A 168 (1993) 165-169.
DOI URL |
[1] | Jia Li, Baobin Xie, Qihong Fang, Bin Liu, Yong Liu, Peter K. Liaw. High-throughput simulation combined machine learning search for optimum elemental composition in medium entropy alloy [J]. J. Mater. Sci. Technol., 2021, 68(0): 70-75. |
[2] | Zejiang Yu, Wei Zheng, Zhiqiang Li, Yunzhuo Lu, Xinbing Yun, Zuoxiang Qin, Xing Lu. Accelerated exploration of TRIP metallic glass composite by laser additive manufacturing [J]. J. Mater. Sci. Technol., 2021, 78(0): 68-73. |
[3] | Wei Wu, Yongshan Wei, Hongjiang Chen, Keyan Wei, Zhitong Li, Jianhui He, Libo Deng, Lei Yao, Haitao Yang. In-situ encapsulation of α-Fe2O3 nanoparticles into ZnFe2O4 micro-sized capsules as high-performance lithium-ion battery anodes [J]. J. Mater. Sci. Technol., 2021, 75(0): 110-117. |
[4] | Dan Liu, Daoxin Liu, Mario Guagliano, Xingchen Xu, Kaifa Fan, Sara Bagherifard. Contribution of ultrasonic surface rolling process to the fatigue properties of TB8 alloy with body-centered cubic structure [J]. J. Mater. Sci. Technol., 2021, 61(0): 63-74. |
[5] | G.W. Hu, L.C. Zeng, H. Du, X.W. Liu, Y. Wu, P. Gong, Z.T. Fan, Q. Hu, E.P. George. Tailoring grain growth and solid solution strengthening of single-phase CrCoNi medium-entropy alloys by solute selection [J]. J. Mater. Sci. Technol., 2020, 54(0): 196-205. |
[6] | Risheng Pei, Sandra Korte-Kerzel, Talal Al-Samman. Normal and abnormal grain growth in magnesium: Experimental observations and simulations [J]. J. Mater. Sci. Technol., 2020, 50(0): 257-270. |
[7] | Ying-Jun Gao, Qian-Qian Deng, Zhe-yuan Liu, Zong-Ji Huang, Yi-Xuan Li, Zhi-Rong Luo. Modes of grain growth and mechanism of dislocation reaction under applied biaxial strain: Atomistic and continuum modeling [J]. J. Mater. Sci. Technol., 2020, 49(0): 236-250. |
[8] | Jiangguli Peng, Wenbin Liu, Jiangtao Zeng, Liaoying Zheng, Guorong Li, Anthony Rousseau, Alain Gibaud, Abdelhadi Kassiba. Large electromechanical strain at high temperatures of novel <001> textured BiFeGaO3-BaTiO3 based ceramics [J]. J. Mater. Sci. Technol., 2020, 48(0): 92-99. |
[9] | P.G. Kubendran Amos, Ramanathan Perumal, Michael Selzer, Britta Nestler. Multiphase-field modelling of concurrent grain growth and coarsening in complex multicomponent systems [J]. J. Mater. Sci. Technol., 2020, 45(0): 215-229. |
[10] | Wei Zhang, Yuchen Liu, Yanchun Zhou, Wai-Yim Ching, Qian Li, Wenxian Li, Jiong Yang, Bin Liu. Anti-perovskite carbides and nitrides A3BX: A new family of damage tolerant ceramics [J]. J. Mater. Sci. Technol., 2020, 40(0): 64-71. |
[11] | Xingchen Xu, Daoxin Liu, Xiaohua Zhang, Chengsong Liu, Dan Liu. Mechanical and corrosion fatigue behaviors of gradient structured 7B50-T7751 aluminum alloy processed via ultrasonic surface rolling [J]. J. Mater. Sci. Technol., 2020, 40(0): 88-98. |
[12] | Qinghang Wang, Bin Jiang, Aitao Tang, Jie Fu, Zhongtao Jiang, Haoran Sheng, Dingfei Zhang, Guangsheng Huang, Fusheng Pan. Unveiling annealing texture formation and static recrystallization kinetics of hot-rolled Mg-Al-Zn-Mn-Ca alloy [J]. J. Mater. Sci. Technol., 2020, 43(0): 104-118. |
[13] | Xintong Lian, Wenru Sun, Litao Chang, Fang Liu, Xin Xin. Influence of phosphorous on nucleation and growth of grains during solidification in a NiCrFe alloy [J]. J. Mater. Sci. Technol., 2019, 35(1): 134-141. |
[14] | G.B. Shan, Y.Z. Chen, M.M. Gong, H. Dong, B. Li, F. Liu. Influence of Al2O3 particle pinning on thermal stability of nanocrystalline Fe [J]. J. Mater. Sci. Technol., 2018, 34(4): 599-604. |
[15] | Kwak T.Y., Kim W.J.. Superplastic behavior of an ultrafine-grained Mg-13Zn-1.55Y alloy with a high volume fraction of icosahedral phases prepared by high-ratio differential speed rolling [J]. J. Mater. Sci. Technol., 2017, 33(9): 919-925. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||