J. Mater. Sci. Technol. ›› 2022, Vol. 105: 214-225.DOI: 10.1016/j.jmst.2021.08.011
• Research Article • Previous Articles Next Articles
Zheng Zhanga, Wenming Jianga,*(), Guangyu Lia, Junlong Wanga, Feng Guana, Guoliang Jieb, Zitian Fana
Received:
2021-07-12
Revised:
2021-08-15
Accepted:
2021-08-15
Published:
2021-09-23
Online:
2021-09-23
Contact:
Wenming Jiang
About author:
*E-mail address: wmjiang@hust.edu.cn (W. Jiang).Zheng Zhang, Wenming Jiang, Guangyu Li, Junlong Wang, Feng Guan, Guoliang Jie, Zitian Fan. Effect of La on microstructure, mechanical properties and fracture behavior of Al/Mg bimetallic interface manufactured by compound casting[J]. J. Mater. Sci. Technol., 2022, 105: 214-225.
Mg | Al | Zn | Mn | Si | Fe | Ti | |
---|---|---|---|---|---|---|---|
A356 | 0.44 | Bal. | — | — | 6.81 | 0.21 | 0.02 |
AZ91D | Bal. | 9.08 | 0.62 | 0.23 | — | — | — |
Table 1. Chemical compositions of the experimental alloys (wt.%).
Mg | Al | Zn | Mn | Si | Fe | Ti | |
---|---|---|---|---|---|---|---|
A356 | 0.44 | Bal. | — | — | 6.81 | 0.21 | 0.02 |
AZ91D | Bal. | 9.08 | 0.62 | 0.23 | — | — | — |
Fig. 3. Microstructures of the Al/Mg interface in group A (Without La addition): (a) Overall morphology of the interface; (b) Low magnification SEM image of the eutectic layer included in E area; (c) High magnification SEM image of the eutectic layer; (d) Low magnification SEM image of the primary γ (Mg17Al12) layer included in E area and the E-IMC area; (e) High magnification SEM image of the primary γ layer; (f) Low magnification SEM image of the γ layer and β (Al3Mg2) layer included in IMC area; (g) The enlargement of area Ⅰ in the (f); (h) The enlargement of area Ⅱ in the (f).
Point no. | Element compositions (at.%) | Possible component | |||||
---|---|---|---|---|---|---|---|
Mg | Al | Mn | Si | Fe | Ti | ||
1 | 63.15 | 36.85 | — | — | — | — | γ |
2 | 81.55 | 18.45 | — | — | — | — | δ-Mg |
3 | 60.41 | 39.59 | — | — | — | — | γ |
4 | — | 83.28 | — | 7.53 | 9.19 | — | θ |
5 | — | 86.93 | — | — | 13.07 | — | Al13Fe4 |
6 | 47.09 | 52.91 | — | — | — | — | γ |
7 | 61.35 | 7.23 | — | 31.41 | — | — | Mg2Si |
8 | 38.69 | 61.31 | — | — | — | — | β |
9 | — | 82.67 | — | — | — | 17.33 | Al3Ti |
Table 2. The EDS analysis results of the corresponding points in group A.
Point no. | Element compositions (at.%) | Possible component | |||||
---|---|---|---|---|---|---|---|
Mg | Al | Mn | Si | Fe | Ti | ||
1 | 63.15 | 36.85 | — | — | — | — | γ |
2 | 81.55 | 18.45 | — | — | — | — | δ-Mg |
3 | 60.41 | 39.59 | — | — | — | — | γ |
4 | — | 83.28 | — | 7.53 | 9.19 | — | θ |
5 | — | 86.93 | — | — | 13.07 | — | Al13Fe4 |
6 | 47.09 | 52.91 | — | — | — | — | γ |
7 | 61.35 | 7.23 | — | 31.41 | — | — | Mg2Si |
8 | 38.69 | 61.31 | — | — | — | — | β |
9 | — | 82.67 | — | — | — | 17.33 | Al3Ti |
Fig. 4. The morphologies of the Al/Mg interfaces in group L1, L2 and L3: (a) Group L1 (With 0.7% La); (b) Group L2 (With 1.0% La); (c) Group L3 (With 1.3% La).
Fig. 5. Microstructures of the Al/Mg interfaces in group L1, L2 and L3: (1a-1f) Group L1, (1a) and (1b) The E area and the E-IMC area, (1c) The enlargement of rectangular area in Fig. 5(1b), (1d) The IMC area, (1e) and (1f) The enlargement of area Ⅰ and Ⅱ in Fig. 5(1d); (2a-2f) Group L2, (2a) and (2b) The E area and the E-IMC area, (2c) The enlargement of rectangular area in Fig. 5(2b), (2d) The IMC area, (2e) and (2f) The enlargement of area Ⅲ and Ⅳ in Fig. 5(2d); (3a-3f) Group L3, (3a) and (3b) The E area and the E-IMC area, (3c) The enlargement of rectangular area in Fig. 5(3b), (3d) The IMC area, (3e) and (3f) The enlargement of area Ⅴ and Ⅵ in Fig. 5(3d).
Point no. | Element compositions (at.%) | Possible component | ||||||
---|---|---|---|---|---|---|---|---|
Mg | Al | La | Mn | Si | Fe | Ti | ||
1 | — | 70.83 | 4.79 | — | 7.58 | 16.80 | — | θ |
2 | — | 71.22 | 6.42 | 22.36 | — | — | — | Al8Mn4La |
3 | — | 77.68 | 22.32 | — | — | — | — | Al11La3 |
4 | — | 89.59 | 3.67 | — | — | — | 6.74 | Al20Ti2La |
5 | — | 80.32 | — | — | — | 19.68 | — | Al13Fe4 |
6 | — | 72.43 | 3.79 | — | 8.53 | 15.25 | — | θ |
7 | — | 80.56 | 19.44 | Al11La3 | ||||
8 | 73.35 | 6.18 | 20.47 | — | — | — | Al8Mn4La | |
9 | 88.29 | 4.58 | — | — | — | 7.13 | Al20Ti2La | |
10 | — | 78.80 | — | — | — | 21.20 | — | Al13Fe4 |
11 | — | 69.20 | 4.58 | — | 7.63 | 18.37 | — | θ |
12 | — | 79.65 | 20.35 | — | — | — | — | Al11La3 |
13 | — | 69.41 | 7.18 | 23.41 | — | — | — | Al8Mn4La |
14 | — | 87.17 | 4.86 | — | — | — | 7.97 | Al20Ti2La |
15 | — | 82.19 | — | — | — | 17.81 | — | Al13Fe4 |
Table 3. EDS analysis results of the corresponding points in group L1, L2 and L3.
Point no. | Element compositions (at.%) | Possible component | ||||||
---|---|---|---|---|---|---|---|---|
Mg | Al | La | Mn | Si | Fe | Ti | ||
1 | — | 70.83 | 4.79 | — | 7.58 | 16.80 | — | θ |
2 | — | 71.22 | 6.42 | 22.36 | — | — | — | Al8Mn4La |
3 | — | 77.68 | 22.32 | — | — | — | — | Al11La3 |
4 | — | 89.59 | 3.67 | — | — | — | 6.74 | Al20Ti2La |
5 | — | 80.32 | — | — | — | 19.68 | — | Al13Fe4 |
6 | — | 72.43 | 3.79 | — | 8.53 | 15.25 | — | θ |
7 | — | 80.56 | 19.44 | Al11La3 | ||||
8 | 73.35 | 6.18 | 20.47 | — | — | — | Al8Mn4La | |
9 | 88.29 | 4.58 | — | — | — | 7.13 | Al20Ti2La | |
10 | — | 78.80 | — | — | — | 21.20 | — | Al13Fe4 |
11 | — | 69.20 | 4.58 | — | 7.63 | 18.37 | — | θ |
12 | — | 79.65 | 20.35 | — | — | — | — | Al11La3 |
13 | — | 69.41 | 7.18 | 23.41 | — | — | — | Al8Mn4La |
14 | — | 87.17 | 4.86 | — | — | — | 7.97 | Al20Ti2La |
15 | — | 82.19 | — | — | — | 17.81 | — | Al13Fe4 |
Fig. 7. Elements distributions of the interface with La addition: (a) The morphology of the interface; (b)-(h) Distributions of different elements; (i) The Enlargement of E area in Fig.7(a); (j) The distribution of La in (i).
Fig. 9. TEM results of the RE precipitates in the E area with La addition: (a) Bright field image of the phase interface of Al11La3 and γ: region A stands for Al11La3, region B stands for γ, region C stands for the phase interface; (b) Bright field image of the phase interface of Al8Mn4La and γ: region D stands for Al8Mn4La, region E stands for γ, region F stands for the phase interface; (c)-(e) SAED results of Al11La3, γ and Al8Mn4La; (f) and (g) SAED result and high resolution image of the Al11La3 and γ phase interface; (h) and (i) SAED result and high resolution image of the Al8Mn4La and γ phase interface.
Fig. 10. Shear test results of the Al/Mg bimetals obtained with different La additions: A stands for the group without La addition; L1 stands for the group with 0.7% La addition; L2 stands for the group with 1.0% La addition; L3 stands for the group with 1.3% La addition.
Fig. 11. Fracture morphologies of the shear samples with different La additions: (a, b) The fracture of group A; (c) The enlargement of rectangular area in (b); (d, e) The fracture of group L1; (f) The enlargement of rectangular area in (e); (g, h) The fracture of group L2; (i) The enlargement of rectangular area in (h); (j, k) The fracture of group L3; (l) The enlargement of rectangular area in (k).
Fig. 12. Hardness distributions of the Al/Mg interfaces with different La additions: Each region in the Al/Mg interface of group A (without La addition) is indicated by black dotted arrow, and Each area in the Al/Mg interfaces with La addition is indicated by red dotted arrow.
Fig. 13. Optical micrographs of the hardness indentations with different La additions: (a) Group A: point 1 corresponding to point 1 on hardness curve of group A in Fig. 12; (b) Group L1; (c) Group L2: point 2 corresponding to point 2 on hardness curve of group L2 in Fig. 12; (d) Group L3.
Fig. 14. Formation mechanism of the Al/Mg interface with La addition: (a) The formation of the chilling area and the melting area; (b) The preferential precipitation of the RE precipitates, and the initial formation and expansion of E area, E-IMC area and IMC area; (c) The precipitation and formation of matrix structure of each layer (From left to right: eutectic and secondary γ, primary γ, γ (Mg17Al12), β (Al3Mg2)).
[1] |
W. Hu, Z. Ma, S. Ji, S. Qi, M. Chen, W. Jiang, J. Mater. Sci. Technol. 53 (2020) 41-52.
DOI URL |
[2] |
H. Zhang, Y. Chen, A.A. Luo, Scr. Mater. 86 (2014) 52-55.
DOI URL |
[3] |
T. Liu, Q.D. Wang, Y.D. Sui, Q.G. Wang, J. Mater. Sci. Technol. 32 (2016) 298-305.
DOI URL |
[4] |
W.Q. Xu, N. Birbilis, G. Sha, Y. Wang, J.E. Daniels, Y. Xiao, M. Ferry, Nat. Mater. 14 (2015) 1229-1235.
DOI URL |
[5] |
Y. Li, B. Hu, B. Liu, A. Nie, Q.F. Gu, J.F. Wang, Q. Li, Acta Mater. 187 (2020) 51-65.
DOI URL |
[6] |
Y. Li, Y. Jiang, B. Hu, Q. Li, Scr. Mater. 187 (2020) 262-267.
DOI URL |
[7] |
S.D. Ji, S.Y. Niu, J.G. Liu, J. Mater. Sci. Technol. 35 (2020) 1712-1718.
DOI URL |
[8] |
Z.W. Ma, Y.Y. Jin, S.D. Ji, X.C. Meng, L. Ma, Q.H. Li, J. Mater. Sci. Technol. 35 (2019) 94-99.
DOI URL |
[9] |
H.M. Rao, B. Ghaffari, W. Yuan, J.B. Jordon, H. Badarinarayan, Mater. Sci. Eng. A 651 (2016) 27-36.
DOI URL |
[10] |
X. Meng, Y. Jin, S. Ji, D. Yan, J. Mater. Sci. Technol. 34 (2018) 1817-1822.
DOI URL |
[11] |
E. Priel, Z. Ungarish, N.U. Navi, J. Mater. Process. Technol. 236 (2016) 103-113.
DOI URL |
[12] |
Y. Wu, B. Feng, Y.C. Xin, R. Hong, H.H. Yu, Q. Liu, Mater. Sci. Eng. A 640 (2015) 454-459.
DOI URL |
[13] |
C.Y. Liu, R. Jing, Q. Wang, B. Zhang, Y.Z. Jia, M.Z. Ma, R.P. Liu, Mater. Sci. Eng. A 558 (2012) 510-516.
DOI URL |
[14] |
C.Z. Luo, W. Liang, Z.Q. Chen, J.J. Zhang, C.Z. Chi, F.Q. Yang, Mater. Charact. 84 (2013) 34-40.
DOI URL |
[15] |
J.H. Zhao, T. Jin, K. He, Q. Ma, Surf. Eng. 31 (2015) 58-63.
DOI URL |
[16] |
K. He, J.H. Zhao, P. Li, J.S. He, Q. Tang, Mater. Des. 112 (2016) 553-564.
DOI URL |
[17] |
Z. Zhu, R.H. Shi, A.D. Klarner, A.A. Luo, Y.Q. Chen, J. Magn. Alloys 8 (2020) 578-586.
DOI URL |
[18] |
E. Hajjari, M. Divandari, S.H. Razavi, S.M. Emami, T. Homma, S. Kamado, J. Mater. Sci. 46 (2011) 6491-6499.
DOI URL |
[19] |
G.C. Xu, A.A. Luo, Y.Q. Chen, A.K. Sachdev, Mater. Sci. Eng. A 595 (2014) 154-158.
DOI URL |
[20] |
Y.C. Chen, K. Nakata, Scr. Mater. 58 (2008) 433-436.
DOI URL |
[21] |
A. Kostka, R.S. Coelho, J. dosSantos, A.R. Pyzalla, Scr. Mater. 60 (2009) 953-956.
DOI URL |
[22] |
X.Y. Dai, H.T. Zhang, J.H. Liu, J.C. Feng, Mater. Des. 77 (2015) 65-71.
DOI URL |
[23] |
R.H. Shi, Z. Zhu, A.A. Luo, J. Alloys Compd. 825 (2020) 153962.
DOI URL |
[24] |
W.M. Jiang, Z.T. Fan, G.Y. Li, L. Yang, X.W. Liu, Metall. Mater. Trans. A 47 (2016) 6487-6497.
DOI URL |
[25] |
J. Mohammadi, Y. Behnamian, A. Mostafaei, A.P. Gerlich, Mater. Des. 75 (2015) 95-112.
DOI URL |
[26] | Z.L. Jiang, Z.T. Fan, W.M. Jiang, G.Y. Li, Y. Wu, F. Guan, H.X. Jiang, J. Mater. Pro- cess. Technol. 261 (2018) 149-158. |
[27] |
M. Gao, S.W. Mei, X.Y. Li, X.Y. Zeng, Scr. Mater. 67 (2012) 193-196.
DOI URL |
[28] |
Y.Y. Guo, G.F. Quan, L.B. Ren, B.S. Liu, S.A. Ezzi, H.H. Pan, Vacuum 161 (2019) 353-360.
DOI URL |
[29] |
L.M. Zhao, Z.D. Zhang, Scr. Mater. 58 (2008) 283-286.
DOI URL |
[30] |
L. Chen, Y. Fu, F.X. Yin, N. Liu, C.Y. Liang, Metals 8 (2018) 704.
DOI URL |
[31] |
Y.Y. Wang, G.Q. Luo, J. Zhang, Q. Shen, L.M. Zhang, Mater. Sci. Eng. A 559 (2013) 868-874.
DOI URL |
[32] |
L.F. Zhang, S.Y. Ma, W.Z. Wang, Z.Q. Yang, H.Q. Ye, J. Mater. Sci. Technol. 35 (2019) 2058-2063.
DOI URL |
[33] |
B. Mingoa, R. Arrabal, M. Mohedano, C.L. Mendis, R. delOlmo, E. Matykina, N. Hort, M.C. Merino, A. Pardo, Mater. Des. 130 (2017) 48-58.
DOI URL |
[34] |
H.H. Liu, P.X. Fu, H.W. Liu, Y.F. Cao, C. Sun, N.Y. Du, D.Z. Li, J. Mater. Sci. Technol. 50 (2020) 245-256.
DOI URL |
[35] |
L. Chen, M.Y. Hu, J. Guo, X.Y. Chong, J. Feng, J. Mater. Sci. Technol. 52 (2020) 20-28.
DOI |
[36] |
B. Liu, Y.C. Liu, C.H. Zhu, H.M. Xiang, H.F. Chen, L.C. Sun, Y.F. Gao, Y.C. Zhou, J. Mater. Sci. Technol. 35 (2019) 833-851.
DOI |
[37] |
Q. Cai, C. Zhai, Q. Luo, T.Y. Zhang, Q. Li, Mater. Charact. 154 (2019) 233-240.
DOI |
[38] |
Y.C. Tsai, C.Y. Chou, S.L. Lee, C.K. Lin, J.C. Lin, S.W. Lim, J. Alloys Compd. 487 (2009) 157-162.
DOI URL |
[39] |
R. Arrabal, E. Matykina, A. Pardo, M.C. Merino, K. Paucar, M. Mohedano, P. Casajús, Corros. Sci. 55 (2012) 351-362.
DOI URL |
[40] |
Q.C. Jiang, H.Y. Wang, Y. Wang, B.X. Ma, J.G. Wang, Mater. Sci. Eng. A 392 (2015) 130-135.
DOI URL |
[41] |
G.Y. Li, W.M. Jiang, W.C. Yang, Z.L. Jiang, F. Guan, H.X. Jiang, Z.T. Fan, Metall. Mater. Trans. A 50 (2019) 1076-1090.
DOI URL |
[42] |
W.M. Jiang, G.Y. Li, Z.T. Fan, L. Wang, F.C. Liu, Metall. Mater. Trans. A 47 (2016) 2462-2470.
DOI URL |
[43] |
G.Y. Li, W.M. Jiang, F. Guan, J.W. Zhu, Y. Yu, Z.T. Fan, J. Manuf. Process. 50 (2020) 614-628.
DOI URL |
[44] |
G. Li, W. Jiang, F. Guan, J. Zhu, Z. Zhang, Z. Fan, J. Mater. Process. Technol. 288 (2021) 116874.
DOI URL |
[45] |
S. Fan, W.M. Jiang, G.Y. Li, J.H. Mo, Z.T. Fan, Mater. Manuf. Process. 32 (2017) 1391-1397.
DOI URL |
[46] |
B.R. Jia, L.B. Liu, D.Q. Yi, Z.P. Jin, J.F. Nie, J. Alloys Compd. 459 (2008) 267-273.
DOI URL |
[47] |
W. Gaasior, Z. Moser, J. Pstru ś, J. Phase Equilib. 21 (2000) 167.
DOI URL |
[48] |
A. Mayerhofer, D.L. You, P. Presoly, C. Bernhard, S.K. Michelic, Metals 10 (2020) 860.
DOI URL |
[49] |
G.Y. Li, W.C. Yang, W.M. Jiang, F. Guan, H.X. Jiang, Y. Wu, Z.T. Fan, J. Mater. Process. Technol. 265 (2019) 112-121.
DOI URL |
[50] |
Y.P. Pang, D.K. Sun, Q.F. Gu, K.C. Chou, X.L. Wang, Q. Li, Cryst. Growth Des. 16 (2016) 2404-2415.
DOI URL |
[51] |
Q. Luo, C. Zhai, Q.F. Gu, W.F. Zhu, Q. Li, J. Alloys Compd. 814 (2020) 152297.
DOI URL |
[52] |
Q. Luo, Y.L. Guo, B. Liu, Y.J. Feng, J.Y. Zhang, Q. Li, K. Chou, J. Mater. Sci. Technol. 44 (2020) 171-190.
DOI |
[53] |
T. Wang, Y. Li, R.X. Zhou, Environ. Sci. Pollut. Res. 27 (2020) 30352-30366.
DOI URL |
[54] | D. Choudhuri, S.G. Srinivasan, Comput. Mater. Sci. 159 (2019) 235-256. |
[55] |
M. Fronzi, H. Kimizuka, S. Ogata, Comput. Mater. Sci. 98 (2015) 76-82.
DOI URL |
[56] |
Q.J. Zheng, L.L. Zhang, H.X. Jiang, J.Z. Zhao, J. He, J. Mater. Sci. Technol. 47 (2020) 142-151.
DOI URL |
[57] |
T. Yamashita, P.M. Kelly, P. Cavallaro, M. Hisa, Acta Mater. 46 (1998) 2977-2981.
DOI URL |
[58] |
Q.Y. Liao, W.X. Hu, Q.C. Le, X.R. Chen, Y.C. Jiang, Metals Mater. Int. (2021), doi: 10.1007/s12540-021-00978-9.
DOI |
[59] |
S.W. Pan, X.L. Zhou, K.X. Chen, M. Yang, Y.D. Cao, X.H. Chen, Z.D. Wang, Appl. Sci. 8 (2018) 2479.
DOI URL |
[60] | K. Yu, W.X. Li, R.C. Wang, S.J. Zhang, Trans. Nonferrous Met. Soc. China 17 (2007) s405-s408. |
[61] |
A.K. Dahle, L. Arnberg, Mater. Sci. Eng. A 225 (1997) 38-46.
DOI URL |
[62] |
H. Feng, H.P. Liu, H. Cao, Y. Yang, Y.C. Xu, J.Y. Gu, Mater. Sci. Eng. A 639 (2015) 1-7.
DOI URL |
[63] |
Y. Li, B. Hu, Q.F. Gu, B. Liu, Q. Li, Scr. Mater. 160 (2019) 75-80.
DOI URL |
[64] |
J. Xu, Y. Li, K. Ma, Y.N. Fu, E.Y. Guo, Z.N. Chen, Q.F. Gu, Y.X. Han, T.M. Wang, Q. Li, Scr. Mater. 187 (2020) 142-147.
DOI URL |
[65] |
Y.C. Zhu, H.Q. Wang, X.H. Zhu, Y. Xiang, Int. J. Plast. 60 (2014) 19-39.
DOI URL |
[1] | Yu Yin, Qiyang Tan, Qiang Sun, Wangrui Ren, Jingqi Zhang, Shiyang Liu, Yingang Liu, Michael Bermingham, Houwen Chen, Ming-Xing Zhang. Heterogeneous lamella design to tune the mechanical behaviour of a new cost-effective compositionally complicated alloy [J]. J. Mater. Sci. Technol., 2022, 96(0): 113-125. |
[2] | Shiwei Li, Jinglong Li, Junmiao Shi, Yu Peng, Xuan Peng, Xianjun Sun, Feng Jin, Jiangtao Xiong, Fusheng Zhang. Microstructure and mechanical properties of transient liquid phase bonding DD5 single-crystal superalloy to CrCoNi-based medium-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 96(0): 140-150. |
[3] | Jingjing Pan, Jingyang Wang. Temperature-mediated supramolecular assemblies give rise to hierarchical boron nitride nano-ribbon networks with different micro-topology [J]. J. Mater. Sci. Technol., 2022, 96(0): 160-166. |
[4] | Bijun Xie, Zhenxiang Yu, Haiyang Jiang, Bin Xu, Chunyang Wang, Jianyang Zhang, Mingyue Sun, Dianzhong Li, Yiyi Li. Effects of surface roughness on interfacial dynamic recrystallization and mechanical properties of Ti-6Al-3Nb-2Zr-1Mo alloy joints produced by hot-compression bonding [J]. J. Mater. Sci. Technol., 2022, 96(0): 199-211. |
[5] | Jinshuo Zhang, Guohua Wu, Liang Zhang, Xiaolong Zhang, Chunchang Shi, Xin Tong. Addressing the strength-ductility trade-off in a cast Al-Li-Cu alloy—Synergistic effect of Sc-alloying and optimized artificial ageing scheme [J]. J. Mater. Sci. Technol., 2022, 96(0): 212-225. |
[6] | Luqing Cui, Cheng-Han Yu, Shuang Jiang, Xiaoyu Sun, Ru Lin Peng, Jan-Erik Lundgren, Johan Moverare. A new approach for determining GND and SSD densities based on indentation size effect: An application to additive-manufactured Hastelloy X [J]. J. Mater. Sci. Technol., 2022, 96(0): 295-307. |
[7] | J.C. Wang, Y.J. Liu, S.X. Liang, Y.S. Zhang, L.Q. Wang, T.B. Sercombe, L.C. Zhang. Comparison of microstructure and mechanical behavior of Ti-35Nb manufactured by laser powder bed fusion from elemental powder mixture and prealloyed powder [J]. J. Mater. Sci. Technol., 2022, 105(0): 1-16. |
[8] | Ahmad Zafari, Edward Wen Chiek Lui, Mogeng Li, Kenong Xia. Enhancing work hardening and ductility in additively manufactured β Ti: roles played by grain orientation, morphology and substructure [J]. J. Mater. Sci. Technol., 2022, 105(0): 131-141. |
[9] | Xuan Kong, Yang Liu, Minghui Chen, Tao Zhang, Qunchang Wang, Fuhui Wang. Heterostructured NiCr matrix composites with high strength and wear resistance [J]. J. Mater. Sci. Technol., 2022, 105(0): 142-152. |
[10] | Lianbo Wang, Shilong Xing, Zizhen Shen, Huabing Liu, Chuanhai Jiang, Vincent Ji, Yuantao Zhao. The synergistic role of Ti microparticles and CeO2 nanoparticles in tailoring microstructures and properties of high-quality Ni matrix nanocomposite coating [J]. J. Mater. Sci. Technol., 2022, 105(0): 182-193. |
[11] | Bo Hu, Zixin Li, Dejiang Li, Tao Ying, Xiaoqin Zeng, Wenjiang Ding. A hot tearing criterion based on solidification microstructure in cast alloys [J]. J. Mater. Sci. Technol., 2022, 105(0): 68-80. |
[12] | Peng Gao, Shuo Sun, Heng Li, Ranming Niu, Shuang Han, Hongxiang Zong, Hao Wang, Jianshe Lian, Xiaozhou Liao. Ultra-strong and thermally stable nanocrystalline CrCoNi alloy [J]. J. Mater. Sci. Technol., 2022, 106(0): 1-9. |
[13] | Gang Niu, Hatem S. Zurob, R.D.K. Misra, Huibin Wu, Yu Zou. Strength-ductility synergy in a 1.4 GPa austenitic steel with a heterogeneous lamellar microstructure [J]. J. Mater. Sci. Technol., 2022, 106(0): 133-138. |
[14] | Hanchen Feng, Lei Cai, Linfeng Wang, Xiaodan Zhang, Feng Fang. Microstructure and strength in ultrastrong cold-drawn medium carbon steel [J]. J. Mater. Sci. Technol., 2022, 97(0): 89-100. |
[15] | Shiyu Wu, Dongxu Qiao, Haitao Zhang, Junwei Miao, Hongliang Zhao, Jun Wang, Yiping Lu, Tongmin Wang, Tingju Li. Microstructure and mechanical properties of CxHf0.25NbTaW0.5 refractory high-entropy alloys at room and high temperatures [J]. J. Mater. Sci. Technol., 2022, 97(0): 229-238. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||