J. Mater. Sci. Technol. ›› 2022, Vol. 105: 226-236.DOI: 10.1016/j.jmst.2021.07.027
• Research Article • Previous Articles Next Articles
Dongpeng Hua, Wan Wang, Dawei Luo, Qing Zhou(), Shuo Li, Junqin Shi, Maosen Fu(
), Haifeng Wang(
)
Received:
2021-04-27
Revised:
2021-07-04
Accepted:
2021-07-11
Published:
2021-09-22
Online:
2021-09-22
Contact:
Qing Zhou,Maosen Fu,Haifeng Wang
About author:
haifengw81@nwpu.edu.cn (H. Wang).Dongpeng Hua, Wan Wang, Dawei Luo, Qing Zhou, Shuo Li, Junqin Shi, Maosen Fu, Haifeng Wang. Molecular dynamics simulation of the tribological performance of amorphous/amorphous nano-laminates[J]. J. Mater. Sci. Technol., 2022, 105: 226-236.
Fig. 1. Atomic configurations of Cu80Zr20/Cu20Zr80 (A/B-type) nano-laminates with different layer thicknesses: (a) h = 0.5 nm, (b) 1 nm, (c) 2 nm, (d) 4 nm and (e) 8 nm. (f) Atomic configurations of Cu20Zr80/Cu80Zr20 (B/A-type) amorphous/amorphous nano-laminates with h = 8 nm.
Fig. 2. (a) MD simulation model of nano-scratch. (b) Schematic illustration of tip-sample contact during indentation. (c) Schematic illustration of tip-sample contact during scratching, which takes the elastic recovery into account, showing actual and theoetical groove bottom, as well as ploughing (red arrows) and adhesion (blue arrows) frictions. The yellow arc indicates the contact surface.
Fig. 3. The tribological properties of Cu80Zr20 (A) and Cu20Zr80 (B) MGs under different types of indenter: (a)-(c) the tribological performance curves and (a’)-(c’) the average tribological properties.
Fig. 4. The Von-Mises shear strain distribution of different MGs at the maximum scratch length under different indenters: (a, b) Cu80Zr20 (A) MG and (c, d) Cu20Zr80 (B) MG.
Fig. 5. The atomic displacement distribution of different MGs at the maximum scratch length under different indenters: (a, b) Cu80Zr20 (A) MG and (c, d) Cu20Zr80 (B) MG.
Fig. 6. Surface pile-up morphology of different MGs at the maximum scratch length under different indenters: (a, b) Cu80Zr20 (A) MG and (c, d) Cu20Zr80 (B) MG.
Fig. 7. Wear loss of Cu80Zr20 (A) and Cu20Zr80 (B) MGs at the maximum scratch length under different indenters: (a) maximum pile-up height and (b) percentage of wear chips.
Fig. 8. The shear atom distribution of A/B-type nano-laminate with h = 2 nm at different scratch length ds: (a) ds = 0 nm, (b) ds = 2 nm, (c) ds = 4 nm, (d) ds = 6 nm and (e) ds = 8 nm.
Fig. 9. The atomic displacement distribution of A/B-type nano-laminate with h = 2 nm at different scratch length ds: (a) ds = 0 nm, (b) ds = 2 nm, (c) ds = 4 nm, (d) ds = 6 nm and (e) ds = 8 nm.
Fig. 10. Surface atomic pile-up morphology of A/B-type nano-lanminte with h = 2 nm at different scratch length ds: (a) ds = 0 nm, (b) ds = 2 nm, (c) ds = 4 nm, (d) ds = 6 nm and (e) ds = 8 nm.
Fig. 13. The average tribological properties of different nano-laminates: (a) the average normal force, (b) the average friction force, and (c) the average friction coefficient.
Fig. 14. The tribological behavior of A/B-type nano-laminates with h = 2 nm at scratch depths of 1.0, 1.8, 2.5, 3.0 nm: (a)-(c) the tribological performance curves and (a’)-(c’) the average tribological properties.
[1] |
W. Xia, G. Dehm, S. Brinckmann, Wear 452-453 (2020) 203289.
DOI URL |
[2] |
P.H. Shipway, L. Howell, Wear 258 (1-4) (2005) 303-312.
DOI URL |
[3] |
W.H. Wang, C. Dong, C. Shek, Mater. Sci. Eng. R Rep. 44 (2004) 45-89.
DOI URL |
[4] | Q. Zhou, W.C. Han, D.W. Luo, Y. Du, J.Y. Xie, X.Z. Wang, Q.G. Zhou, X.X. Zhao, H.F. Wang, B.D. Beake, Wear 15 (2021) 474-475. |
[5] |
J.W. Qiao, H.J. Hao, P.K. Liaw, Mater. Sci. Eng. R Rep. 100 (2016) 1-69.
DOI URL |
[6] |
C. Schuh, T. Hufnagel, U. Ramamurty, Acta Mater. 55 (12) (2007) 4067-4109.
DOI URL |
[7] |
J.P. Chu, J.S.C. Jang, J.C. Huang, H.S. Chou, Y. Yang, J.C. Ye, Y.C. Wang, J.W. Lee, F.X. Liu, P.K. Liaw, Y.C. Chen, C.M. Lee, C.L. Li, C. Rullyani, Thin Solid Films 520 (16) (2012) 5097-5122.
DOI URL |
[8] |
Q. Zhou, Y. Ren, Y. Du, W.C. Han, D.P. Hua, H.M. Zhai, P. Huang, F. Wang, H.F. Wang, J. Alloy. Compd. 780 (2019) 671-679.
DOI URL |
[9] |
A.S. Argon, Acta Metall. 27 (1) (1979) 47-58.
DOI URL |
[10] |
X. Bian, D. ¸Sopu, G. Wang, B. Sun, J. Bednarčik, C. Gammer, Q. Zhai, J. Eckert, NPG Asia Mater. 12 (2020) 59.
DOI URL |
[11] |
Y. Du, Q. Zhou, Q. Jia, Y.D. Shi, H.F. Wang, J. Wang, Mater. Res. Lett. 8 (10) (2020) 357-363.
DOI URL |
[12] |
A.L. Greer, Y.Q. Cheng, E. Ma, Mater. Sci. Eng. R Rep. 74 (4) (2013) 71-132.
DOI URL |
[13] |
D.H. Kwon, K.M. Lee, E.S. Park, H.J. Kim, J.C. Bae, M.Y. Huh, J. Alloy. Compd. 536 (2012) S99-S102.
DOI URL |
[14] | S. Yoon, C. Lee, H. Choi, Mater. Sci. Eng. A 449-551 (2007) 285-289. |
[15] |
A.L. Greer, K.L. Rutherford, I.M. Hutchings, Int. Mater. Rev. 47 (2002) 87-112.
DOI URL |
[16] |
A. Misra, J.P. Hirth, R.G. Hoagland, Acta Mater. 53 (18) (2005) 4817-4824.
DOI URL |
[17] |
T. Fu, X. Peng, X. Chen, S. Weng, N. Hu, Q. Li, Z. Wang, Sci. Rep. 6 (2016) 35665.
DOI URL |
[18] |
Q. Zhou, Y. Ren, Y. Du, D.P. Hua, W.C. Han, Appl. Sci. 8 (10) (2018) 1821.
DOI URL |
[19] |
X. Chen, S. Weng, X. Yue, T. Fu, X. Peng, Nanoscale Res. Lett. 16 (1) (2021) 69.
DOI URL |
[20] |
S.V. Ketov, Y.H. Sun, S. Nachum, Z. Lu, A. Checchi, A.R. Beraldin, H.Y. Bai, W.H. Wang, D.V. Louzguine-Luzgin, M.A. Carpenter, A.L. Greer, Nature 524 (2015) 200-203.
DOI URL |
[21] |
W. Guo, B. Gan, J.M. Molina-Aldareguia, J.D. Poplawsky, D. Raabe, Scr. Mater. 110 (2016) 28-32.
DOI URL |
[22] |
Y.W. Wang, B. Gan, D. Lin, J. Wang, Y. Wang, B. Tang, H. Kou, S. Shang, Y. Wang, X. Gao, H. Song, X. Hui, L.J. Kecskes, Z. Xia, K.A. Dahmen, P.K. Liaw, J. Li, Z.K. Liu, J. Mater. Sci. Technol. 53 (2020) 192-199.
DOI URL |
[23] |
Y.W. Luan, C.H. Li, D. Zhang, J. Li, X.J. Han, J.G. Li, Comput. Mater. Sci. 129 (2017) 137-146.
DOI URL |
[24] |
W. Guo, E.A. Jägle, P.P. Choi, J.H. Yao, A. Kostka, J.M. Schneider, D. Raabe, Phys. Rev. Lett. 113 (2014) 035501.
DOI URL |
[25] |
Y.Q. Wang, J.Y. Zhang, X.Q. Liang, K. Wu, G. Liu, J. Sun, Acta Mater. 95 (2015) 132-144.
DOI URL |
[26] | P. Sharma, K. Yubuta, H. Kimura, A. Inoue, Phys. Rev. B 80 (2) (2009) 1132-1136. |
[27] |
S.Y. Kuan, H.S. Chou, M.C. Liu, X.H. Du, J.C. Huang, Intermetallics 18 (12) (2010) 2453-2457.
DOI URL |
[28] |
J. Ma, K.C. Chan, L. Xia, S.H. Chen, F.F. Wu, W.H. Li, W.H. Wang, Mater. Sci. Eng. A 587 (2013) 240-243.
DOI URL |
[29] |
Z.D. Sha, L.C. He, Q.X. Pei, Z.S. Liu, Y.W. Zhang, T.J. Wang, Scr. Mater. 83 (2014) 37-40.
DOI URL |
[30] |
Z.D. Sha, P.S. Branicio, H.P. Lee, T.E. Tay, Int. J. Plast. 90 (2017) 231-241.
DOI URL |
[31] |
X. Zhou, C. Chen, Int. J. Plast. 80 (2016) 75-85.
DOI URL |
[32] |
D.P. Hua, W.T. Ye, Q. Jia, Q. Zhou, Q.S. Xia, J.Q. Shi, Y.Y. Deng, H.F. Wang, Appl. Surf. Sci. 511 (2020) 145545.
DOI URL |
[33] |
Q. Zhou, Y. Du, Y. Ren, W.W. Kuang, W.C. Han, H.F. Wang, P. Huang, F. Wang, J. Wang, J. Alloy. Compd. 776 (2019) 447-459.
DOI URL |
[34] |
D.Q. Doan, T.H. Fang, T.H. Chen, Tribol. Int. 147 (2020) 106275.
DOI URL |
[35] |
M. Chamani, G.H. Farrahi, M.R. Movahhedy, Tribol. Int. 107 (2017) 18-24.
DOI URL |
[36] |
A.T. AlMotasem, J. Bergström, A. Gåård, P. Krakhmalev, L.J. Holleboom, Tribol. Lett. 65 (2017) 101.
DOI URL |
[37] |
A.T. AlMotasem, M. Posselt, J. Bergström, Tribol. Int. 127 (2018) 231-239.
DOI URL |
[38] |
K.E. Avila, S. Küchemann, I. Alabd Alhafez, H.M. Urbassek, Tribol. Int. 139 (2019) 1-11.
DOI URL |
[39] |
C. Qiu, P.Z. Zhu, F.Z. Fang, D.D. Yuan, X.C. Shen, Appl. Surf. Sci. 305 (2014) 101-110.
DOI URL |
[40] |
C.Z. Hu, J.Z. Lv, M.L. Bai, X.L. Zhang, D.W. Tang, Friction 8 (3) (2020) 531-541.
DOI URL |
[41] |
J.Q. Shi, L. Fang, K. Sun, W.X. Peng, J. Ghen, M. Zhang, Friction 8 (2) (2020) 323-334.
DOI URL |
[42] |
M.I. Mendelev, M.J. Kramer, R.T. Ott, D.J. Sordelet, D. Yagodin, P. Popel, Philos. Mag. 89 (2009) 967-987.
DOI URL |
[43] |
Y. Gao, A. Brodyanski, M. Kopnarski, H.M. Urbassek, Comput. Mater. Sci. 103 (2015) 77-89.
DOI URL |
[44] | F.P. Bowden, D. Tabor, The Friction and Lubrication of Solids, Oxford University Press, 2001. |
[45] |
Y.X. Ye, C.Z. Liu, H. Wang, T.G. Nieh, Acta Mater. 147 (2018) 78-89.
DOI URL |
[46] |
J. Goddard, H. Wilman, Wear 5 (1962) 114-135.
DOI URL |
[47] |
C. Zhong, H. Zhang, Q.P. Cao, X.D. Wang, D.X. Zhang, U. Ramamurty, J.Z. Jiang, Scr. Mater. 114 (2016) 93-97.
DOI URL |
[48] |
Q.H. Fang, M. Yi, J. Li, B. Liu, Z.W. Huang, Appl. Surf. Sci. 443 (2018) 122-130.
DOI URL |
[49] | J. Li, Q. Fang, B. Liu, Y.W. Liu, Y. Liu, J. Micromechan, Mol. Phys. 01 (01) (2016) 1650001. |
[50] |
P.Z. Zhu, T.B. Ma, Y.Z. Hu, H. Wang, Tribol. Lett. 41 (2011) 41-46.
DOI URL |
[51] |
P.Z. Zhu, C. Qiu, F.Z. Fang, D.D. Yuan, X.C. Shen, Appl. Surf. Sci. 317 (2014) 432-442.
DOI URL |
[52] |
C. Greine, Z. Liu, R. Schneider, Scr. Mater. 153 (2018) 63-67.
DOI URL |
[53] |
O. Shikimaka, D. Grabco, B.A. Sava, M. Elisa, L. Boroica, E. Harea, C. Pyrtsac, A. Prisacaru, Z. Barbos, J. Mater. Sci. 51 (2016) 1409-1417.
DOI URL |
[54] |
Y. Ritter, D. ¸Sopu, H. Gleiter, K. Albe, Acta Mater. 59 (17) (2011) 6588-6593.
DOI URL |
[55] |
I.A. Alhafez, H.M. Urbassek, Comput. Mater. Sci. 113 (2016) 187-197.
DOI URL |
[56] | J.Q. Shi, X.Z. Zhu, K. Sun, L. Fang, Friction (2020). |
[1] | Xuan Kong, Yang Liu, Minghui Chen, Tao Zhang, Qunchang Wang, Fuhui Wang. Heterostructured NiCr matrix composites with high strength and wear resistance [J]. J. Mater. Sci. Technol., 2022, 105(0): 142-152. |
[2] | Avik Mahata, Tanmoy Mukhopadhyay, Mohsen Asle Zaeem. Liquid ordering induced heterogeneities in homogeneous nucleation during solidification of pure metals [J]. J. Mater. Sci. Technol., 2022, 106(0): 77-89. |
[3] | Chang Liu, Hongying Li, Rui Cheng, Jiazhuang Guo, Guo-Xing Li, Qing Li, Cai-Feng Wang, Xiaoning Yang, Su Chen. Facile synthesis, high fluorescence and flame retardancy of carbon dots [J]. J. Mater. Sci. Technol., 2022, 104(0): 163-171. |
[4] | Wenshuo Liang, Guimin Lu, Jianguo Yu. Theoretical prediction on the local structure and transport properties of molten alkali chlorides by deep potentials [J]. J. Mater. Sci. Technol., 2021, 75(0): 78-85. |
[5] | Shuang Zhang, Fei Wang, Ping Huang. Enhanced Hall-Petch strengthening in graphene/Cu nanocomposites [J]. J. Mater. Sci. Technol., 2021, 87(0): 176-183. |
[6] | Yan Ma, Muxin Yang, Fuping Yuan, Xiaolei Wu. Deformation induced hcp nano-lamella and its size effect on the strengthening in a CoCrNi medium-entropy alloy [J]. J. Mater. Sci. Technol., 2021, 82(0): 122-134. |
[7] | Hanxun Wang, Baichun Hu, Zisen Gao, Fengjiao Zhang, Jian Wang. Emerging role of graphene oxide as sorbent for pesticides adsorption: Experimental observations analyzed by molecular modeling [J]. J. Mater. Sci. Technol., 2021, 63(0): 192-202. |
[8] | Jinxiong Hou, Wenwen Song, Liwei Lan, Junwei Qiao. Surface modification of plasma nitriding on AlxCoCrFeNi high-entropy alloys [J]. J. Mater. Sci. Technol., 2020, 48(0): 140-145. |
[9] | Jiahao Cheng, Xiaohua Hu, Xin Sun, Anupam Vivek, Glenn Daehn, David Cullen. Multi-scale characterization and simulation of impact welding between immiscible Mg/steel alloys [J]. J. Mater. Sci. Technol., 2020, 59(0): 149-163. |
[10] | K.Q. Li, Z.J. Zhang, J.X. Yan, J.B. Yang, Z.F. Zhang. Mechanism transition of cross slip with stress and temperature in face-centered cubic metals [J]. J. Mater. Sci. Technol., 2020, 57(0): 159-171. |
[11] | Shidong Feng, n Li, K.C. Chan, Lei Zhao, Limin Wang, Riping Liu. Enhancing strength and plasticity by pre-introduced indent-notches in Zr36Cu64 metallic glass: A molecular dynamics simulation study [J]. J. Mater. Sci. Technol., 2020, 43(0): 119-125. |
[12] | S.H. Chen, T. Li, W.J. Chang, H.D. Yang, J.C. Zhang, H.H. Tang, S.D. Feng, F.F. Wu, Y.C Wu. On the formation of shear bands in a metallic glass under tailored complex stress fields [J]. J. Mater. Sci. Technol., 2020, 53(0): 112-117. |
[13] | Jun Jiang, Pengwan Chen, Weifu Sun. Monitoring micro-structural evolution during aluminum sintering and understanding the sintering mechanism of aluminum nanoparticles: A molecular dynamics study [J]. J. Mater. Sci. Technol., 2020, 57(0): 92-100. |
[14] | Haoqing Li, Ming Wang, Dianjun Lou, Weilong Xia, Xiaoying Fang. Microstructural features of biomedical cobalt-chromium-molybdenum (CoCrMo) alloy from powder bed fusion to aging heat treatment [J]. J. Mater. Sci. Technol., 2020, 45(0): 146-156. |
[15] | Daudi Waryoba, Zahabul Islam, Baoming Wang, Aman Haque. Low temperature annealing of metals with electrical wind force effects [J]. J. Mater. Sci. Technol., 2019, 35(4): 465-472. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||