J. Mater. Sci. Technol. ›› 2022, Vol. 105: 203-213.DOI: 10.1016/j.jmst.2021.06.075
• Research Article • Previous Articles Next Articles
Yutong Shia,b, Weiyan Lua, Wenhai Suna, Suode Zhanga, Baijun Yanga, Jianqiang Wanga,*()
Received:
2021-01-25
Revised:
2021-06-25
Accepted:
2021-06-29
Published:
2021-09-20
Online:
2021-09-20
Contact:
Jianqiang Wang
About author:
*E-mail address: jqwang@imr.ac.cn (J. Wang).Yutong Shi, Weiyan Lu, Wenhai Sun, Suode Zhang, Baijun Yang, Jianqiang Wang. Impact of gas pressure on particle feature in Fe-based amorphous alloy powders via gas atomization: Simulation and experiment[J]. J. Mater. Sci. Technol., 2022, 105: 203-213.
Density (kg/m3) | Specific heat (J/(K mol)) [ | Viscosity (Pa s) [ | Surface tension (N/m) [ |
---|---|---|---|
7820 | 44.09 | 5.8 × 10-5 | 0.8 |
Table 1. The main thermodynamic parameters of Fe-based glassy alloy.
Density (kg/m3) | Specific heat (J/(K mol)) [ | Viscosity (Pa s) [ | Surface tension (N/m) [ |
---|---|---|---|
7820 | 44.09 | 5.8 × 10-5 | 0.8 |
Fig. 2. CFD model of the high-pressure gas atomization nozzle at gas pressures ranging from 5 to 8 MPa in the closed-wake condition. The velocity magnitude increases with decreasing shades of darkness in the CFD figures. (a) The primary and the second recirculation zone at 5 MPa; (b) the primary and the enlarged second recirculation zone at 6 MPa; (c) the primary, the second and third recirculation zone at 7 MPa; (d) the primary, the second the enlarged third recirculation zone at 8 MPa.
Fig. 3. The velocity profiles along the geometric centerline of the gas atomization nozzle at gas atomization pressures ranging from 5 to 8 MPa. The blue arrow points to the stagnation front in the primary recirculation zone, the black arrow points to the Mach disk, the red arrows point to the stagnation points in the second recirculation zone, and the green arrows point to the stagnation points in the third recirculation zone.
Fig. 4. The static pressure profiles along the geometric centerline of the gas atomization nozzle at gas atomization pressures ranging from 5 to 8 MPa. The blue arrow points to the stagnation front in the primary recirculation zone, the black arrow points to the Mach disk, the red arrows point to the stagnation points in the second recirculation zone, and the green arrows point to the stagnation points in the third recirculation zone.
Fig. 5. Temporal evolution of the gas-melt flow at 8 MPa gas pressure. (a) A little melt at the orifice; (b) a thin circular sheet at the bottom of the melt delivery tube; (c) the initial break-up of the melt sheet at the edge of the tube; (d) the flowing liquid droplets to the centerline; (e) collision at the centerline; (f) flowing downstream along the centerline; (g) fine droplets after the second recirculation zone.
Fig. 6. CFD model of the gas atomization nozzle at gas atomization pressures ranging from 5 to 8 MPa in the closed-wake condition with multiple phase flows (gas and melt). The velocity magnitude increases - shades of darkness decreases. (a) “S”-shaped Mach disk; (b) “Z”-shaped Mach disk; (c) “Z”-shaped Mach disk; (d) vortex off the central line.
Fig. 7. The velocity profiles along the geometric centerline of the gas atomization nozzle respectively at gas atomization pressures ranging from 5 to 8 MPa with multiple phase flows (gas and melt). The blue arrow points to the stagnation front in the primary recirculation zone, the black arrow points to the mach disk, and the red arrows point to the stagnation points in the second recirculation zone.
Fig. 8. The static pressure profiles along the geometric centerline of the gas atomization nozzle, respectively at gas atomization pressures ranging from 5 to 8 MPa with multiple phase flows (gas and melt). The blue arrow points to the stagnation front in the primary recirculation zone, the black arrow points to the Mach disk, and the red arrows point to the stagnation points in the second recirculation zone.
Fig. 9. The particle diameter (a) and the particle velocity (b) in the gas atomization process simulated via the WAVE model at gas atomization pressure of 8 MPa. Region A: the forming and accelerating droplets. Region B: the converging of droplets in the centerline with lower velocities. Region C: the second break-up process.
Fig. 10. The frequency density distribution obtained via the atomization simulation and actual gas atomization technology: (a) 5, (b) 6, (c) 7, (d) 8 MPa.
Pressure (MPa) | Experiment (μm) | Simulation (μm) | Error (%) | |
---|---|---|---|---|
5 | μG | 78.47 ± 1.02 | 76.52 ± 1.22 | 2.49 |
σG | 60.56 ± 2.02 | 64.80 ± 2.55 | 7.03 | |
6 | μG | 60.30 ± 0.58 | 62.14 ± 0.51 | 3.05 |
σG | 41.10 ± 1.15 | 44.21 ± 1.26 | 7.57 | |
7 | μG | 52.86 ± 0.48 | 56.02 ± 1.11 | 5.79 |
σG | 33.07 ± 0.94 | 34.41 ± 2.55 | 4.05 | |
8 | μG | 39.91 ± 0.28 | 36.79 ± 0.45 | 7.82 |
σG | 25.23 ± 0.55 | 28.48 ± 0.99 | 9.23 |
Table 2. Comparison and relative errors of the mean values (μG) and standard deviations (σG) of experimental and simulated frequency density distribution.
Pressure (MPa) | Experiment (μm) | Simulation (μm) | Error (%) | |
---|---|---|---|---|
5 | μG | 78.47 ± 1.02 | 76.52 ± 1.22 | 2.49 |
σG | 60.56 ± 2.02 | 64.80 ± 2.55 | 7.03 | |
6 | μG | 60.30 ± 0.58 | 62.14 ± 0.51 | 3.05 |
σG | 41.10 ± 1.15 | 44.21 ± 1.26 | 7.57 | |
7 | μG | 52.86 ± 0.48 | 56.02 ± 1.11 | 5.79 |
σG | 33.07 ± 0.94 | 34.41 ± 2.55 | 4.05 | |
8 | μG | 39.91 ± 0.28 | 36.79 ± 0.45 | 7.82 |
σG | 25.23 ± 0.55 | 28.48 ± 0.99 | 9.23 |
Fig. 13. Partial velocity vector and the mirroring schematics of the gas flow structures in the second recirculation zone at 5 MPa. Left-vortex downstream; right-vortex upstream.
Fig. 14. (a) The droplet break-up process. (b) The injection of melt into the chamber; (c) the deformed melt under the upstream gas; (d) a thin sheet of the melt; (e) forming the large droplets; (f) the collision at the centerline; (g) the second break-up.
[1] |
H. Qi, M. Azer, A. Ritter, Metall. Mater. Trans. A 40 (2009) 2410-2422.
DOI URL |
[2] |
W.J. Sames, F.A. List, S. Pannala, R.R. Dehoff, S.S. Babu, Int. Mater. Rev. 61 (2016) 315-360.
DOI URL |
[3] |
D. Herzog, V. Seyda, E. Wycisk, C. Emmelmann, Acta Mater. 117 (2016) 371-392.
DOI URL |
[4] |
J.A. Slotwinski, E.J. Garboczi, P.E. Stutzman, C.F. Ferraris, S.S. Watson, M.A. Peltz, J. Res. Natl. Inst. Stand. Technol. 119 (2014) 460-493.
DOI PMID |
[5] | J. Trapp, A.M. Rubenchik, G. Guss, M.J. Matthews, Appl. Mater. Today 9 (2017) 341-349. |
[6] |
J.H. Martin, B.D. Yahata, J.M. Hundley, J.A. Mayer, T.A. Schaedler, T.M. Pollock, Nature 549 (2017) 365-369.
DOI URL |
[7] |
Y. Lu, H. Zhang, H. Li, H. Xu, G. Huang, Z. Qin, X. Lu, J. Non Cryst. Solids 461 (2017) 12-17.
DOI URL |
[8] |
T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, W. Zhang, Prog. Mater Sci. 92 (2018) 112-224.
DOI URL |
[9] |
I. Todd, Nature 549 (2017) 342-343.
DOI URL |
[10] |
X. Zhao, J. Chen, X. Lin, W. Huang, Mater. Sci. Eng. A 478 (2008) 119-124.
DOI URL |
[11] |
D.D. Gu, W. Meiners, K. Wissenbach, R. Poprawe, Int. Mater. Rev. 57 (2013) 133-164.
DOI URL |
[12] |
N. Zeoli, S. Gu, Comput. Mater. Sci. 38 (2006) 282-292.
DOI URL |
[13] |
F.S. Biancaniello, P.I. Espina, G.E. Mattingly, S.D. Ridder, Mater. Sci. Eng. 119 (1989) 161-168.
DOI URL |
[14] | T. Fedina, J. Sundqvist, J. Powell, A.F.H. Kaplan, Addit. Manuf. 36 (2020) 1-11. |
[15] |
D. Beckers, N. Ellendt, U. Fritsching, V. Uhlenwinkel, Adv. Powder Technol. 31 (2020) 300-311.
DOI URL |
[16] |
N. Zeoli, S. Gu, Comput. Mater. Sci. 42 (2008) 245-258.
DOI URL |
[17] |
Y. Shen, Y. Li, C. Chen, H.L. Tsai, Mater. Des. 117 (2017) 213-222.
DOI URL |
[18] | N. Ciftci, Cooling Strategies for the Atomization of Glass-Forming Alloys, Uni- versität Bremen, 2020 Ph.D. Thesis. |
[19] |
J. Ting, M.W. Peretti, W.B. Eisen, Mater. Sci. Eng. A 326 (2002) 110-121.
DOI URL |
[20] |
J. Ting, I.E. Anderson, Mater. Sci. Eng. A 379 (2004) 264-276.
DOI URL |
[21] |
N. Zeoli, S. Gu, Comput. Mater. Sci. 43 (2008) 268-278.
DOI URL |
[22] |
X.G. Li, U. Fritsching, J. Mater. Process. Technol. 239 (2017) 1-17.
DOI URL |
[23] |
J.S. Thompson, O. Hassan, S.A. Rolland, J. Sienz, Powder Technol. 291 (2016) 75-85.
DOI URL |
[24] |
M. Wei, S. Chen, M. Sun, J. Liang, C. Liu, M. Wang, Powder Technol. 367 (2020) 724-739.
DOI URL |
[25] |
S. Jeon, M.P. Sansoucie, D.M. Matson, J. Chem. Thermodyn. 138 (2019) 51-58.
DOI URL |
[26] |
H.X. Li, Z.C. Lu, S.L. Wang, Y. Wu, Z.P. Lu, Prog. Mater. Sci. 103 (2019) 235-318.
DOI |
[27] |
Y. Li, W.Z. Chen, B.S. Dong, S.X. Zhou, J. Non Cryst. Solids 496 (2018) 13-17.
DOI URL |
[28] | P.J. O’Rourke, A.A. Amsde, in: Proceedings of the International Fuels and Lubri- cants Meeting and Exposition, Toronto, Ontaio, 1987 November 2-5. |
[29] | R.D. Reitz, Mechanisms of atomization processes in high-pressure vaporizing sprays, At. Spray Technol. 3 (1987) 309-337. |
[30] |
M. Wei, S. Chen, J. Liang, C. Liu, Vacuum 143 (2017) 185-194.
DOI URL |
[31] |
J. Ting, U. Habel, M.W. Peretti, W.B. Eisen, R. Young, B. Chao, B. Huang, Mater. Sci. Eng. A 329-331 (2002) 372-376.
DOI URL |
[32] |
M.R. Ridolfi, P. Folgarait, Int. J. Multiph. Flow 132 (2020) 103431.
DOI URL |
[33] |
A. Unal, Mater. Sci. Technol. 3 (1987) 1029-1039.
DOI URL |
[34] |
K. Hanthanan Arachchilage, M. Haghshenas, S. Park, L. Zhou, Y. Sohn, B. McWilliams, K. Cho, R. Kumar, Adv. Powder Technol. 30 (2019) 2726-2732.
DOI |
[35] |
D. Jing, F. Zhang, Y. Li, H. Xu, S. Shuai, Fuel 199 (2017) 478-487.
DOI URL |
[1] | Jiachen Zhang, Lin Liu, Taiwen Huang, Jia Chen, Kaili Cao, Xinxin Liu, Jun Zhang, Hengzhi Fu. Coarsening kinetics of γ′ precipitates in a Re-containing Ni-based single crystal superalloy during long-term aging [J]. J. Mater. Sci. Technol., 2021, 62(0): 1-10. |
[2] | N. Ciftci, N. Yodoshi, S. Armstrong, L. Mädler, V. Uhlenwinkel. Processing soft ferromagnetic metallic glasses: on novel cooling strategies in gas atomization, hydrogen enhancement, and consolidation [J]. J. Mater. Sci. Technol., 2020, 59(0): 26-36. |
[3] | Hong Lei, Jicheng He. Nucleation and Growth Kinetics of MgO in Molten Steel [J]. J Mater Sci Technol, 2012, 28(7): 642-646. |
[4] | Yeon-Wook Kim. Microstructures and Mechanical Properties of Rapidly Solidified Mg-Al-Zn-MM Alloys [J]. J Mater Sci Technol, 2008, 24(01): 89-92. |
[5] | S.K.Durrani, J.Akhtar, M.Ahmad, M.J.Moughal. Particle Size Distribution and Characterization of High Siliceous and Microporous Materials [J]. J Mater Sci Technol, 2005, 21(04): 563-570. |
[6] | Changbin SONG, Bocksoo HAN, Ying LI. A Study on Alnico Permanent Magnet Powders Prepared by Atomization [J]. J Mater Sci Technol, 2004, 20(03): 347-349. |
[7] | Hai JING, Hong GUO, Shuguang ZHANG, Zili MA, Shaoming ZHANG. Study on Fine Structure of Gas Atomized LaNi5-based Alloys [J]. J Mater Sci Technol, 2003, 19(05): 425-427. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||