J. Mater. Sci. Technol. ›› 2022, Vol. 105: 194-202.DOI: 10.1016/j.jmst.2021.07.030
• Research Article • Previous Articles Next Articles
Jing Tiana, Yi Yanga, Tiantian Xuea, Guojie Chaoa,b, Wei Fana,*(), Tianxi Liua,b,*(
)
Received:
2021-05-14
Revised:
2021-07-06
Accepted:
2021-07-07
Published:
2021-09-20
Online:
2021-09-20
Contact:
Wei Fan,Tianxi Liu
About author:
txliu@fudan.edu.cn, txliu@dhu.edu.cn (T. Liu).Jing Tian, Yi Yang, Tiantian Xue, Guojie Chao, Wei Fan, Tianxi Liu. Highly flexible and compressible polyimide/silica aerogels with integrated double network for thermal insulation and fire-retardancy[J]. J. Mater. Sci. Technol., 2022, 105: 194-202.
Fig. 1. Preparation, structure characterization and composition of PSi aerogels. (a) Schematic illustration of the structure design of PSi aerogels. (b) Optical photograph of PSi-6 aerogel with a volume of 8.6 cm3 standing on the stamens of a flower without bending them. SEM images of (c) PSi-0 and (d) PSi-6 aerogels demonstrating the multi-scale architecture. (e) TEM image of PSi-6 aerogel demonstrating the homogeneous distribution of the silica constituents. (f) SEM-EDS images of PSi-6 aerogel. (g) FT-IR spectra of PSi aerogels. (h) TGA curves of PSi aerogels demonstrating the respective content of silica.
Fig. 2. Mechanical performance of PSi aerogels in the axial and radial directions. (a) Schematic illustration of compression tests performed on the PSi aerogels in the two different directions. (b) Compressive stress-strain curves of the PSi-0 and PSi-6 aerogels in the two directions. (c) Young's modulus of PSi aerogels in the two directions. (d) Compressive stress-strain curves of PSi-6 aerogel during loading-unloading cycles in the radial direction and experimental snapshots of a cycle (inset in d). (e) 500 cyclic compression stress-strain curves of PSi-6 aerogel in the radial direction with a compressive strain of 50%. (f) Variation of Young's modulus, maximum stress and energy loss coefficient versus compressive cycles. (g) Schematic mechanism for the structural robustness and high elasticity of PSi aerogels with cyclic compression in the radial direction. (h) Photographs of PSi-6 aerogel bended and recovered to its original shape, coiled around a plastic rod, knotted and shaped with desired geometry (scale bars are 2 cm).
Fig. 3. Thermal insulation properties of PSi aerogels. (a) The thermal conductivities of the PSi aerogels in the axial and radial directions. (b) Schematic illustration indicating the mechanism to achieve excellent thermal insulation. (c) Thermographic images of the PSi aerogels on a hot stage with surface temperatures of 100 °C and 200 °C. (d) Temperature difference (ΔT) between the PSi aerogels surface and the hot stage with temperatures ranging from 50 to 200 °C. (e) The thermal conductivity of the PSi-6 aerogel at different temperatures with constant absolute relative humidity (RH = 34 %). (f) The thermal conductivities of the PSi-6 aerogel at different temperatures and RH. (g) The thermal conductivity of PSi aerogels compared with other insulation materials at different temperatures and relative humidity.
Fig. 4. Flame resistance of PSi aerogels. Photography of (a) EPS foam, (b) PSi-0 and (c) PSi-6 aerogels burning by an alcohol lamp at different times. (d) Heat release rate (HRR) and (e) total heat release (THR) plots of PSi-0 and PSi-6 aerogels during microscale combustion calorimeter testing.
Fig. 5. Fire-retardant and thermal insulation properties of the PSi-6 aerogel in the axial direction under the heating at 1200 °C. (a) Schematic of the combustion test performed by butane blowlamp. (b) Thermographic image of the front side exposed to the butane blowlamp flame. (c) Thermographic images of the PSi-6 aerogel back side at different heating times. The average temperature of the circular region is marked. (d) Thermographic images of the back side of the 1.5 cm thick glass wool during heating process. (e) The time-dependent temperature profiles of the back side of the PSi-6 aerogel and glass wool. (f) Photography of the back side of the PSi-6 aerogel after the combustion test. Inset: the front side of the PSi-6 aerogel (scale bars are 5 cm). (g) SEM image of the front side of the PSi-6 aerogel after burning demonstrating the remaining SiO2 network.
[1] |
S.B. Sadineni, S. Madala, R.F. Boehm, Renewable Sustainable Energy Rev. 15 (2011) 3617-3631.
DOI URL |
[2] |
D.M.S. Al-Homoud, Build. Environ. 40 (2005) 353-366.
DOI URL |
[3] |
B.P. Jelle, Energy Build. 43 (2011) 2549-2563.
DOI URL |
[4] | L. Chen, Y.Z. Wang, Polym. Advan. Technol. 21 (2010) 1-26. |
[5] |
R. Baetens, B.P. Jelle, A. Gustavsen, Energy Build. 43 (2011) 761-769.
DOI URL |
[6] |
L. Su, M. Niu, D. Lu, Z.X. Cai, M.Z. Li, H.J. Wang, J. Mater. Sci. Technol. 75 (2021) 1-13.
DOI URL |
[7] | L. Su, H.J. Wang, M. Niu, S. Dai, Z.X. Cai, B.G. Yang, H.X. Huyan, X.Q. Pan, Sci. Adv. 6 (2020) 6689-6698. |
[8] |
X. Xu, Q.Q. Zhang, M.L. Hao, Y. Hu, Z.Y. Lin, L.L. Peng, T. Wang, X.X. Ren, C. Wang, Z.P. Zhao, C.Z. Wan, H.L. Fei, L. Wang, J. Zhu, H.T. Sun, W.L. Chen, T. Du, B.W. Deng, G.J. Cheng, I. Shakir, C. Dames, T.S. Fisher, X. Zhang, H. Li, Y. Huang, X.F. Duan, Science 363 (2019) 723-727.
DOI URL |
[9] |
B. Chen, Q.F. Zheng, J.L. Zhu, J.H. Li, Z.Y. Cai, L.G. Chen, S.Q. Gong, RSC Adv. 6 (2016) 96518-96526.
DOI URL |
[10] |
H.M. Kim, Y.J. Noh, J. Yu, S.Y. Kim, J.R. Youn, Composites Part A 75 (2015) 39-45.
DOI URL |
[11] |
Q.F. Zheng, A. Javadi, R. Sabo, Z.Y. Cai, S.Q. Gong, RSC Adv. 3 (2013) 20816-20823.
DOI URL |
[12] | K.P. Ruan, Y.Q. Guo, C.Y. Lu, X.T. Shi, T.B. Ma, Y.L. Zhang, J. Kong, J.W. Gu, Research 2021 (2021) 8438614. |
[13] |
J.W. Gu, Q. Zhang, H. Li, Y. Tang, J. Kong, J. Dang, Polym.-Plast. Technol. Eng. 46 (2007) 1129-1134.
DOI URL |
[14] |
S.H. Ye, B. Wang, Y.T. Shi, B.Z. Wang, Y.R. Zhang, Y.Z. Feng, W.J. Han, C.T. Liu, C.Y. Shen, Compos. Commun. 21 (2020) 100378.
DOI URL |
[15] |
Q.R. Zhang, X.Y. Wang, X.J. Tao, Z.W. Li, X.H. Li, Z. Zhang, Compos. Commun. 15 (2019) 96-102.
DOI URL |
[16] |
B. Wicklein, A. Kocjan, G. Salazar-Alvarez, F. Carosio, G. Camino, M. Antonietti, L. Bergström, Nat. Nanotechnol. 10 (2015) 277-283.
DOI PMID |
[17] |
L. Chen, Z.W. Xu, F. Wang, G.G. Duan, W.H. Xu, G.Y. Zhang, H.Q. Yang, J.B. Liu, S.H. Jiang, Compos. Commun. 20 (2020) 100355.
DOI URL |
[18] |
K.P. Ruan, Y. Guo, J.W. Gu, Macromolecules 54 (2021) 4934-4944.
DOI URL |
[19] |
C. Akinyi, J. Longun, S. Chen, J.O. Iroh, Minerals 11 (2021) 168-182.
DOI URL |
[20] |
C. Kizilkaya, Y. Mülazim, M. Vezir Kahraman, N. Kayaman Apohan, A. Güngör, J. Appl. Polym. Sci. 124 (2012) 706-712.
DOI URL |
[21] |
A. Xiang, Y. Li, L. Fu, Y. Chen, H. Tian, A.V. Rajulu, Thermochim. Acta 652 (2017) 160-165.
DOI URL |
[22] | S.J. Jian, S.S. Liu, L.L. Chen, S.Z. Zhou, P.C. Fan, Y. Zeng, H.Q. Hou, Compos. Com- mun. 3 (2017) 14-17. |
[23] |
W. Fan, X. Zhang, Y. Zhang, Y.F. Zhang, T.X. Liu, Compos. Sci. Technol. 173 (2019) 47-52.
DOI URL |
[24] |
H. Liu, X.Y. Chen, Y.J. Zheng, D. Zhang, Y. Zhao, C. Wang, C.F. Pan, C.T. Liu, C.Y. Shen, Adv. Funct. Mater. 31 (2021) 2008006.
DOI URL |
[25] |
X.B. Hou, Y.Q. Mao, R.B. Zhang, D.N. Fang, Chem. Eng. J. 417 (2021) 129341.
DOI URL |
[26] |
X.H. Zhang, W. Li, P.Y. Song, B. You, G. Sun, Chem. Eng. J. 381 (2020) 122784.
DOI URL |
[27] |
L.Z. Zuo, W. Fan, Y.F. Zhang, L.S. Zhang, W. Gao, Y.P. Huang, T.X. Liu, Compos. Sci. Technol. 139 (2017) 57-63.
DOI URL |
[28] |
T.T. Xue, W. Fan, X. Zhang, X.Y. Zhao, F. Yang, T.X. Liu, Composites Part B 219 (2021) 108963.
DOI URL |
[29] |
X. Yang, X. Zhong, J. Zhang, J.W. Gu, J. Mater. Sci. Technol. 68 (2021) 209-215.
DOI URL |
[30] |
C. Cao, W. Liu, H. Xu, K. Yu, L. Gong, B. Guo, Y. Li, X. Feng, L. Lv, H. Pan, L. Zhao, J. Li, J. Gao, G. Zhang, L. Tang, J. Mater. Sci. Technol. 85 (2021) 194-204.
DOI URL |
[31] |
B.Q. Wan, H.Y. Li, Y.H. Xiao, Z.B. Pan, Q.W. Zhang, J. Mater. Sci. Technol. 74 (2021) 1-10.
DOI URL |
[32] | C.B. Liang, Y.X. Liu, Y.F. Ruan, H. Qiu, P. Song, J. Kong, H.B. Zhang, J.W. Gu, Com- posites Part A 139 (2020) 106143. |
[33] |
S.X. Nie, J.L. Mo, Y.H. Zhang, C.Y. Xiong, S.F. Wang, Carbohyd. Polym. 250 (2020) 116971.
DOI URL |
[34] |
X.H. Zhang, X.X. Ni, C.X. Li, B. You, G. Sun, J. Mater. Chem. A 8 (2020) 9701-9712.
DOI URL |
[35] |
Z. Zhang, X.D. Wang, G.Q. Zu, L. Liu, X.X. Zhang, S. Xi, H.Y. Zhao, J. Shen, J. Supercrit. Fluids. 160 (2020) 104811.
DOI URL |
[36] |
S. Wu, A. Du, Y.L. Xiang, M.F. Liu, T.M. Li, J. Shen, Z.H. Zhang, C.H. Li, B. Zhou, RSC Adv. 6 (2016) 58268-58278.
DOI URL |
[37] |
Z.L. Yu, N. Yang, V. Apostolopoulou-Kalkavoura, B. Qin, Z.Y. Ma, W.Y. Xing, C. Qiao, L. Bergström, M. Antonietti, S.H. Yu, Angew. Chem., Int. Ed. 57 (2018) 4538-4542.
DOI URL |
[38] |
F. Yang, X.Y. Zhao, T.T. Xue, S.J. Yuan, Y.P. Huang, W. Fan, T.X. Liu, Sci. China Mater. 64 (2021) 1267-1277.
DOI URL |
[39] |
J.Y. Zhang, Y.H. Cheng, M. Tebyetekerwa, S. Meng, M.F. Zhu, Y.F. Lu, Adv. Funct. Mater. 29 (2019) 1806407.
DOI URL |
[40] |
X.L. Yuan, L.H. Xu, H. Pan, Y. Shen, L.M. Wang, M.R. Xie, Mater. Res. Express. 8 (2021) 15021-15030.
DOI URL |
[41] |
C. Wang, Z.Z. Pan, W. Lv, B. Liu, J. Wei, X.H. Lv, Y. Luo, H. Nishihara, Q.H. Yang, Small 15 (2019) 1805363.
DOI URL |
[42] |
Z. Yu, T.W. Dai, S.W. Yuan, H.W. Zou, P.B. Liu, ACS Appl. Mater. Interfaces 12 (2020) 30990-31001.
DOI URL |
[43] | Z.L. Yu, N. Yang, L.C. Zhou, Z.Y. Ma, Y.B. Zhu, Y.Y. Lu, B. Qin, W.Y. Xing, T. Ma, S.C. Li, H.L. Gao, H.A. Wu, S.H. Yu, Sci. Adv. 4 (2018) 7223-7233. |
[44] |
T.P. Peng, J.D. Zhu, T. Huang, C.W. Jiang, F.X. Zhao, S.Z. Ge, L. Xie, J. Appl. Polym. Sci. 138 (2021) 50539-50550.
DOI URL |
[45] |
B. Babiarczuk, D. Lewandowski, A. Szczurek, K. Kierzek, M. Meffert, D. Gerthsen, J. Kaleta, J. Krzak, J. Supercrit. Fluids. 166 (2020) 104997.
DOI URL |
[46] |
Y. Chen, D.B. Fan, S.Y. Lyu, G.Y. Li, F. Jiang, S.Q. Wang, ACS Sustain. Chem. Eng. 7 (2018) 1381-1388.
DOI URL |
[47] |
G.F. Xu, M.J. Li, T.T. Wu, C.Q. Teng, React. Funct. Polym. 154 (2020) 104672.
DOI URL |
[48] |
X.X. Zhang, H.K. Wang, Z.Y. Cai, N. Yan, M.H. Liu, Y. Yu, ACS Sustain. Chem. Eng. 7 (2018) 332-340.
DOI URL |
[49] |
Y. Shen, L.L. Wang, F. Liu, H.Z. Liu, D.W. Li, Q.S. Liu, B.Y. Deng, ACS Appl. Mater. Interfaces 12 (2020) 53104-53114.
DOI URL |
[50] |
Y. Lin, J. Chen, S.A. Dong, G.N. Wu, P.K. Jiang, X.Y. Huang, J. Mater. Sci. Technol. 83 (2021) 219-227.
DOI URL |
[51] |
X. Zhang, X.Y. Zhao, T.T. Xue, F. Yang, W. Fan, T.X. Liu, Chem. Eng. J. 385 (2020) 123963.
DOI URL |
[52] |
F. Hu, S.Y. Wu, Y.G. Sun, Adv. Mater. 31 (2018) 1801001.
DOI URL |
[53] |
M.D. Losego, M.E. Grady, N.R. Sottos, D.G. Cahill, P.V. Braun, Nat. Mater. 11 (2012) 502-506.
DOI PMID |
[54] |
K.P. Ruan, X.T. Shi, Y.Q. Guo, J.W. Gu, Compos. Commun. 22 (2020) 100518.
DOI URL |
[55] |
J.B. Alvey, J. Patel, L.D. Stephenson, Energy Build. 144 (2017) 358-371.
DOI URL |
[56] |
R.H. Nosrati, U. Berardi, Energy Build. 158 (2018) 698-711.
DOI URL |
[57] |
F. Laoutid, L. Bonnaud, M. Alexandre, J.M. Lopez-Cuesta, P. Dubois, Mater. Sci. Eng. 63 (2009) 100-125.
DOI URL |
[58] |
J.W. Gu, J. Dang, Y. Wu, C. Xie, Y. Han, Polym-Plast. Technol. Eng. 51 (2012) 1198-1203.
DOI URL |
[59] |
W. Gan, C. Chen, Z. Wang, J. Song, Y. Kuang, S. He, R. Mi, P.B. Sunderland, L. Hu, Adv. Funct. Mater. 29 (2019) 1807444.
DOI URL |
[1] | Daniel González-Muñoz, Almudena Gómez-Avilés, Carmen B. Molina, Jorge Bedia, Carolina Belver, Jose Alemán, Silvia Cabrera. Anchoring of 10-phenylphenothiazine to mesoporous silica materials: A water compatible organic photocatalyst for the degradation of pollutants [J]. J. Mater. Sci. Technol., 2022, 103(0): 134-143. |
[2] | Bin Sun, Zili Zhang, Jing Xu, Yanpeng Lv, Yang Jin. Composite separator based on PI film for advanced lithium metal batteries [J]. J. Mater. Sci. Technol., 2022, 102(0): 264-271. |
[3] | Yawei Zhang, Shuangshuang Li, Xinwei Tang, Wei Fan, Qianqian Lan, Le Li, Piming Ma, Weifu Dong, Zicheng Wang, Tianxi Liu. Ultralight and ordered lamellar polyimide-based graphene foams with efficient broadband electromagnetic absorption [J]. J. Mater. Sci. Technol., 2022, 102(0): 97-104. |
[4] | Aleksandra Krajcer, Joanna Klara, Wojciech Horak, Joanna Lewandowska-Łańcucka. Bioactive injectable composites based on insulin-functionalized silica particles reinforced polymeric hydrogels for potential applications in bone tissue engineering [J]. J. Mater. Sci. Technol., 2022, 105(0): 153-163. |
[5] | Haicheng Wang, Huating Wu, Huifang Pang, Yuhua Xiong, Shuwang Ma, Yuping Duan, Yanglong Hou, Changhui Mao. Lightweight PPy aerogel adopted with Co and SiO2 nanoparticles for enhanced electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 97(0): 213-222. |
[6] | Jiahui Chen, Dainan Zhang, Song He, Gengpei Xia, Xiaoyi Wang, Quanjun Xiang, Tianlong Wen, Zhiyong Zhong, Yulong Liao. Thermal insulation design for efficient and scalable solar water interfacial evaporation and purification [J]. J. Mater. Sci. Technol., 2021, 66(0): 157-162. |
[7] | Ying Lin, Jin Chen, Shian Dong, Guangning Wu, Pingkai Jiang, Xingyi Huang. Wet-resilient graphene aerogel for thermal conductivity enhancement in polymer nanocomposites [J]. J. Mater. Sci. Technol., 2021, 83(0): 219-227. |
[8] | Huawei Rong, Tong Gao, Yun Zheng, Lingwei Li, Dake Xu, Xuefeng Zhang, Yanglong Hou, Mi Yan. Fe3O4@silica nanoparticles for reliable identification and magnetic separation of Listeria monocytogenes based on molecular-scale physiochemical interactions [J]. J. Mater. Sci. Technol., 2021, 84(0): 116-123. |
[9] | Xianliang Hou, Shun Yao, Zhen Wang, Changqing Fang, Tiehu Li. Enhancement of the mechanical properties of polylactic acid/basalt fiber composites via in-situ assembling silica nanospheres on the interface [J]. J. Mater. Sci. Technol., 2021, 84(0): 182-190. |
[10] | Lei Su, Min Niu, De Lu, Zhixin Cai, Mingzhu Li, Hongjie Wang. A review on the emerging resilient and multifunctional ceramic aerogels [J]. J. Mater. Sci. Technol., 2021, 75(0): 1-13. |
[11] | Yanqi Ma, Haowei Huang, Hongda Zhou, Michael Graham, James Smith, Xinxin Sheng, Ying Chen, Li Zhang, Xinya Zhang, Elena Shchukina, Dmitry Shchukin. Superior anti-corrosion and self-healing bi-functional polymer composite coatings with polydopamine modified mesoporous silica/graphene oxide [J]. J. Mater. Sci. Technol., 2021, 95(0): 95-104. |
[12] | Leilei Chen, Jun Xu, Yi Wang, Rongqin Huang. Ultra-small MoS2 nanodots-incorporated mesoporous silica nanospheres for pH-sensitive drug delivery and CT imaging [J]. J. Mater. Sci. Technol., 2021, 63(0): 91-96. |
[13] | Xirui Lv, Mengkun Yue, Wenfan Yang, Xue Feng, Xiaoyan Li, Yumin Wang, Jiemin Wang, Jie Zhang, Jingyang Wang. Tunable strength of SiCf/β-Yb2Si2O7 interface for different requirements in SiCf/SiC CMC: Inspiration from model composite investigation [J]. J. Mater. Sci. Technol., 2021, 67(0): 165-173. |
[14] | Baoquan Wan, Haiyu Li, Yunhui Xiao, Zhongbin Pan, Qiwei Zhang. Improved breakdown strength and energy density of polyimide composites by interface engineering between BN and BaTiO3 fibers [J]. J. Mater. Sci. Technol., 2021, 74(0): 1-10. |
[15] | Di Lan, Zehao Zhao, Zhenguo Gao, Kaichang Kou, Hongjing Wu. Novel magnetic silicate composite for lightweight and efficient electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2021, 92(0): 51-59. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||