J. Mater. Sci. Technol. ›› 2022, Vol. 105: 182-193.DOI: 10.1016/j.jmst.2021.08.002
• Research Article • Previous Articles Next Articles
Lianbo Wanga, Shilong Xinga, Zizhen Shenc, Huabing Liua, Chuanhai Jianga,*(), Vincent Jib, Yuantao Zhaod,*(
)
Received:
2021-08-24
Accepted:
2021-08-24
Published:
2021-09-01
Online:
2021-09-01
Contact:
Chuanhai Jiang,Yuantao Zhao
About author:
zhaoyt@shmtu.edu.cn (Y. Zhao).Lianbo Wang, Shilong Xing, Zizhen Shen, Huabing Liu, Chuanhai Jiang, Vincent Ji, Yuantao Zhao. The synergistic role of Ti microparticles and CeO2 nanoparticles in tailoring microstructures and properties of high-quality Ni matrix nanocomposite coating[J]. J. Mater. Sci. Technol., 2022, 105: 182-193.
Fig. 3. SE images: (a) pure Ni coating; (b) Ni-Ti nanocomposite coating; (c) Ni-Ti-CeO2 nanocomposite coating; (d), (e) and (f) corresponding BSE images.
Fig. 4. Band contrast maps on cross section: (a) pure Ni and (d) Ni-Ti nanocomposite coating cross sections; (b) and (e) corresponding crystal orientation maps (y direction); (c) and (f) corresponding inverse pole figures.
Fig. 5. Cross-section of Ni-Ti-CeO2 nanocomposite coating: (a) and (b) band contrast maps; (c) and (d) crystal orientation maps (y direction); (e) and (f) inverse pole figures ((b) is the enlarged picture corresponding to the yellow dot line marked area in (a)).
Fig. 6. (a) SE image and (d) BSE image of Ni-Ti nanocomposite coating containing two Ti microparticles; (b) enlarged image at the interface of individual domain and vertical columnar grains; (e) enlarged image in the vicinity of Ti microparticle; (c) corresponding EBSD results.
Fig. 7. Low magnification images of Ni-Ti composite coating under (a) bright field and (b) dark field; (c) EDS result performed in position “I”; (d) high revolution image performed in position “III”; (e) and (f) SAED corresponding to area “II” and “I”.
Fig. 8. Cross section of Ni-CeO2 composite coating: (a), (b) and (c) band contrast maps; (d), (e) and (f) corresponding crystal orientation maps ((b) and (c) are enlarged figures of the yellow dot line marked areas in (a)).
Fig. 9. (a) low magnification image of Ni-CeO2 composite; (b) high-resolution image at the position marked “III” in (a); (c) and (d) SAED performed in the marked position “I” and “II” in (a).
Fig. 10. COMSOL simulation of current density maps of electroplating Ni-Ti composite around 2 μm sized Ti particles: (a) and (b) isolines of current density; (c) and (d) electronic lines.
Fig. 12. COMSOL simulation of current density maps during the electrodeposition of Ni-CeO2 composite materials around 2 μm sized CeO2 particles: (a) and (b) isolines of current density; (c) and (d) electronic lines.
Fig. 13. Time dependent isolines of current density during plating Ni-CeO2 composite: (a) 0 s; (b) 10 s; (c) 15 s; (d) 50 s; (e) 60 s; (f) 70 s; (g) 95 s; (h) 100 s; (i) 140 s.
[1] |
D. Susan, K. Barmak, A. Marder, Thin Solid Films 307 (1997) 133-140.
DOI URL |
[2] | R. Offoiach, M. Lekka, A. Lanzutti, C. De Leitenburg, L. Fedrizzi, Surf. Coat. Tech-nol. 309 (2017) 242-248. |
[3] |
X. Peng, Nanoscale 2 (2010) 262-268.
DOI URL |
[4] |
D.F. Susan, A. Marder, Acta Mater. 49 (2001) 1153-1163.
DOI URL |
[5] |
L. Wang, Y. Zhao, C. Jiang, V. Ji, M. Chen, K. Zhan, F. Moreira, J. Alloys Compd. 754 (2018) 93-104.
DOI URL |
[6] |
X. Yang, X. Peng, F. Wang, Scr. Mater. 56 (2007) 509-512.
DOI URL |
[7] |
X. Yang, X. Peng, F. Wang, Corros. Sci. 50 (2008) 3227-3232.
DOI URL |
[8] |
X.Y. Yang, X. Peng, F.H. Wang, Scr. Mater. 56 (2007) 891-894.
DOI URL |
[9] |
Y. Zhao, C. Jiang, Z. Xu, F. Cai, Z. Zhang, P. Fu, Mater. Des. 85 (2015) 39-46.
DOI URL |
[10] |
Y. Zhou, X. Peng, F. Wang, Scr. Mater. 50 (2004) 1429-1433.
DOI URL |
[11] |
Z. Dong, X. Peng, Y. Guan, L. Li, F. Wang, Corros. Sci. 62 (2012) 147-152.
DOI URL |
[12] |
V. Hasannaeimi, T. Shahrabi, S. Sanjabi, Surf. Coat. Technol. 210 (2012) 10-14.
DOI URL |
[13] |
J. Foster, B. Cameron, J. Carew, Trans. IMF 63 (1985) 115-119.
DOI URL |
[14] |
F. Honey, E. Kedward, V. Wride, J. Vac. Sci. Technol. A 4 (1986) 2593-2597.
DOI URL |
[15] | M. Izaki, M. Fukusumi, H. Enomoto, T. Omi, Y. Nakayama, J. Jpn. Inst. Met. Mater. 57 (1993) 182-189. |
[16] | C. Sun, Y. Wang, Q. Su, Z. Guo, L. Shi, Adv. Mater. Sci. Eng. 2016 (2016) 8750657. |
[17] |
R. Offoiach, M. Lekka, K. Johanns, L. Fedrizzi, Surf. Eng. 35 (2019) 135-143.
DOI URL |
[18] |
G. He, M. Hagiwara, Mater. Sci. Eng. C 26 (2006) 14-19.
DOI URL |
[19] | C. Veiga, J. Davim, A. Loureiro, Rev. Adv. Mater. Sci. 32 (2012) 133-148. |
[20] |
S. Srikomol, P. Janetaisong, Y. Boonyongmaneerat, R. Techapiesancharoenkij, Arch. Metall. Mater. 59 (2014) 1287-1292.
DOI URL |
[21] |
I. Napłoszek-Bilnik, A. Budniok, B. Łosiewicz, L. Paj˛ak, E. ٞagiewka, Thin Solid Films 474 (2005) 146-153.
DOI URL |
[22] |
A. Serek, A. Budniok, Curr. Appl. Phys. 2 (2002) 193-199.
DOI URL |
[23] |
J. Foster, B. Cameron, Trans. IMF 54 (1976) 178-183.
DOI URL |
[24] |
Y. Zhou, B. Qian, H. Zhang, Thin Solid Films 517 (2009) 3287-3291.
DOI URL |
[25] | G. Charalampides, K.I. Vatalis, B. Apostoplos, B. Ploutarch-Nikolas, Proc. Econom. Financ. 24 (2015) 126-135. |
[26] |
C. Wiemer, L. Lamagna, M. Fanciulli, Semicond. Sci. Technol. 27 (2012) 074013.
DOI URL |
[27] |
N. Qu, D. Zhu, K. Chan, Scr. Mater. 54 (2006) 1421-1425.
DOI URL |
[28] |
Y.J. Xue, X.Z. Jia, Y.W. Zhou, W. Ma, J.S. Li, Surf. Coat. Technol. 200 (2006) 5677-5681.
DOI URL |
[29] |
M. Srivastava, V.W. Grips, K. Rajam, Appl. Surf. Sci. 257 (2010) 717-722.
DOI URL |
[30] |
A. Lozano-Morales, E. Podlaha, J. Electrochem. Soc. 151 (2004) C478-C483.
DOI URL |
[31] |
F. Walsh, C. Ponce de Leon, Trans. IMF 92 (2014) 83-98.
DOI URL |
[32] |
Y.J. Xue, H.B. Liu, M.M. Lan, J.S. Li, H. Li, Surf. Coat. Technol. 204 (2010) 3539-3545.
DOI URL |
[33] |
L. Wang, M. Chen, H. Liu, C. Jiang, V. Ji, F. Moreira, Surf. Coat. Technol. 331 (2017) 196-205.
DOI URL |
[34] |
L. Stappers, J. Fransaer, J. Electrochem. Soc. 153 (2006) C472-C482.
DOI URL |
[35] |
S. Pathak, M. Guinard, M.G. Vernooij, B. Cousin, Z. Wang, J. Michler, L. Philippe, Surf. Coat. Technol. 205 (2011) 3651-3657.
DOI URL |
[36] |
D. Li, J. Szpunar, Electrochim. Acta 42 (1997) 37-45.
DOI URL |
[37] | J.S. Chen, Y.H. Huang, Z.J. Tian, G.F. Wang, B. Qiao, J.M. Yang, J. Mater. Sci. Eng. 29 (2011) 200-203. |
[38] |
H.J. Cho, D. Yan, J. Tam, U. Erb, J. Alloys Compd. 791 (2019) 1128-1137.
DOI URL |
[39] | J.X. Kang, W.Z. Zhao, G.F. Zhang, Surf. Coat. Technol. 203 (2012) 37-45. |
[40] |
A.M. Rashidi, A. Amadeh, Surf. Coat. Technol. 202 (2008) 3772-3776.
DOI URL |
[41] |
J.H. Westbrook, K.T. Aust, Acta Mater. 11 (1963) 1151-1163.
DOI URL |
[42] |
K.T. Aust, R.E. Hanneman, P. Niessen, J.H. Westbrook, Acta Mater. 16 (1968) 291-302.
DOI URL |
[43] |
Y.M. Soifer, A. Verdyan, M. Kazakevich, E. Rabkin, Scr. Mater. 47 (2002) 799-804.
DOI URL |
[44] |
W.A. Soer, K.E. Aifantis, J.T.M. De Hosson, Acta Mater. 53 (2005) 4665-4676.
DOI URL |
[45] |
K.S. Kumar, H. Van Swygenhoven, S. Suresh, Acta Mater 51 (2003) 5743-5774.
DOI URL |
[1] | Fuliang Ma, Jinlong Li, Zhixiang Zeng, Yimin Gao. Tribocorrosion behavior in artificial seawater and anti-microbiologically influenced corrosion properties of TiSiN-Cu coating on F690 steel [J]. J. Mater. Sci. Technol., 2019, 35(3): 448-459. |
[2] | Chen Lei,Pei Zhiliang,Xiao Jinquan,Gong Jun,Sun Chao. TiAlN/Cu Nanocomposite Coatings Deposited by Filtered Cathodic Arc Ion Plating [J]. J. Mater. Sci. Technol., 2017, 33(1): 111-116. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||