J. Mater. Sci. Technol. ›› 2022, Vol. 105: 172-181.DOI: 10.1016/j.jmst.2021.08.004
• Research Article • Previous Articles Next Articles
Vladimir Krsjaka,c,*(
), Tielong Shenb, Jarmila Degmovaa,c, Stanislav Sojaka,c, Erik Korpasa, Pavol Nogac, Werner Eggerd, Bingsheng Lie, Vladimir Slugena, Frank A. Garnerf,g
Received:2021-05-12
Revised:2021-07-09
Accepted:2021-08-02
Published:2021-09-16
Online:2021-09-16
Contact:
Vladimir Krsjak
About author:*Faculty of Electrical Engineering and Information Technology, Institute of Nuclear and Physical Engineering, Slovak University of Tech- nology, Ilkovicova 3, Bratislava 812 19, Slovakia. E-mail address: vladimir.krsjak@stuba.sk (V. Krsjak).Vladimir Krsjak, Tielong Shen, Jarmila Degmova, Stanislav Sojak, Erik Korpas, Pavol Noga, Werner Egger, Bingsheng Li, Vladimir Slugen, Frank A. Garner. On the helium bubble swelling in nano-oxide dispersion-strengthened steels[J]. J. Mater. Sci. Technol., 2022, 105: 172-181.
Fig. 1. Calculated helium concentration and selected positron stopping profiles. Also shown are implanted concentration profile of helium with depth (left axis) as calculated by the SRIM code. Stopping profiles of positrons corresponding to the energies used in this study are superimposed (right axis). Note that the maximum depth probed at 12 keV is somewhat less than 400 nm.
Fig. 2. Helium concentration profile averaged over distance (depth) by reflecting the shape of the stopping profiles of the positrons used in this study. The profile of the helium concentration (cHe) was calculated for each of the two experimental techniques used for microstructural characterization. The overlapping regions indicate the probing depth, to which both techniques are sensitive. For instance, in depth of 400 nm, local cross-sectional TEM analysis probes a region with actual concentration of helium of 3000 appm. Due to the broadening of the Makhovian profile, slow positron beam with a mean implantation depth of 400 nm provides information from a volume characterized by average helium concentration of 20,000 appm.
Fig. 4. Cross-sectional TEM image of the two studied materials. The Fe9Cr steel (a) and its ODS variant (b) including simulated SRIM implantation profiles (linear scale, normalized to the area under the curve) and magnified insets of the 470-600 nm region. The peak values calculated by SRIM correspond to 29.3 dpa and 46 at.% He.
Fig. 5. Average bubble density and diameter obtained from TEM and PALS analyses. Average number density (a) and mean bubble diameter (b) obtained from the TEM analysis of the two studied materials, plotted as a function of the helium concentration. The error bars are obtained as a standard deviation of TEM analysis performed by three independent analysts. (a) includes quantitative data obtained from PALS analysis. (b) shows an extrapolation of the bubble size towards zero-damage, considered as a parameter in the bubble swelling calculations using the PALS technique. The qualitative information could not be precisely obtained from the PALS analysis due to unknown He/vacancy ratio.
Fig. 6. TEM micrograph of ODS Eurofer implanted by helium at 500 °C to fluence 5 × 1020 m-2. Some of the cavities associated with oxide particles are highlighted by red circles.
Fig. 7. Positron mean lifetime and DBS S parameter as a function of helium concentration. A relative increase in the average positron lifetime (a) and Doppler broadening S parameter (b) as a function of cHe. These data are presented as a ratio of the results of the measurements on implanted and virgin samples.
Fig. 8. Swelling as a function of displacement damage in Fe9Cr steel and its ODS variant. Positron stopping profiles are considered only in the calculation of dpa based on PALS data. All TEM data, as well as the top X-axis, are determined for the specific discrete region of the implantation peak. The behavior of swelling $\text{ }\!\!\Delta\!\!\text{ }V/{{V}_{0}}$ caused by the implantation of helium can be well approximated by an exponential decay function (1) of helium concentration cHe(appm)
Fig. 9. Schematic illustration of various lattice and interfacial defects in the studied materials. (a), (b) and (c) represent microstructure of ferritic Fe9Cr alloy (blue circles), while (d), (e) and (f) represent the same alloy containing nanoscale oxide dispersoids represented as green circles. A higher density of open-volume defects in ODS Fe9Cr results in a higher rate of positron trapping (represented by 511 keV annihilation gamma quanta in (a) and (d)), along with a more effective sinking of radiation-induced defects and helium atoms. The nucleation and coalescence of helium bubbles occur at lower helium concentrations in Fe9Cr alloy (b, c), compared to its ODS variant (f). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article).
| [1] |
T.R. Allen, K. Sridharan, L. Tan, W.E. Windes, J.I. Cole, D.C. Crawford, G.S. Was, Nucl. Technol. 162 (2008) 342-357.
DOI URL |
| [2] |
G.S. Was, D. Petti, S. Ukai, S. Zinkle, J. Nucl. Mater. 527 (2019) 151837.
DOI URL |
| [3] |
T. Hirai, V. Barabash, F. Escourbiac, A. Durocher, L. Ferrand, V. Komarov, M. Merola, Fusion Eng. Des. 125 (2017) 250-255.
DOI URL |
| [4] | H. Ullmaier, F. Carsughi, Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Inter- act. Mater. At. 101 (1995) 406-421. |
| [5] | G. Xiao, H. Xu, S. Wang, Nucl. Phys. Rev. 34 (2017) 275-283. |
| [6] | G.S. Was, Fundamentals of radiation materials science: metals and alloys, Springer, Berlin Heidelberg, 2007. |
| [7] | F.A. Garner, Compr. Nucl. Mater. 3 (2020) 57-168 (Second Edition). |
| [8] | C.D. Judge, M. Griffiths, L. Walters, M. Wright, G.A. Bickel, O.T. Woo, M. Stewart, S.R. Douglas, F.A. Garner, in: Effects of radiation on nuclear materials: 25th volume, ASTM International, West Conshohocken, PA, 2013, pp. 161-175. T. Ya- mamoto, M. Sokolov, and B. Hanson. |
| [9] | G.R. Odette, D.T. Hoelzer, JOM 62 (2010) 84-92. |
| [10] | K. Yutani, H. Kishimoto, R. Kasada, A. Kimura, J. Nucl. Mater. 367-370 (2007) 423-427 A. |
| [11] | S. Jin, H. Ma, E. Lu, L. Zhou, Q. Zhang, P. Fan, Q. Yan, D. Yuan, X. Cao, B. Wang, Mater. Today Energy 20 (2021) 100687. |
| [12] | O. El-Atwani, A. Alvarado, K. Unal, S. Fensin, J.A. Hinks, G. Greaves, J.K.S. Bald-win, S.A. Maloy, E. Martinez, Mater. TodayEnergy 19(2021)100599. |
| [13] | X. Liu, Y. Li, G. Ran, Q. Han, P. Chen, Mater. Today Energy 21 (2021) 100731. |
| [14] |
Q. Li, C.M. Parish, K.A. Powers, M.K. Miller, J. Nucl. Mater. 445 (2014) 165-174.
DOI URL |
| [15] | H. Ullmaier, in: S.E. Donnelly, J.H. Evans (Eds.), Fundamental Aspects of In- ert Gases in Solids, Solids. NATO ASI Series (Series B: Physics), 279, Springer, Boston, MA, 1991. |
| [16] |
F. Bergner, G. Hlawacek, C. Heintze, J. Nucl. Mater. 505 (2018) 267-275.
DOI URL |
| [17] |
R.E. Stoller, Y.N. Osetsky, J. Nucl. Mater. 455 (2014) 258-262.
DOI URL |
| [18] |
S.E. Donnelly, Radiat. Eff. 90 (1985) 1-47.
DOI URL |
| [19] |
J. čížek, I. Procházka, J. Kočík, E. Keilová, Phys. Status Solidi A-Appl. Res. 178 (2000) 651-662.
DOI URL |
| [20] |
M. Lambrecht, L. Malerba, Acta Mater. 59 (2011) 6547-6555.
DOI URL |
| [21] |
Q. Xu, T. Yoshiie, K. Sato, Phys. Rev. B 73 (2006) 134115.
DOI URL |
| [22] | J. Dryzek, D. Singleton, Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Inter- act. Mater. At. 252 (2006) 197-204. |
| [23] | S. Agarwal, M.O. Liedke, A.C.L. Jones, E. Reed, A.A. Kohnert, B.P. Uberuaga, Y.Q. Wang, J. Cooper, D. Kaoumi, N. Li, R. Auguste, P. Hosemann, L. Capolungo, D.J. Edwards, M. Butterling, E. Hirschmann, A. Wagner, F.A. Selim, Sci. Adv. 6 (2020) 31. |
| [24] |
V. Sabelova, V. Krsjak, J. Kuriplach, Y. Dai, V. Slugen, J. Nucl. Mater. 458 (2015) 350-354.
DOI URL |
| [25] |
V. Krsjak, J. Kuriplach, C. Vieh, L. Peng, Y. Dai, J. Nucl. Mater. 504 (2018) 277-280.
DOI URL |
| [26] |
V. Krsjak, J. Kuriplach, T. Shen, V. Sabelova, K. Sato, Y. Dai, J. Nucl. Mater. 456 (2015) 382-388.
DOI URL |
| [27] |
Y. Dai, V. Krsjak, V. Kuksenko, R. Schäublin, J. Nucl. Mater. 511 (2018) 508-522.
DOI URL |
| [28] | P. Fernández, A.M. Lancha, J. Lapeña, M. Hernández-Mayoral, Fusion Eng. Des. 58-59 (2001) 787-792. |
| [29] |
C.C. Eiselt, M. Klimenkov, R. Lindau, A. Möslang, H.R.Z. Sandim, A.F. Padilha, D. Raabe, J. Nucl. Mater. 385 (2009) 231-235.
DOI URL |
| [30] |
A. Das, P. Chekhonin, E. Altstadt, D. McClintock, F. Bergner, C. Heintze, R. Lin-dau, J. Nucl. Mater. 542 (2020) 152464.
DOI URL |
| [31] |
P. Noga, J. Dobrovodsky, D. Vana, M. Beno, A. Zavacka, M. Muska, R. Halgas, S. Minarik, R. Riedlmajer, Nucl. Instrum. Methods Phys. Res. B 409 (2017) 264-267.
DOI URL |
| [32] |
J.F. Ziegler, M.D. Ziegler, J.P. Biersack, Nucl. Instrum. Methods Phys. Res. B Beam Interact. Mater. At. 268 (2010) 1818-1823.
DOI URL |
| [33] |
M.J. Norgett, M.T. Robinson, I.M. Torrens, Nucl. Eng. Des. 33 (1975) 50-54.
DOI URL |
| [34] |
P.J. Schultz, K.G. Lynn, Rev. Mod. Phys. 60 (1988) 701.
DOI URL |
| [35] |
K. Farrell, P.J. Maziasz, E.H. Lee, L.K. Mansur, Radiat. Eff. 78 (1983) 277-295.
DOI URL |
| [36] | R.M. Nieminen, J. Laakkonen, Appl. Phys. 20 (1979) 181-184. |
| [37] |
M. Eldrup, K.O. Jensen, Phys. Status Solidi A 102 (1987) 145-152.
DOI URL |
| [38] |
Z. Tong, Y. Dai, J. Nucl. Mater. 398 (2010) 43-48.
DOI URL |
| [39] | M. Roldán, P. Fernández, J. Rams, A. Gómez-Herrero, M. Malo, Nucl. Mater. En- ergy 22 (2020) 100717. |
| [40] |
A. Das, P. Chekhonin, E. Altstadt, F. Bergner, C. Heintze, R. Lindau, J. Nucl. Mater. 533 (2020) 152083.
DOI URL |
| [41] |
H. Kim, J.G. Gigax, J. Fan, F.A. Garner, T.L. Sham, L. Shao, J. Nucl. Mater. 527 (2019) 151818.
DOI URL |
| [42] |
O. Emelyanova, A. Gentils, V.A. Borodin, M.G. Ganchenkova, P.V. Vladimirov, P.S. Dzhumaev, I.A. Golovchanskiy, R. Lindau, A. Möslang, J. Nucl. Mater. 545 (2021) 152724.
DOI URL |
| [43] |
G.R. Odette, P.J. Maziasz, J.A. Spitznagel, J. Nucl. Mater. 104 (1981) 1289-1303.
DOI URL |
| [44] | A. Seeger, Appl. Phys. 4 (1974) 183-199. |
| [45] | G. Dlubek, N. Meyendorf, in: Nondestructive materials characterization: with applications to aerospace materials, Springer Berlin Heidelberg, Berlin, Heidel- berg, 2004, pp. 374-411. |
| [46] |
M.J. Puska, R.M. Nieminen, J. Phys. F-Met. Phys. 13 (1983) 333.
DOI URL |
| [1] | Qing Han, Yipeng Li, Guang Ran, Xinyi Liu, Lu Wu, Yang Chen, Piheng Chen, Xiaoqiu Ye, Yifan Ding, Xiaoyong Wu. In-situ TEM observation of the evolution of helium bubbles & dislocation loops and their interaction in Pd during He + irradiation [J]. J. Mater. Sci. Technol., 2021, 87(0): 108-119. |
| [2] | Zijian Zhang, En-Hou Han, Chao Xiang. Irradiation behaviors of two novel single-phase bcc-structure high-entropy alloys for accident-tolerant fuel cladding [J]. J. Mater. Sci. Technol., 2021, 84(0): 230-238. |
| [3] | Kaustubh Bawane, Kathy Lu, Xian-Ming Bai, Jing Hu, Meimei Li, Peter M. Baldo, Edward Ryan. Microstructural evolution of a silicon carbide-carbon coated nanostructured ferritic alloy composite during in-situ Kr ion irradiation at 300°C 450°C [J]. J. Mater. Sci. Technol., 2021, 71(0): 75-83. |
| [4] | Weichao Bao, Stuart Robertson, Jia-Wei Zhao, Ji-Xuan Liu, Houzheng Wu, Guo-Jun Zhang, Fangfang Xu. Structural integrity and damage of ZrB2 ceramics after 4 MeV Au ions irradiation [J]. J. Mater. Sci. Technol., 2021, 72(0): 223-230. |
| [5] | Zhu Hui, Guo Dagang, Zang Hang, A.H. Hanaor Dorian, Yu Sen, Schmidt Franziska, Xu Kewei. Enhancement of hydroxyapatite dissolution through structure modification by Krypton ion irradiation [J]. J. Mater. Sci. Technol., 2020, 38(0): 148-158. |
| [6] | L. Huang, Z.Q. Chen, P. Huang, X.K. Meng, F. Wang. Irradiation-induced homogeneous plasticity in amorphous/amorphous nanolaminates [J]. J. Mater. Sci. Technol., 2020, 57(0): 70-77. |
| [7] | Liying Zhou, Shaobo Feng, Mingyue Sun, Bin Xu, Dianzhong Li. Interfacial microstructure evolution and bonding mechanisms of 14YWT alloys produced by hot compression bonding [J]. J. Mater. Sci. Technol., 2019, 35(8): 1671-1680. |
| [8] | Si-Mian Liu, Shi-Hao Li, Wei-Zhong Han. Effect of ordered helium bubbles on deformation and fracture behavior of α-Zr [J]. J. Mater. Sci. Technol., 2019, 35(7): 1466-1472. |
| [9] | Peng Xue, Simon Pauly, Weimin Gan, Songshan Jiang, Hongbo Fan, Zhiliang Ning, Yongjiang Huang, Jianfei Sun. Enhanced tensile plasticity of a CuZr-based bulk metallic glass composite induced by ion irradiation [J]. J. Mater. Sci. Technol., 2019, 35(10): 2221-2226. |
| [10] | J.?í?ek. Characterization of lattice defects in metallic materials by positron annihilation spectroscopy: A review [J]. J. Mater. Sci. Technol., 2018, 34(4): 577-598. |
| [11] | Gyeong-Geun Lee*, Sujin Jung, Jae-Young Park, Woo-Gon Kim, Sung-Deok Hong, Yong-Wan Kim. Microstructural Investigation of Alloy 617 Creep-ruptured at High Temperature in a Helium Environment [J]. J. Mater. Sci. Technol., 2013, 29(12): 1177-1183. |
| [12] | Amandeep Kaur Bal, Rajinder Singh, R.K. Bedi. Effect of Ni7+ Ion Irradiation on Structure and Ammonia Sensing Properties of Thermally Oxidized Zinc and Indium Films [J]. J Mater Sci Technol, 2012, 28(8): 700-706. |
| [13] | Hui JIANG, Yaoguang LIU, Ningkang HUANG. Microanalysis on the Hydrogen Ion Irradiated 50 wt pct TiC-C Films [J]. J Mater Sci Technol, 2007, 23(01): 127-130. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
