J. Mater. Sci. Technol. ›› 2021, Vol. 73: 52-60.DOI: 10.1016/j.jmst.2020.09.030
• Research Article • Previous Articles Next Articles
Yi Yanga, Di Xua, Sheng Caob,*(), Songquan Wua,*(
), Zhengwang Zhuc, Hao Wangc, Lei Lid, Shewei Xind, Lei Qud, Aijun Huange
Received:
2020-06-06
Revised:
2020-07-06
Accepted:
2020-07-07
Published:
2020-10-02
Online:
2020-10-02
Contact:
Sheng Cao,Songquan Wu
About author:
sqwu@alum.imr.ac.cn (S. Wu).Yi Yang, Di Xu, Sheng Cao, Songquan Wu, Zhengwang Zhu, Hao Wang, Lei Li, Shewei Xin, Lei Qu, Aijun Huang. Effect of strain rate and temperature on the deformation behavior in a Ti-23.1Nb-2.0Zr-1.0O titanium alloy[J]. J. Mater. Sci. Technol., 2021, 73: 52-60.
Fig. 1. True strain-stress curves of specimens deformed at strain rate of (a) 0.1 s-1, (b) 10 s-1 and (c) 1000 s-1 with temperatures varying from 100 °C to 200 °C; (d) The yield strength vs. strain rate; (e) The yield strength vs. deformation temperature.
Fig. 2. XRD profiles of specimens deformed (a) at 100 °C with different strain rates and (b) at a strain rate of 1000 s-1 with different temperatures. The original condition is the sample before deformation as a comparison.
Fig. 3. Optical micrographs of specimens compressed at (a) 100 ℃, 0.1 s-1; (b)100 ℃, 10 s-1 ; (c) 100 ℃, 1000 s-1; (d) 150 ℃, 0.1 s-1; (e) 150 ℃, 10 s-1; (f) 150 ℃, 1000 s-1; (g) 200 ℃, 0.1 s-1; (h) 200 ℃, 10 s-1; and (i) 200 ℃, 1000 s-1. White arrows denote lath-like features.
Fig. 4. (a) EBSD IPF map and (b) grain boundaries and twin boundaries map of the specimen compressed at a strain rate of 1000 s-1 at 100 ℃. In (b), the blue and red lines highlights the grain boundaries and {332}<113> twin boundaries respectively.
Fig. 6. TEM bright field (BF) images of deformed structures in the specimens compressed at strain rate of (a) 10 s-1 at 100 ℃, (b) 1000 s-1 at 100 ℃, (c) 1000 s-1 at 150 ℃ and (d) 1000 s-1 at 200 ℃.
Fig. 7. TEM dark-field (DF) images of deformation microstructure in the specimen compressed at 100 ℃ with a strain rate of 10 s-1. (a) DF image using the circled reflection (($01\bar{1}$)βt//($10\bar{1}\bar{1}$)ω) in (c); (b) DF image using the squared reflection (($1\bar{1}00$)ω) in (c); (c) the selected area diffraction pattern along [311]βm//[311]βt //[$11\bar{2}3$]ω. m: matrix, t: twin.
Fig. 8. TEM dark-field (DF) images of deformation microstructure in the specimen compressed at 100 ℃ with a strain rate of 1000 s-1. (a) DF image of {112}〈111〉 twins using the circled reflection (($01\bar{1}$)βt) in (b); (b) the selected area diffraction pattern along [311]βm//[311]βt; (c) DF image using the squared reflection (($1\bar{1}00$)ω) in (d); (d) the selected area diffraction pattern along [$1\bar{1}0$]βm//[$11\bar{2}0$]ω; (e) DF image using the circled reflection (($\bar{11}0$)βt) in (g); (f) DF image using the squared diffraction spot (($1\bar{1}00$)ω) in (g); (g) the selected area diffraction pattern along [$1\bar{1}0$]βm//[$1\bar{1}0$]βt//[$11\bar{2}0$]ω. m: matrix, t: twin.
Fig. 9. TEM dark-field (DF) images of deformation microstructure in the specimen compressed at 150 ℃ with a strain rate of 1000 s-1. (a) DF image using the circled reflection ((002)βt//($\bar{2}021$)ω) in (c); (b) DF image using the squared reflection (($\bar{1}100$)ω) in (c); (c) the selected area diffraction pattern along [210]βm//[210]βt//[$11\bar{2}6$]ω. m: matrix, t: twin.
Fig. 10. TEM dark-field (DF) images of deformation microstructure in the specimen compressed at 200 ℃ with a strain rate of 1000 s-1. (a) DF image using the circled reflection ((110)βt//($\bar{1}10\bar{1}$)ω) in (c); (b) DF image using the squared reflection (($1\bar{1}00$)ω) in (c); (c) the selected area diffraction pattern along [$1\bar{1}0$]βm//[$1\bar{1}0$]βt//[$11\bar{2}0$]ω. m: matrix, t: twin.
[1] |
M. Niinomi, Sci. Technol. Adv. Mater. 4 (2003) 445-454.
DOI URL |
[2] | S. Naka, Curr. Opin. Solid State Mater.Sci. 1 (1996) 333-339. |
[3] | H.X. Jin, K.X. Wei, J.M. Li, J.Y. Zhou, W.J. Peng, Chin. J. Nonferrous Met. 25 (2015) 280-292. |
[4] |
J. Chen, F.C. Ma, P. Liu, C.H. Wang, X.K. Liu, W. Li, Q.Y. Han, J. Mater. Eng. Perform. 28 (2019) 1410-1418.
DOI URL |
[5] |
W.S. Lee, T.H. Chen, H.H. Hwang, Metall. Mater. Trans. A 39 (2008) 1435-1448.
DOI URL |
[6] |
A. Kreitcberg, V. Brailovski, S. Prokoshkin, J. Mater. Process. Technol. 252 (2018) 821-829.
DOI URL |
[7] |
J. Hwang, S. Kuramoto, T. Furuta, K. Nishino, T. Saito, J. Mater. Eng. Perform. 14 (2005) 747-754.
DOI URL |
[8] |
M. Abdel-Hady, K. Hinoshita, M. Morinaga, Scr. Mater. 55 (2006) 477-480.
DOI URL |
[9] |
R.J. Talling, R.J. Dashwood, M. Jackson, S. Kuramoto, D. Dye, Scr. Mater. 59 (2008) 669-672.
DOI URL |
[10] |
Y. Yang, S.Q. Wu, G.P. Li, Y.L. Li, Y.F. Lu, K. Yang, P. Ge, Acta Mater. 58 (2010) 2778-2787.
DOI URL |
[11] |
Y. Yang, G.P. Li, G.M. Cheng, H. Wang, M. Zhang, F. Xu, K. Yang, Scr. Mater. 58 (2008) 9-12.
DOI URL |
[12] |
X.F. Bai, Y.Q. Zhao, W.D. Zeng, Z.Q. Jia, Y.S. Zhang, Mater. Sci. Eng. A 598 (2014) 236-243.
DOI URL |
[13] |
H.Y. Zhan, W.D. Zeng, G. Wang, D. Kent, M. Dargusch, Scr. Mater. 107 (2015) 34-37.
DOI URL |
[14] |
H.Y. Zhan, G. Wang, D. Kent, M. Dargusch, Acta Mater. 105 (2016) 104-113.
DOI URL |
[15] |
Y.H. Lin, S.M. Wu, F.H. Kao, S.H. Wang, J.R. Yang, C.C. Yang, C.S. Chiou, Mater. Sci. Eng. A 528 (2011) 2271-2276.
DOI URL |
[16] |
M. Ahmed, D. Wexler, G. Casillas, D.G. Savvakin, E.V. Pereloma, Acta Mater. 104 (2016) 190-200.
DOI URL |
[17] |
X. Ji, S. Emura, X.H. Min, K. Tsuchiya, Mater. Sci. Eng. A 707 (2017) 701-707.
DOI URL |
[18] |
S. Sadeghpour, S.M. Abbasi, M. Morakabati, J. Alloys Compd. 650 (2015) 22-29.
DOI URL |
[19] |
M. Ahmed, D. Wexler, G. Casillas, O.M. Ivasishin, E.V. Pereloma, Acta Mater. 84 (2015) 124-135.
DOI URL |
[20] |
J.F. Xiao, Z.H. Nie, C.W. Tan, G. Zhou, R. Chen, M.R. Li, X.D. Yu, X.C. Zhao, S.X. Hui, W.J. Ye, Y.T. Lee, Mater. Sci. Eng. A 751 (2019) 191-200.
DOI URL |
[21] | T. Saito, T. Furuta, J.H. Hwang, S. Kuramoto, K. Nishino, N. Suzuki, R. Chen, A. Yamada, K. Ito, Y. Seno, Mater. Sci.Forum 426-432 (2003) 681-688. |
[22] |
T. Saito, T. Furuta, J.H. Hwang, S. Kuramoto, K. Nishino, N. Suzuki, R. Chen, A. Yamada, K. Ito, Y. Seno, Science 300 (2003) 464-467.
DOI URL |
[23] | S.Y. Sun, C. Deng, Titanium Ind. Prog. 28 (2011) 21-25. |
[24] |
L. Qu, Y. Yang, Y.F. Lu, L. Feng, J.H. Ju, P. Ge, W. Zhou, D. Han, D.H. Ping, Scr. Mater. 69 (2013) 389-392.
DOI URL |
[25] |
J.W. Edington, Philos. Mag. 19 (1969) 1189-1206.
DOI URL |
[26] |
G.Z. Voyiadjis, F.H. Abed, Mech. Mater. 37 (2005) 355-378.
DOI URL |
[27] |
T. Akanuma, H. Matsumoto, S. Sato, A. Chiba, I. Inagaki, Y. Shirai, T. Maeda, Scr. Mater. 67 (2012) 21-24.
DOI URL |
[28] | N. Bernstein, E.B. Tadmor, Phys. Rev. B 69 (2004) 2507-2519. |
[29] | P. Li, K.M. Xue, Y. Lu, J.R. Tan, J. Mater. Sci. Technol. 19 (2003) 161-163. |
[30] |
K.A. Ofei, L. Zhao, J. Sietsma, J. Mater. Sci. Technol. 29 (2013) 161-167.
DOI URL |
[31] |
V.S.Y. Injeti, Z.C. Li, B. Yu, R.D.K. Misra, Z.H. Cai, H. Ding, J. Mater. Sci. Technol. 34 (2018) 745-755.
DOI URL |
[32] | F.Y. Lui, P. Yang, L. Meng, F. Cui, H. Ding, J. Mater. Sci. Technol. 27 (2011) 257-265. |
[33] | H. Xing, Transmission Electron Microscopy Study on Microstructure of β Type Ti-Alloys, Ph.D. Thesis, Shanghai Jiao Tong University, Shanghai, 2008 (in Chinese). |
[34] | H. Xing, J. Sun, Appl. Phys. Lett. 93 (2008) 669-672. |
[35] |
R.J. Talling, R.J. Dashwood, M. Jackson, D. Dye, Acta Mater. 57 (2009) 1188-1198.
DOI URL |
[36] |
Y. Yang, G.P. Li, H. Wang, S.Q. Wu, L.C. Zhang, Y.L. Li, K. Yang, Scr. Mater. 66 (2012) 211-214.
DOI URL |
[37] |
S. Kuramoto, T. Furuta, J.H. Hwang, K. Nishino, T. Saito, J. Jpn. Inst. Met. 69 (2005) 953-961.
DOI URL |
[38] |
E.B. Tadmor, N. Bernstein, J. Mech. Phys. Solids 52 (2004) 2507-2519.
DOI URL |
[39] | L.L. Liu, Generalized Stacking Fault Energy, Twinning and Dislocations of Materials at Finite Temperature Based on the First-Principles Study and Quasiharmonic Approximation, Ph.D. Thesis, Chongqing University, 2015 (in Chinese). |
[40] | M. Wei, First-Principles Study of Displacive Phase Transitions and Plastic Deformation Mechanisms in β Ti-V Alloys, Ph.D. Thesis, Shanghai Jiao Tong University, 2017 (in Chinese). |
[41] |
Y. Takemoto, M. Hida, A. Sakakibara, J. Jpn. Inst. Met. 57 (1993) 1471-1472.
DOI URL |
[42] |
L.E. Murr, M.A. Meyers, C.-S Niou, Y.J Chen, S. Pappu, C. Kennedy, Acta Mater. 45 (1997) 157-175.
DOI URL |
[43] |
L.M. Hsiung, D.H. Lassila, Scr. Mater. 38 (1998) 1371-1376.
DOI URL |
[44] |
R.C. Koo, J. Less Common Met. 4 (1962) 138-144.
DOI URL |
[45] |
L. Ren, W. Xiao, C. Ma, R. Zheng, L. Zhou, Scr. Mater. 156 (2018) 47-50.
DOI URL |
[46] |
Y. Fu, W. Xiao, D. Kent, M.S. Dargusch, J. Wang, X. Zhao, C. Ma, Scr. Mater. 187 (2020) 285-290.
DOI URL |
[47] |
L. Ren, W. Xiao, D. Kent, M. Wan, C. Ma, L. Zhou, Scr. Mater. 184 (2020) 6-11.
DOI URL |
[48] |
J.-Y. Yan, G.B. Olson, J. Alloys Compd. 673 (2016) 441-454.
DOI URL |
[49] |
Q. Luo, Y. Guo, B. Liu, Y. Feng, J. Zhang, Q. Li, K. Chou, J. Mater. Sci. Technol. 44 (2020) 171-190.
DOI URL |
[50] | Q. Luo, C. Zhai, D. Sun, W. Chen, Q. Li, J. Mater. Sci. Technol. 35 (2019) 2115-2120. |
[51] |
M. Song, S.Y. He, K. Du, Z.Y. Huang, T.T. Yao, Y.L. Hao, S.J. Li, R. Yang, H.Q. Ye, Acta Mater. 118 (2016) 120-128.
DOI URL |
[1] | Yanxin Qiao, Daokui Xu, Shuo Wang, Yingjie Ma, Jian Chen, Yuxin Wang, Huiling Zhou. Effect of hydrogen charging on microstructural evolution and corrosion behavior of Ti-4Al-2V-1Mo-1Fe alloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 168-176. |
[2] | Mohammad Sharear Kabir, Zhifeng Zhou, Zonghan Xie, Paul Munroe. Designing multilayer diamond like carbon coatings for improved mechanical properties [J]. J. Mater. Sci. Technol., 2021, 65(0): 108-117. |
[3] | Zhongdi Yu, Minghui Chen, Jinlong Wang, Fengjie Li, Shenglong Zhu, Fuhui Wang. Enamel coating for protection of the 316 stainless steel against tribo-corrosion in molten zinc alloy at 460 °C [J]. J. Mater. Sci. Technol., 2021, 65(0): 126-136. |
[4] | Ping Deng, Qunjia Peng, En-Hou Han, Wei Ke, Chen Sun. Proton irradiation assisted localized corrosion and stress corrosion cracking in 304 nuclear grade stainless steel in simulated primary PWR water [J]. J. Mater. Sci. Technol., 2021, 65(0): 61-71. |
[5] | Yu Fu, Wenlong Xiao, Junshuai Wang, Lei Ren, Xinqing Zhao, Chaoli Ma. A novel strategy for developing α + β dual-phase titanium alloys with low Young’s modulus and high yield strength [J]. J. Mater. Sci. Technol., 2021, 76(0): 122-128. |
[6] | Jiang Bi, Zhenglong Lei, Yanbin Chen, Xi Chen, Ze Tian, Nannan Lu, Xikun Qin, Jingwei Liang. Microstructure, tensile properties and thermal stability of AlMgSiScZr alloy printed by laser powder bed fusion [J]. J. Mater. Sci. Technol., 2021, 69(0): 200-211. |
[7] | Yoon Hwa, Christopher S. Kumai, Thomas M. Devine, Nancy Yang, Joshua K. Yee, Ryan Hardwick, Kai Burgmann. Microstructural banding of directed energy deposition-additively manufactured 316L stainless steel [J]. J. Mater. Sci. Technol., 2021, 69(0): 96-105. |
[8] | Xiong-jie Gu, Wei-li Cheng, Shi-ming Cheng, Yan-hui Liu, Zhi-feng Wang, Hui Yu, Ze-qin Cui, Li-fei Wang, Hong-xia Wang. Tailoring the microstructure and improving the discharge properties of dilute Mg-Sn-Mn-Ca alloy as anode for Mg-air battery through homogenization prior to extrusion [J]. J. Mater. Sci. Technol., 2021, 60(0): 77-89. |
[9] | Gaopeng Xu, Kui Wang, Xianping Dong, Lei Yang, Mahmoud Ebrahimi, Haiyan Jiang, Qudong Wang, Wenjiang Ding. Review on corrosion resistance of mild steels in liquid aluminum [J]. J. Mater. Sci. Technol., 2021, 71(0): 12-22. |
[10] | Yan Chong, Tilak Bhattacharjee, Yanzhong Tian, Akinobu Shibata, Nobuhiro Tsuji. Deformation mechanism of bimodal microstructure in Ti-6Al-4V alloy: The effects of intercritical annealing temperature and constituent hardness [J]. J. Mater. Sci. Technol., 2021, 71(0): 138-151. |
[11] | Zhong Li, Jie Wang, Yizhe Dong, Dake Xu, Xianhui Zhang, Jianhua Wu, Tingyue Gu, Fuhui Wang. Synergistic effect of chloride ion and Shewanella algae accelerates the corrosion of Ti-6Al-4V alloy [J]. J. Mater. Sci. Technol., 2021, 71(0): 177-185. |
[12] | H.T. Jeong, W.J. Kim. Microstructure tailoring of Al0.5CoCrFeMnNi to achieve high strength and high uniform strain using severe plastic deformation and an annealing treatment [J]. J. Mater. Sci. Technol., 2021, 71(0): 228-240. |
[13] | Qinchuan He, Hejun Li, Xuemin Yin, Jinhua Lu. Effects of PyC shell thickness on the microstructure, ablation resistance of SiCnws/PyC-C/C-ZrC-SiC composites [J]. J. Mater. Sci. Technol., 2021, 71(0): 55-66. |
[14] | Xiaopei Wang, Yoshiaki Morisada, Hidetoshi Fujii. Flat friction stir spot welding of low carbon steel by double side adjustable tools [J]. J. Mater. Sci. Technol., 2021, 66(0): 1-9. |
[15] | Fangqiang Ning, Jibo Tan, Ziyu Zhang, Xinqiang Wu, Xiang Wang, En-Hou Han, Wei Ke. Effects of thiosulfate and dissolved oxygen on crevice corrosion of Alloy 690 in high-temperature chloride solution [J]. J. Mater. Sci. Technol., 2021, 66(0): 163-176. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||