J. Mater. Sci. Technol. ›› 2021, Vol. 73: 45-51.DOI: 10.1016/j.jmst.2020.09.027
• Research Article • Previous Articles Next Articles
Tiantian Wanga,b,d, Jun Meic,e, Jianjun Liua,d,**(
), Ting Liaob,e,*(
)
Received:2020-07-24
Revised:2020-08-20
Accepted:2020-09-06
Published:2021-05-20
Online:2020-09-30
Contact:
Jianjun Liu,Ting Liao
About author:**State Key Laboratory of High Performance Ceramicsand Superfine Microstructure, Shanghai institute of Ceramics, Chinese Academy ofSciences, 1295 Dingxi Road, Shanghai 200050, China. E-mail addresses: jliu@mail.sic.ac.cn (J. Liu).Tiantian Wang, Jun Mei, Jianjun Liu, Ting Liao. Maximizing ionic transport of Li1+xAlxTi2-xP3O12 electrolytes for all-solid-state lithium-ion storage: A theoretical study[J]. J. Mater. Sci. Technol., 2021, 73: 45-51.
Fig. 1. (a) Left panel: crystal structure of LiTi2P3O12 with the trajectories of Li migration at 1200 K highlighted (pink spots); right panel: two views of the [LiO6] trigonal antiprism (pink) extracted from LiTi2P3O12 formed by [PO4] (purple tetrahedrons) and [TiO6] (blue octahedrons) polyhedrons. (b) Bond angle variances (BAVs) of the [PO4] tetrahedrons and [TiO6] octahedrons in LiTi2P3O12.
Fig. 2. (a) Mean square displacements (MSD) of Li ions in LiTi2P3O12 and Al-doped Li1+xAlxTi2-xP3O12 (0 ≤ x ≤ 1) at 1200 K. (b) Calculated Li diffusion rate and the average BAVs of all polyhedrons in [PO4] and [TiO6] from the snapshot of MD run at 5 ps. The inset shows the average BAV of [PO4] tetrahedrons and [TiO6] octahedrons separately.
Fig. 3. (a) On the left, the migration trajectories Li ions in the unit cell of Li1.17Al0.17Ti1.83P3O12, wherein the highly mobile Li6b-act1/Li6b-act2, interstitial Li6a and inert Li6b-inert ions are represented by orange, green and pink, respectively; on the right, the migration path accessible for Li ions in the supercell along which path the [LiO6]6a, [LiO6]6b-act and [LiO6]6b-inert trigonal antiprisms and [AlO6], [TiO6] and [PO4] polyhedrons are highlighted. [PO4]disorder tetrahedrons with large BAVs are colored in dark purple and [PO4]order tetrahedrons are colored in light purple with small BAVs. (b) Mean square displacements (MSD) of active Li6b-act1/Li6b-act2, interstitial Li6a and inert Li6b-inert ions. (c) BAVs of the [PO4]disorder/[PO4]order tetrahedrons and [TiO6] octahedrons in Li1.17Al0.17Ti1.83P3O12.
Fig. 4. On the top, minimum energy profiles of Li migration path2 (Li6a to Li6b-act1, in red) and path1 (Li6b-act1 to Li6b-act2, in blue) in Li1.17Al0.17Ti1.83P3O12. In the bottom, minimum energy profile of Li migration path1 (Li6b-inert to Li6b-inert) in LiTi2P3O12. The inset shows the schematics of Li ionic migration routes in Li1.17Al0.17Ti1.83P3O12 (path1, 2) and LiTi2P3O12 (path1), respectively.
Fig. 5. (a) Activation energies of Li migration in Li1+xAlxTi2-xP3O12 in terms of increasing Al doping concentration, 0 ≤ x ≤ 1, which are fitted from the Arrhenius plot (the inset) of the diffusion rate of Li1+xAlxTi2-xP3O12 as a function of increasing temperature. (b) The ratios of the number of inert Li ions to the total number of Li ions in Li1+xAlxTi2-xP3O12 (0 ≤ x ≤ 1), The evolving crystal structures of Li1+xAlxTi2-xP3O12 including all polyhedrons with large bond angle variances are displayed in the inset.
| [1] |
T. Famprikis, P. Canepa, J.A. Dawson, M.S. Islam, C. Masquelier, Nat. Mater. 18 (2019) 1278-1291.
DOI URL |
| [2] |
A. Mertens, S.C. Yu, N. Schon, D.C. Gunduz, H. Tempel, R. Schierholz, F. Hausen, H. Kungl, J. Granwehr, R.A. Eichel, Solid State Ion. 309 (2017) 180-186.
DOI URL |
| [3] |
K. Arbi, W. Bucheli, R. Jiménez, J. Sanz, J. Eur. Ceram. Soc. 35 (2015) 1477-1484.
DOI URL |
| [4] |
J.P. Han, B. Zhang, L.Y. Wang, H.L. Zhu, Y.X. Qi, L.W. Yin, H. Li, N. Lun, Y.J. Bai, ACS Sustainable Chem. Eng. 6 (2018) 7273-7282.
DOI URL |
| [5] | J. Mei, G.A. Ayoko, C.F. Hu, J.M. Bell, Z.Q. Sun, Sustain. Mater. Technol. 25 (2020), e00156. |
| [6] | S. Pindar, N. Dhawan, Sustain. Mater. Technol. 25 (2020), e00157. |
| [7] | L. Gaines, Sustain. Mater. Technol. 17 (2018), e00068. |
| [8] |
Z.Z. Zhang, Y. Shao, B. Lotsch, Y.S. Hu, H. Li, J. Janek, L.F. Nazar, C.W. Nan, J. Maier, M. Armand, L.Q. Chen, Energy Environ. Sci. 11 (2018) 1945-1976.
DOI URL |
| [9] | W. Xiao, J.Y. Wang, L. Fan, J. Zhang, X. Li, Energy Storage Mater. 19 (2019) 379-400. |
| [10] |
J. Janek, W.G. Zeier, Nat. Energy 1 (2016) 16141.
DOI URL |
| [11] | A. Aatiq, M. Ménétrier, L. Croguennec, E. Suard, C. Delmas, J. Mater. Chem. 12 (2002) 2971-2978. |
| [12] |
B.K. Zhang, Z. Lin, H.F. Dong, L.W. Wang, F. Pan, J. Mater. Chem. A 8 (2020) 342-348.
DOI URL |
| [13] |
K. Arbi, M. Hoelzel, A. Kuhn, F. Garcia-Alvarado, J. Sanz, Phys. Chem. Chem. Phys. 16 (2014) 18397-18405.
DOI PMID |
| [14] | E. Dashjav, F. Tietz, Z. Anorg, Allg. Chem. 640 (2014) 3070-3073. |
| [15] |
G.J. Redhammer, D. Rettenwander, S. Pristat, E. Dashjav, C.M.N. Kumar, D. Topa, F. Tietz, Solid State Sci. 60 (2016) 99-107.
DOI URL |
| [16] |
T. Liao, T. Sasaki, Z. Sun, Phys. Chem. Chem. Phys. 15 (2013) 17553-17559.
DOI URL |
| [17] |
L.J. Miara, W.D. Richards, Y.E. Wang, G. Ceder, Chem. Mater. 27 (2015) 4040-4047.
DOI URL |
| [18] |
D. Chen, F. Luo, W. Zhou, D. Zhu, J. Alloys Compd. 757 (2018) 348-355.
DOI URL |
| [19] |
D.H. Kothari, D.K. Kanchan, Physica B 501 (2016) 90-94.
DOI URL |
| [20] |
P. Maldonado-Manso, E.R. Losilla, M. Martínez-Lara, M.A. Aranda, S. Bruque, F.E. Mouahid, M. Zahir, Chem. Mater. 15 (2003) 1879-1885.
DOI URL |
| [21] |
Y.J. Liang, C. Peng, Y. Kamiike, K. Kuroda, M. Okido, J. Alloys Compd. 775 (2019) 1147-1155.
DOI URL |
| [22] | D.H. Kothari, D.K. Kanchan, et al., in: R.K. Dwivedi (Ed.), National Conference on Advanced Materials and Nanotechnology, 2018, UNSP 020033. |
| [23] | K. Arbi, M. Lazarraga, D. Ben Hassen Chehimi, M. Ayadi-Trabelsi, J. Rojo, J. Sanz, Chem. Mater. 16 (2004) 255-262. |
| [24] | F.E. Mouahid, M. Zahir, P. Maldonado-Manso, S. Bruque, E.R. Losilla, M.A.G. Aranda, A. Rivera, C. Leon, J. Santamaria, J. Mater. Chem. 11 (2001) 3258-3263. |
| [25] |
Z.Y. Kou, C. Miao, Z.Y. Wang, W. Xiao, Solid State Ion. 343 (2019), 115090.
DOI URL |
| [26] |
H.N. Bai, J.L. Hu, X.G. Li, Y.S. Duan, F. Shao, T. Kozawa, M. Naito, J.X. Zhang, Ceram. Int. 44 (2018) 6558-6563.
DOI URL |
| [27] |
T. Hupfer, E.C. Bucharsky, K.G. Schell, M.J. Hoffmann, Solid State Ion. 302 (2017) 49-53.
DOI URL |
| [28] |
J. Emery, T. alkus, M. Barré, J. Phys. Chem. C 121 (2017) 246-254.
DOI URL |
| [29] |
J. Emery, T. alkus, M. Barré, J. Phys. Chem. C 120 (2016) 26235-26243.
DOI URL |
| [30] |
J. Emery, T. Salkus, A. Abramova, M. Barre, A.F. Orliukas, J. Phys. Chem. C 120 (2016) 26173-26186.
DOI URL |
| [31] |
D. Case, A.J. McSloya, R. Sharpe, S.R. Yeandel, T. Bartlett, J. Cookson, E. Dashjav, F. Tietz, C.M.N. Kumarb, P. Goddard, Solid State Ion. 346 (2020), 115192.
DOI URL |
| [32] |
B. Lang, B. Ziebarth, C. Elsässer, Chem. Mater. 27 (2015) 5040-5048.
DOI URL |
| [33] |
X. Lu, S.H. Wang, R.J. Xiao, S.Q. Shi, H. Li, L.Q. Chen, Nano Energy 41 (2017) 626-633.
DOI URL |
| [34] |
M. Monchak, T. Hupfer, A. Senyshyn, H. Boysen, D. Chernyshov, T. Hansen, K.G. Schell, E.C. Bucharsky, M.J. Hoffmann, H. Ehrenberg, Inorg. Chem. 55 (2016) 2941-2945.
DOI URL |
| [35] |
M. Pogosova, I. Krasnikova, A. Sergeev, A. Zhugayevych, K. Stevenson, J. Power Sources 448 (2020), 227367.
DOI URL |
| [36] | D. Wiedemann, M.M. Islam, T. Bredow, M. Lerch, Z. Phys. Chem 231 (2017) 1279-1302. |
| [37] | T. Liao, T. Sasaki, S. Suehara, Z. Sun, J. Mater. Chem. 21 (2011) 3234-3242. |
| [38] |
H. Aono, E. Sugimoto, Y. Sadaaka, N. Imanaka, G. Adachi, J. Electrochem. Soc. 136 (1989) 590-591.
DOI URL |
| [39] |
H. Aono, E. Sugimoto, Y. Sadaoka, N. Imanaka, G.Y. Adachi, J. Electrochem. Soc. 137 (1990) 1023-1027.
DOI URL |
| [40] |
M. Pérez-Estébanez, J. Isasi-Marín, D. Többens, A. Rivera-Calzada, C. León, Solid State Ion. 266 (2014) 1-8.
DOI URL |
| [41] |
L. Yang, Z. Wang, Y. Feng, R. Tan, Y. Zuo, R. Gao, Y. Zhao, L. Han, Z. Wang, F. Pan, Adv. Energy Mater. 7 (2017), 1701437.
DOI URL |
| [42] |
D. Mutter, D.F. Urban, C. Elsasser, MRS Adv. 2 (2017) 483-489.
DOI URL |
| [43] |
G. Kresse, J. Hafner, J. Phys. Condens. Matter 6 (1994) 8245-8257.
DOI URL |
| [44] |
G. Kresse, D. Joubert, Phys. Rev. B 59 (1999) 1758-1775.
DOI URL |
| [45] |
G. Kresse, J. Furthmüller, Phys. Rev. B 54 (1996) 11169-11186.
DOI URL |
| [46] |
G. Kresse, J. Hafner, Phys. Rev. B 47 (1993) 558-561.
DOI URL |
| [47] |
K. Okhotnikov, T. Charpentier, S. Cadars, J. Cheminf. 8 (2016) 17.
DOI URL |
| [48] | S. Nosé, J. Chem. Phys. 81 (1984) 511-519. |
| [49] | G. Henkelman, B.P. Uberuaga, H. Jónsson, J. Chem. Phys. 113 (2000) 9901-9904. |
| [50] |
S. Shi, J. Gao, Y. Liu, Y. Zhao, Q. Wu, W. Ju, C. Ouyang, R. Xiao, Chin. Phys. B 25 (2016), 018212.
DOI URL |
| [51] |
K. Robinson, G. Gibbs, P. Ribbe, Science 172 (1971) 567-570.
DOI URL |
| [52] |
V. Epp, Q. Ma, E.M. Hammer, F. Tietz, M. Wilkening, Phys. Chem. Chem. Phys. 17 (2015) 32115-32121.
DOI URL |
| [53] |
K. Hayamizu, S. Seki, Phys. Chem. Chem. Phys. 19 (2017) 23483-23491.
DOI PMID |
| [54] |
M. Kotobuki, M. Koishi, Ceram. Int. 39 (2013) 4645-4649.
DOI URL |
| [1] | Hairui Xing, Ping Hu, Shilei Li, Yegai Zuo, Jiayu Han, Xingjiang Hua, Kuaishe Wang, Fan Yang, Pengfa Feng, Tian Chang. Adsorption and diffusion of oxygen on metal surfaces studied by first-principle study: A review [J]. J. Mater. Sci. Technol., 2021, 62(0): 180-194. |
| [2] | Hanxun Wang, Baichun Hu, Zisen Gao, Fengjiao Zhang, Jian Wang. Emerging role of graphene oxide as sorbent for pesticides adsorption: Experimental observations analyzed by molecular modeling [J]. J. Mater. Sci. Technol., 2021, 63(0): 192-202. |
| [3] | Nana Zhao, Fengchu Zhang, Fei Zhan, Ding Yi, Yijun Yang, Weibin Cui, Xi Wang. Fe 3+-stabilized Ti3C2Tx MXene enables ultrastable Li-ion storage at low temperature [J]. J. Mater. Sci. Technol., 2021, 67(0): 156-164. |
| [4] | Liuyang Cao, Xue Cheng, Hongjie Xu, Guoqin Cao, Junhua Hu, Guosheng Shao. Planar Li growth on Li21Si5 modified Li metal for the stabilization of anode [J]. J. Mater. Sci. Technol., 2021, 76(0): 156-165. |
| [5] | Bin Zhang, Yuping Duan, Haifeng Zhang, Shuo Huang, Guojia Ma, Tongmin Wang, Xinglong Dong, . Magnetic transformation of Mn from anti-ferromagnetism to ferromagnetism in FeCoNiZMnx (Z = Si, Al, Sn, Ge) high entropy alloys [J]. J. Mater. Sci. Technol., 2021, 68(0): 124-131. |
| [6] | Yuchen Liu, Yu Zhou, Dechang Jia, Juanli Zhao, Banghui Wang, Yuanyuan Cui, Qian Li, Bin Liu. Composition dependent intrinsic defect structures in ASnO3 (A = Ca, Sr, Ba) [J]. J. Mater. Sci. Technol., 2020, 42(0): 212-219. |
| [7] | Yong-Xin Yang, Zhe Fang, Yi-Hao Liu, Ya-Chen Hou, Li-Guo Wang, Yi-Fan Zhou, Shi-Jie Zhu, Rong-Chang Zeng, Yu-Feng Zheng, Shao-Kang Guan. Biodegradation, hemocompatibility and covalent bonding mechanism of electrografting polyethylacrylate coating on Mg alloy for cardiovascular stent [J]. J. Mater. Sci. Technol., 2020, 46(0): 114-126. |
| [8] | Jin Bai, Xiao Chen, Emilia Olsson, Huimin Wu, Shiquan Wang, Qiong Cai, Chuanqi Feng. Synthesis of Bi2S3/carbon nanocomposites as anode materials for lithium-ion batteries [J]. J. Mater. Sci. Technol., 2020, 50(0): 92-102. |
| [9] | Kai Li, Fangliang Gao, Yu-Jen Chou, Kaixiang Shen, Guoqiang Li. Microdomain atomic structure of Zr50Pd40Al10 metallic glasses and its formation mechanism [J]. J. Mater. Sci. Technol., 2019, 35(3): 248-253. |
| [10] | Ali Muhammad, Ni Zhenyi, Cottenier Stefaan, Liu Yong, Pi Xiaodong, Yang Deren. Formation, Structures and Electronic Properties of Silicene Oxides on Ag(111) [J]. J. Mater. Sci. Technol., 2017, 33(7): 751-757. |
| [11] | Jia Hui,Wang Rong,Ni Zhenyi,Liu Yong,Pi Xiaodong,Yang Deren. Formation, Stability, Geometry and Band Structure of Organically Surface-Modified Germanane [J]. J. Mater. Sci. Technol., 2017, 33(1): 59-64. |
| [12] | Pi Xiaodong, Wang Rong, Yang Deren. Density Functional Theory Study on the Oxidation of Hydrosilylated Silicon Nanocrystals [J]. J. Mater. Sci. Technol., 2014, 30(7): 639-643. |
| [13] | Hojat Jafari, Iman Danaee, Hadi Eskandari, Mehdi RashvandAvei. Combined Computational and Experimental Study on the Adsorption and Inhibition Effects of N2O2 Schiff Base on the Corrosion of API 5L Grade B Steel in 1 mol/L HCl [J]. J. Mater. Sci. Technol., 2014, 30(3): 239-252. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
