J. Mater. Sci. Technol. ›› 2021, Vol. 73: 186-192.DOI: 10.1016/j.jmst.2020.09.036
• Research Article • Previous Articles Next Articles
Chongyang Yuana, Wei Chena, Zunxian Yangb,*(
), Zhenguo Huangc, Xuebin Yua,*(
)
Received:2020-07-06
Revised:2020-07-27
Accepted:2020-07-28
Published:2021-05-20
Online:2020-09-30
Contact:
Zunxian Yang,Xuebin Yu
About author:yuxuebin@fudan.edu.cn (X. Yu).Chongyang Yuan, Wei Chen, Zunxian Yang, Zhenguo Huang, Xuebin Yu. The effect of various cations/anions for MgH2 hydrolysis reaction[J]. J. Mater. Sci. Technol., 2021, 73: 186-192.
Fig. 2. Hydrolysis kinetic curves of the MgH2 in different chloride solutions (a) and sulfate solutions (b) at 298 K. Hydrolysis kinetic curves of the MgH2 at different temperatures in Fe2(SO4)3 solution (c) and their Arrhenius plot (d).
| Solution | pKsp/x of cation | H2 yield in 10 min[ml/g] |
|---|---|---|
| Fe2(SO4)3 | 12.85 | 1664.0 |
| CuSO4 | 9.83 | 558.4 |
| ZnSO4 | 8.83 | 280.0 |
| MgSO4 | 5.62 | 127.1 |
| FeCl3 | 12.85 | 1632.0 |
| CuCl2 | 9.83 | 738.6 |
| ZnCl2 | 8.25 | 373.2 |
| MgCl2 | 5.62 | 227.0 |
Table 1 The pKsp/x of cations and corresponding hydrogen evolution in different solutions.
| Solution | pKsp/x of cation | H2 yield in 10 min[ml/g] |
|---|---|---|
| Fe2(SO4)3 | 12.85 | 1664.0 |
| CuSO4 | 9.83 | 558.4 |
| ZnSO4 | 8.83 | 280.0 |
| MgSO4 | 5.62 | 127.1 |
| FeCl3 | 12.85 | 1632.0 |
| CuCl2 | 9.83 | 738.6 |
| ZnCl2 | 8.25 | 373.2 |
| MgCl2 | 5.62 | 227.0 |
Fig. 4. SEM images of the integrated MgH2 particles in (a) pure water, (b) MgCl2 solution and (c) FeCl3 solution after 30 min reaction; the surface of MgH2 particles in (d) pure water, (e) MgCl2 solution and (f) FeCl3 solution after 30 min reaction.
Fig. 6. (a) Hydrolysis kinetic curves of the MgH2 in different Mg2+ solutions and pure water at 298 K. (b) Hydrolysis kinetic curves of the MgH2 in MgCl2 solution at different temperatures. The inset is their Arrhenius plot.
Fig. 7. The water utilization rate of MgH2 hydrolysis in the (a) 0.5 M MgCl2, MgSO4 and Mg(CH3COO)2 solutions, and (b) the mixture solutions of 0.5 mol L-1 MgCl2, 0.5 M MgCl2 + 0.1 M Mg(CH3COO)2, 0.5 M MgCl2 + 0.1 M MgSO4, and (c) the mixed solutions of different concentration ratios for MgCl2 and MgSO4 at 298 K. The solution volume is 10 ml. (d) the power function model Eq. (3) fitting curve between H2O utilization rate and solution volume for 0.5 M MgCl2 + 0.05 M MgSO4 solution.
Fig. 8. (a) Proposed hydrogen generation system based on the hydrolysis of MgH2 in mixed 0.5 M MgCl2 and 0.05 M MgSO4 solution with continuous feeding of MgH2; (b) The solid curve: simulated system H2O utilization rate at different solution volume based on Eq. (3). The dashed line: the 100 % H2O utilization rate.
Fig. 9. SEM images of hydrolysis products in the mixed solutions of (a) 0.5 M MgCl2 + 0.05 M MgSO4, (b) 0.5 M MgCl2 + 0.1 M MgSO4, (c) 0.5 M MgCl2 + 0.5 M MgSO4, (d) 0.5 M MgCl2 + 0.1 M Mg(CH3COO)2.
| [1] |
S. Chu, A. Majumdar, Nature 488 (2012) 294-303.
DOI URL |
| [2] |
N. Armaroli, V. Balzani, Angew. Chem. Int. Ed. Engl. 46 (2007) 52-66.
DOI URL |
| [3] |
L. Schlapbach, A. Zuttel, Nature 414 (2001) 353-358.
PMID |
| [4] |
G.W. Crabtree, M.S. Dresselhaus, M.V. Buchanan, Phys. Today 57 (2004) 39-44.
DOI URL |
| [5] |
X. Yu, Z. Tang, D. Sun, L. Ouyang, M. Zhu, Prog. Mater. Sci. 88 (2017) 1-48.
DOI URL |
| [6] | T. He, H. Cao, P. Chen, Adv. Mater. 31 (2019), e1902757. |
| [7] | X.L. Zhang, Y.F. Liu, X. Zhang, J.J. Hu, M.X. Gao, H.G. Pan, Mater. Today Nano 9 (2020), 100064. |
| [8] |
W. Grochala, P.P. Edwards, Chem. Rev. 104 (2004) 1283-1316.
DOI URL |
| [9] |
J.G. Novakovic, N. Novakovic, S. Kurko, S.M. Govedarovic, T. Pantic, B.P. Mamula, K. Batalovic, J. Radakovic, J. Rmus, M. Shelyapina, N. Skryabina, P. deRango, D. Fruchart, Chemphyschem 20 (2019) 1216-1247.
DOI |
| [10] |
L. Ouyang, M. Ma, M. Huang, R. Duan, H. Wang, L. Sun, M. Zhu, Energies 8 (2015) 4237-4252.
DOI URL |
| [11] |
T. Tayeh, A.S. Awad, M. Nakhl, M. Zakhour, J.F. Silvain, J.L. Bobet, Int. J. Hydrogen Energy 39 (2014) 3109-3117.
DOI URL |
| [12] |
M. Tegel, S. Schöne, B. Kieback, L. Röntzsch, Int. J. Hydrogen Energy 42 (2017) 2167-2176.
DOI URL |
| [13] |
H. Uesugi, T. Sugiyama, H. Nii, T. Ito, I. Nakatsugawa, J. Alloys Compd. 509 (2011) S650-S653.
DOI URL |
| [14] |
X. Xie, C. Ni, B. Wang, Y. Zhang, X. Zhao, L. Liu, B. Wang, W. Du, J. Alloys Compd. 816 (2020), 152634.
DOI URL |
| [15] |
J. Chen, H. Fu, Y. Xiong, J. Xu, J. Zheng, X. Li, Nano Energy 10 (2014) 337-343.
DOI URL |
| [16] |
J. Jiang, L. Ouyang, H. Wang, J. Liu, H. Shao, M. Zhu, Chemphyschem 20 (2019) 1316-1324.
DOI PMID |
| [17] |
J.M. Huang, R.M. Duan, L.Z. Ouyang, Y.J. Wen, H. Wang, M. Zhu, Int. J. Hydrogen Energy 39 (2014) 13564-13568.
DOI URL |
| [18] |
B. Yang, J. Zou, T. Huang, J. Mao, X. Zeng, W. Ding, Chem. Eng. J. 371 (2019) 233-243.
DOI |
| [19] |
L.Z. Ouyang, Z.J. Cao, H. Wanga, J.W. Liu, D.L. Sun, Q.A. Zhang, M. Zhu, J. Alloys Compd. 586 (2014) 113-117.
DOI URL |
| [20] |
J. Mao, J. Zou, C. Lu, X. Zeng, W. Ding, J. Power Sources 366 (2017) 131-142.
DOI URL |
| [21] |
J.P. Tessier, P. Palau, J. Huot, R. Schulz, D. Guay, J. Alloys Compd. 376 (2004) 180-185.
DOI URL |
| [22] |
A.S. Awad, E. El-Asmar, T. Tayeh, F. Mauvy, M. Nakhl, M. Zakhour, J.L. Bobet, Energy 95 (2016) 175-186.
DOI URL |
| [23] |
M.-H. Grosjean, L. Roué, J. Alloys Compd. 416 (2006) 296-302.
DOI URL |
| [24] |
M. Ma, L. Ouyang, J. Liu, H. Wang, H. Shao, M. Zhu, J. Power Sources 359 (2017) 427-434.
DOI URL |
| [25] |
D. Gan, Y. Liu, J. Zhang, Y. Zhang, C. Cao, Y. Zhu, L. Li, Int. J. Hydrogen Energy 43 (2018) 10232-10239.
DOI URL |
| [26] |
M. Huang, L. Ouyang, H. Wang, J. Liu, M. Zhu, Int. J. Hydrogen Energy 40 (2015) 6145-6150.
DOI URL |
| [27] |
L.G. Sevastyanova, S.N. Klyamkin, B.M. Bulychev, Int. J. Hydrogen Energy 45 (2019) 3046-3052.
DOI URL |
| [28] |
J. Zheng, D. Yang, W. Li, H. Fu, X. Li, Chem. Commun. 49 (2013) 9437-9439.
DOI URL |
| [29] |
M. Grosjean, M. Zidoune, L. Roue, J. Huot, Int. J. Hydrogen Energy 31 (2006) 109-119.
DOI URL |
| [1] | Li Liu, Wan Peng, Xiao Zhang, Jiangmei Peng, Pingsheng Liu, Jian Shen. Rational design of phosphonate/quaternary amine block polymer as an high-efficiency antibacterial coating for metallic substrates [J]. J. Mater. Sci. Technol., 2021, 62(0): 96-106. |
| [2] | Gopinathan Janarthanan, Insup Noh. Recent trends in metal ion based hydrogel biomaterials for tissue engineering and other biomedical applications [J]. J. Mater. Sci. Technol., 2021, 63(0): 35-53. |
| [3] | Rajendra Kurapati, Vincent Maurice, Antoine Seyeux, Lorena H. Klein, Dimitri Mercier, Grégory Chauveau, Catherine Grèzes-Besset, Loïc Berthod, Philippe Marcus. Advanced protection against environmental degradation of silver mirror stacks for space application [J]. J. Mater. Sci. Technol., 2021, 64(0): 1-9. |
| [4] | Yujie Cui, Kenta Aoyagi, Huakang Bian, Yuichiro Hayasaka, Akihiko Chiba. Effects of the aluminum concentration on twin boundary motion in pre-strained magnesium alloys [J]. J. Mater. Sci. Technol., 2021, 73(0): 116-127. |
| [5] | Chaobin Bi, Kaicheng Xu, Chaoquan Hu, Ling Zhang, Zhongbo Yang, Shuaipeng Tao, Weitao Zheng. Three distinct optical-switching states in phase-change materials containing impurities: From physical origin to material design [J]. J. Mater. Sci. Technol., 2021, 75(0): 118-125. |
| [6] | Qianqian Jin, Xiaohong Shao, Shijian Zheng, Yangtao Zhou, Bo Zhang, Xiuliang Ma. Interfacial dislocations dominated lateral growth of long-period stacking ordered phase in Mg alloys [J]. J. Mater. Sci. Technol., 2021, 61(0): 114-118. |
| [7] | H.F. Li, Z.Z. Shi, L.N. Wang. Opportunities and challenges of biodegradable Zn-based alloys [J]. J. Mater. Sci. Technol., 2020, 46(0): 136-138. |
| [8] | Xin Wu, Fengwen Mu, Haiyan Zhao. Recent progress in the synthesis of graphene/CNT composites and the energy-related applications [J]. J. Mater. Sci. Technol., 2020, 55(0): 16-34. |
| [9] | Qiuyan Huang, Yang Liu, Aiyue Zhang, Haoxin Jiang, Hucheng Pan, Xiaohui Feng, Changlin Yang, Tianjiao Luo, Yingju Li, Yuansheng Yang. Age hardening responses of as-extruded Mg-2.5Sn-1.5Ca alloys with a wide range of Al concentration [J]. J. Mater. Sci. Technol., 2020, 38(0): 39-46. |
| [10] | Xiaofeng Shi, Chao Wang, Jiaoxia Zhang, Li Guo, Jing Lin, Duo Pan, Juying Zhou, Jincheng Fan, Tao Ding, Zhanhu Guo. Zwitterionic glycine modified Fe/Mg-layered double hydroxides for highly selective and efficient removal of oxyanions from polluted water [J]. J. Mater. Sci. Technol., 2020, 51(0): 8-15. |
| [11] | Guang Yang, Shang-Yi Ma, Kui Du, Dong-Sheng Xu, Sen Chen, Yang Qi, Heng-Qiang Ye. Interactions between dislocations and twins in deformed titanium aluminide crystals [J]. J. Mater. Sci. Technol., 2019, 35(3): 402-408. |
| [12] | Aihua Jiang, Meng Qi, Jianrong Xiao. Preparation, structure, properties, and application of copper nitride (Cu3N) thin films: A review [J]. J. Mater. Sci. Technol., 2018, 34(9): 1467-1473. |
| [13] | Piaojie Xue, Heng Wu, Yao Lu, Xinhua Zhu. Recent progress in molten salt synthesis of low-dimensional perovskite oxide nanostructures, structural characterization, properties, and functional applications: A review [J]. J. Mater. Sci. Technol., 2018, 34(6): 914-930. |
| [14] | J.?í?ek. Characterization of lattice defects in metallic materials by positron annihilation spectroscopy: A review [J]. J. Mater. Sci. Technol., 2018, 34(4): 577-598. |
| [15] | Blum W., Eisenlohr P.. Deformation Strength of Nanocrystalline Thin Films [J]. J. Mater. Sci. Technol., 2017, 33(7): 718-722. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
