J. Mater. Sci. Technol. ›› 2021, Vol. 73: 178-185.DOI: 10.1016/j.jmst.2020.09.026
• Research Article • Previous Articles Next Articles
Dong Zhaoa, Xiaoyang Wangb, Ling Changb, Wenli Peia,*(
), Chun Wuc,*(
), Fei Wangd,*(
), Luran Zhange, Jianjun Wanga, Qiang Wangb
Received:2020-07-22
Revised:2020-09-03
Accepted:2020-09-15
Published:2021-05-20
Online:2020-10-03
Contact:
Wenli Pei,Chun Wu,Fei Wang
About author:wangfei19860322@163.com (F. Wang).Dong Zhao, Xiaoyang Wang, Ling Chang, Wenli Pei, Chun Wu, Fei Wang, Luran Zhang, Jianjun Wang, Qiang Wang. Synthesis of super-fine L10-FePt nanoparticles with high ordering degree by two-step sintering under high magnetic field[J]. J. Mater. Sci. Technol., 2021, 73: 178-185.
Fig. 3. (a) XRD patterns, (b) lattice parameters, and high-resolution XPS spectra of (c) Fe 2p and (d) Pt 4f of the FePt NPs after post-sintering with different HMFs.
Fig. 4. TEM images of the post-sintered L10-FePt NPs under magnetic field of (a) 0 T, (b) 3 T, (c) 6 T, and (d) 12 T. (e) SAED pattern, (f) HRTEM image, and (g) STEM-EDS element mapping of L10-FePt nanoparticle synthesized with 12 T HMF.
Fig. 5. (a) Size distributions, (b) room-temperature hysteresis loops, (c) coercivity, and (d) lattice distortion rate δ of the L10-FePt NPs synthesized with various HMFs. (e) Comparing the thermal energy (0 T) and Zeeman energy (1, 3, 6, 12 T) of FePt NPs at different temperatures. (f) Zeeman energy factors φ of FePt NPs under different magnetic flux density B.
| [1] |
S. Sun, C.B. Murray, D. Weller, L. Folks, A. Moser, Science 287 (2000) 1989-1992.
DOI URL |
| [2] |
D.Y. Wang, H.L. Chou, C.C. Cheng, Y.H. Wu, C.M. Tsai, H.Y. Lin, Y.L. Wang, B.J. Hwang, C.C. Chen, Nano Energy 11 (2015) 631-639.
DOI URL |
| [3] |
Q. Shi, Q. Liu, Y. Ma, Z. Fang, Z. Liang, G. Shao, B. Tang, W. Yang, L. Qin, X. Fang, Adv. Energy Mater. 10 (2020), 1903854.
DOI URL |
| [4] |
S. Sun, Adv. Mater. 18 (2006) 393-403.
DOI URL |
| [5] |
D. Ma, Y. Wang, Y. Li, R.Y. Umetsu, S. Ou, K. Yubuta, W. Zhang, J. Mater. Sci. Technol. 36 (2020) 128-133.
DOI URL |
| [6] |
X. Liu, Z.D. Hood, Q. Zheng, T. Jin, G.S. Foo, Z. Wu, C. Tian, Y. Guo, S. Dai, W. Zhan, H. Zhu, M. Chi, Nano Energy 55 (2019) 441-446.
DOI URL |
| [7] |
Y. Wang, S. Bao, Y. Liu, W. Yang, Y. Yu, M. Feng, K. Li, Appl. Surf. Sci. 510 (2020), 145495.
DOI URL |
| [8] |
S.M. Lim, K. Kang, H. Jang, J.T. Park, J. Mater. Sci. Technol. 46 (2020) 185-190.
DOI URL |
| [9] |
Q. Li, L. Wu, G. Wu, D. Su, H. Lv, S. Zhang, W. Zhu, A. Casimir, H. Zhu, A. Mendoza-Garcia, S. Sun, Nano Lett. 15 (2015) 2468-2473.
DOI URL |
| [10] |
W. Xiao, W. Lei, M. Gong, H.L. Xin, D. Wang, ACS Catal. 8 (2018) 3237-3256.
DOI URL |
| [11] |
C.B. Rong, D. Li, V. Nandwana, N. Poudyal, Y. Ding, Z.L. Wang, H. Zeng, J.P. Liu, Adv. Mater. 18 (2006) 2984-2988.
DOI URL |
| [12] |
Z.R. Dai, S. Sun, Z.L. Wang, Nano Lett. 1 (2001) 443-447.
DOI URL |
| [13] |
H. Zeng, S. Sun, T.S. Vedantam, J.P. Liu, Z.R. Dai, Z.L. Wang, Appl. Phys. Lett. 80 (2002) 2583-2585.
DOI URL |
| [14] |
W. Pei, D. Zhao, C. Wu, Z. Sun, C. Liu, X. Wang, J. Zheng, M. Yan, J. Wang, Q. Wang, ACS Appl. Nano Mater. 3 (2020) 1098-1103.
DOI URL |
| [15] |
F.M. Abel, V. Tzitzios, E. Devlin, S. Alhassan, D.J. Sellmyer, G.C. Hadjipanayis, ACS Appl. Nano Mater. 2 (2019) 3146-3153.
DOI URL |
| [16] |
J. He, B. Bian, Q. Zheng, J. Du, W. Xia, J. Zhang, A. Yana, J.P. Liu, Green Chem. 18 (2016) 417-422.
DOI URL |
| [17] |
Q. Zheng, Z.R. Zhang, J. Du, L.L. Lin, W.X. Xia, J. Zhang, B.R. Bian, J.P. Liu, J. Mater. Sci. Technol. 35 (2019) 560-567.
DOI |
| [18] |
W. Pei, D. Zhao, C. Wu, X. Wang, K. Wang, J. Wang, Q. Wang, RSC Adv. 9 (2019) 36034-36039.
DOI URL |
| [19] |
M.T. Nguyen, K. Yu, T. Tokunaga, K. Boonyaperm, S. Kheawhom, M. Arita, T. Yonezawa, ACS Sustainable Chem. Eng. 7 (2019) 17697-17705.
DOI URL |
| [20] |
L.C. Varanda, M. Jafelicci Jr., J. Am. Chem. Soc. 128 (2006) 11062-11066.
DOI URL |
| [21] |
A. Dong, J. Chen, X. Ye, J.M. Kikkawa, C.B. Murray, J. Am. Chem. Soc. 133 (2011) 13296-13299.
DOI URL |
| [22] |
C. Wu, X. Wang, W. Pei, D. Zhao, K. Wang, G. Li, Q. Wang, Nanoscale 11 (2019) 15023-15028.
DOI URL |
| [23] |
X. Duan, C. Wu, X. Wang, X. Tian, W. Pei, K. Wang, Q. Wang, J. Alloy. Compd. 797 (2019) 1372-1377.
DOI URL |
| [24] |
C. Wu, K. Wang, D. Li, C. Lou, Y. Zhao, Y. Gao, Q. Wang, J. Magn, Magn. Mater. 416 (2016) 61-65.
DOI URL |
| [25] |
M. Suda, Y. Einaga, Angew. Chem. Int. Ed. 48 (2009) 1754-1757.
DOI URL |
| [26] |
C. Wu, W. Pei, X. Wang, K. Wang, G. Li, Q. Wang, RSC Adv. 6 (2016) 84684-84688.
DOI URL |
| [27] |
H.W. Chang, F.T. Yuan, C.W. Yuan, C.H. Yu, C.R. Wang, W.C. Chang, J. Alloy. Compd. 584 (2014) 148-151.
DOI URL |
| [28] | H. Niu, J. Chen, Q. Niu, Y. Gao, J. Song, C. Mao, S. Zhang, Q. Chen, J. Cryst, Growth 329 (2011) 82-85. |
| [29] |
L.X. Sun, Q.W. Chen, J. Phys. Chem. C 113 (2009) 2710-2714.
DOI URL |
| [30] |
J. Sun, Y. Zhang, Z. Chen, J. Zhou, N. Gu, Angew. Chem. Int. Ed. 46 (2007) 4767-4770.
DOI URL |
| [31] |
L. Hu, R. Zhang, Q. Chen, Nanoscale 6 (2014) 14064-14105.
DOI URL |
| [32] |
H.Y. Wang, X.K. Ma, Y.J. He, S. Mitani, M. Motokawa, Appl. Phys. Lett. 85 (2004) 2304-2306.
DOI URL |
| [33] |
J.M. Qiu, J. Bai, J.P. Wang, Appl. Phys. Lett. 89 (2006), 222506.
DOI URL |
| [34] |
Z. Meng, F. Xiao, Z. Wei, X. Guo, Y. Zhu, Y. Liu, G. Li, Z.Q. Yu, M. Shao, W.Y. Wong, Nano Res. 12 (2019) 2954-2959.
DOI URL |
| [35] |
T. Yamashita, P. Hayes, Appl. Surf. Sci. 254 (2008) 2441-2449.
DOI URL |
| [36] |
R. Medwal, N. Sehdev, G.S. Annapoorni, Appl. Phys. A 109 (2012) 403-408.
DOI URL |
| [37] |
H. Zeng, J. Li, J.P. Liu, Z.L. Wang, S.H. Sun, Nature 420 (2002) 395-398.
PMID |
| [38] |
K. Son, G. Ryu, H. Jeong, L. Fink, M. Merz, P. Nagel, S. Schuppler, G. Richter, E. Goering, G. Schutz, Small 15 (2019), 1902353.
DOI URL |
| [39] |
P. Rasmussen, X. Rui, J.E. Shield, Appl. Phys. Lett. 86 (2005), 191915.
DOI URL |
| [40] |
Y.F. Ding, J.S. Chen, E. Liu, C.J. Sun, G.M. Chow, J. Appl. Phys. 97 (2005), 10H303.
DOI URL |
| [41] |
X. Mei, C. Feng, E. Zhang, M. Yang, B. Li, G. Yu, Appl. Phys. A 109 (2012) 145-149.
DOI URL |
| [42] |
V. Phatak, A. Gupta, V.R. Redd, S. Chakravarty, H. Schmidt, R. Rüffer, Acta Mater. 58 (2010) 979-988.
DOI URL |
| [43] |
O. Crisan, F. Vasiliu, A.D. Crisan, I. Mercioniu, G. Schinteie, A. Leca, Mater. Charact. 152 (2019) 245-252.
DOI |
| [44] |
S.N. Hsiao, F.T. Yuan, H.W. Chang, H.W. Huang, S.K. Chen, H.Y. Lee, Appl. Phys. Lett. 94 (2009), 232505.
DOI URL |
| [45] |
J.K. Mei, F.T. Yuan, W.M. Liao, Y.D. Yao, H.M. Lin, H.Y. Lee, J.H. Hsu, J. Appl. Phys. 109 (2011), 07A737.
DOI URL |
| [46] |
Y. Ma, Y. Wang, J. Cong, Y. Sun, Phys. Rev. Lett. 122 (2019), 255701.
DOI URL |
| [47] |
T. Ma, J. Gou, S. Hu, X. Liu, C. Wu, S. Ren, H. Zhao, A. Xiao, C. Jiang, X. Ren, M. Yan, Nat. Commun. 8 (2017) 13937.
DOI URL |
| [48] |
H. Wang, P. Shang, J. Zhang, M. Guo, Y. Mu, Q. Li, H. Wang, Chem. Mater. 25 (2013) 2450-2454.
DOI URL |
| [49] |
W. Lei, Y. Yu, W. Yang, J. Mater. Chem. C. 7 (2019) 11632-11638.
DOI URL |
| [50] | K. Persson, Materials Data on FePt (SG:123) by Materials Project, 2016, Accessed: 2 https://materialsproject.org/materials/mp-2260/#snl. |
| [1] | Zhipeng Long, Qiuyue Jiang, Jiantao Wang, Long Hou, Xing Yu, Yves Fautrelle, Zhongming Ren, Xi Li. Nucleation kinetics of paramagnetic and diamagnetic metal melts under a high magnetic field [J]. J. Mater. Sci. Technol., 2021, 73(0): 165-170. |
| [2] | Yubao Xiao, Tie Liu, Yuxin Tong, Meng Dong, Jinshan Li, Jun Wang, Qiang Wang. Microstructure evolution of peritectic Al-18 at.% Ni alloy directionally solidified in high magnetic fields [J]. J. Mater. Sci. Technol., 2021, 76(0): 51-59. |
| [3] | Yue Zhao, Kai Wang, Shuang Yuan, Yonghui Ma, Guojian Li, Qiang Wang. The accelerating nanoscale Kirkendall effect in Co films-native oxide Si (100) system induced by high magnetic fields [J]. J. Mater. Sci. Technol., 2020, 46(0): 127-135. |
| [4] | Tie Liu, Yubao Xiao, Zhengyang Lu, Noriyuki Hirota, Guojian Li, Shuang Yuan, Qiang Wang. Wetting behaviors of molten melt drops on polycrystalline Al2O3 substrates in high magnetic fields [J]. J. Mater. Sci. Technol., 2020, 41(0): 187-190. |
| [5] | Chengshuai Li, Shaodong Hu, Zhongming Ren, Yves Fautrelle, Xi Li. Effect of the simultaneous application of a high static magnetic field and a low alternating current on grain structure and grain boundary of pure aluminum [J]. J. Mater. Sci. Technol., 2018, 34(12): 2431-2438. |
| [6] | Shoujing Wang, Xiang Zhao, Na Xiao, Liang Zuo. High Magnetic Field Influence on the WidmanstÄatten Transformation in High Purity Fe-0.36 wt% C Alloy [J]. J Mater Sci Technol, 2012, 28(6): 552-557. |
| [7] | B. Xu, W.P. Tong, C.Z. Liu, H. Zhang, L. Zuo, J.C. He. Effect of High Magnetic Field on Growth Behavior of Compound Layers during Reactive Diffusion between Solid Cu and Liquid Al [J]. J Mater Sci Technol, 2011, 27(9): 856-860. |
| [8] | Canfeng FANG, Xingguo ZHANG, Hai HAO, Shouhua JI, Junze JIN. Effects of High Magnetic Field on Solidification and Corrosion Behaviors of Magnesium Alloy [J]. J Mater Sci Technol, 2007, 23(06): 806-810. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
