Please wait a minute...
J. Mater. Sci. Technol.  2018, Vol. 34 Issue (6): 914-930    DOI: 10.1016/j.jmst.2017.10.005
Orginal Article Current Issue | Archive | Adv Search |
Recent progress in molten salt synthesis of low-dimensional perovskite oxide nanostructures, structural characterization, properties, and functional applications: A review
Piaojie Xue, Heng Wu, Yao Lu, Xinhua Zhu*()
National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093, China
Download:  HTML  PDF(0KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Molten salt synthesis (MSS) method has advantages of the simplicity in the process equipment, versatile and large-scale synthesis, and friendly environment, which provides an excellent approach to synthesize high pure oxide powders with controllable compositions and morphologies. Among these oxides, perovskite oxides with a composition of ABO3 exhibit a broad spectrum of physical properties and functions (e.g. ferroelectric, piezoelectric, magnetic, photovoltaic and photocatalytic properties). The downscaling of the spatial geometry of perovskite oxides into nanometers result in novel properties that are different from the bulk and film counterparts. Recent interest in nanoscience and nanotechnology has led to great efforts focusing on the synthesis of low-dimensional perovskite oxide nanostructures (PONs) to better understand their novel physical properties at nanoscale. Therefore, the low-dimensional PONs such as perovskite nanoparticles, nanowires, nanorods, nanotubes, nanofibers, nanobelts, and two dimensional oxide nanostructures, play an important role in developing the next generation of oxide electronics. In the past few years, much effort has been made on the synthesis of PONs by MSS method and their structural characterizations. The functional applications of PONs are also explored in the fields of storage memory, energy harvesting, and solar energy conversion. This review summarizes the recent progress in the synthesis of low-dimensional PONs by MSS method and its modified ways. Their structural characterization and physical properties are also scrutinized. The potential applications of low-dimensional PONs in different fields such as data memory and storage, energy harvesting, solar energy conversion, are highlighted. Perspectives concerning the future research trends and challenges of low-dimensional PONs are also outlined.

Key words:  Low-dimensional perovskite nanostructures      Molten salt synthesis      Structural characterization      Physical properties      Functional applications     
Received:  11 April 2017     
Corresponding Authors:  Zhu Xinhua     E-mail:  xhzhu@nju.edu.cn

Cite this article: 

Piaojie Xue, Heng Wu, Yao Lu, Xinhua Zhu. Recent progress in molten salt synthesis of low-dimensional perovskite oxide nanostructures, structural characterization, properties, and functional applications: A review. J. Mater. Sci. Technol., 2018, 34(6): 914-930.

URL: 

https://www.jmst.org/EN/10.1016/j.jmst.2017.10.005     OR     https://www.jmst.org/EN/Y2018/V34/I6/914

Fig. 1.  Schematic illustration of the main processing stages of the MSS method for synthesis of perovskite oxide powders.
Fig. 2.  Structural characterizations of the as-prepared BaZrO3 nanoparticles with cubic or spherical morphology synthesized by MSS method. SEM images of BaZrO3 nanoparticles with (a) cubic and (b) spherical morphology. (c) and (d) XRD and EDS patterns of the BaZrO3 nanoparticles, respectively. The lower pattern in panel (c) corresponds to a database standard (JCPDS 06-0399) for the cubic phase of BaZrO3. The carbon peak in (d) originates from the conductive carbon tape. (e) and (f) TEM, HRTEM, and SAED pattern (inset) of a cubic BaZrO3 nanoparticle. (g) and (h) TEM, HRTEM, and SAED pattern (inset) of a spherical BaZrO3 nanoparticle. Reproduced with permission [48]. Copyright 2007, American Chemical Society.
Fig. 3.  XRD patterns of the BaTiO3 nanoparticles synthesized by MSS method in (a) NaOH-KOH and (b) NaCl-KCl based salt systems under different temperatures. (c) and (d) The corresponding TEM images of the BaTiO3 nanoparticles synthesized in different molten salt systems. Reproduced with permission [67]. Copyright 2010, Gordon and Breach Publishing.
Fig. 4.  SEM images of the KNbO3 nanomaterials synthesized with different precursors. (a) KNb3O8 nanowires, (b) H3ONb3O8 nanorods, and (c) Nb2O5 nanowires. Reproduced with permission [69]. Copyright 2009, American Chemical Society.
Fig. 5.  XRD patterns of the KNbO3 nanomaterials synthesized with different precursors: (a) KNb3O8 nanowires, (b) H3ONb3O8 nanorods, and (c) Nb2O5 nanowires. (d) TEM image of a single KNbO3 nanorod synthesized with the precursor of Nb2O5 nanowires and its corresponding SEAD pattern (inset). Reproduced with permission [69]. Copyright 2009, American Chemical Society.
Fig. 6.  Structural characterizations of the single-crystalline BaTiO3 nanowires synthesized by MSS method. (a) Low-magnification TEM image of the BaTiO3 nanowires. (b) and (c) Enlarged TEM images of the parts B and A marked in Fig. a, respectively. (d) HRTEM image of a single BaTiO3 nanowire. Inset in Fig. c is the SAED pattern of the single BaTiO3 nanowire. Reproduced with permission [25]. Copyright 2014, Elsevier Ltd.
Fig. 7.  (a) TEM image of the as-prepared K0.5Bi0.5TiO3 nanowires with random orientation. (b) XRD pattern of the corresponding nanowires. (c) TEM image of a single K0.5Bi0.5TiO3 nanowire. (d) SAED pattern taken from an individual nanowire. (e) High-resolution TEM image of a single K0.5Bi0.5TiO3 nanowire. Reproduced with permission [71]. Copyright 2007, The American Institute of Physics.
Fig. 8.  (a) TEM image and (b) EDS spectrum of the BaMnO3 nanorods synthesized by MSS method at 200 °C for 120 h. (c) TEM image of a single BaMnO3 nanorod and (d) its diffraction pattern, and (e) HRTEM image taken from the square box marked in Fig. c. Reproduced with permission [72]. Copyright 2006, The American Chemical Society.
Fig. 9.  SEM image of the platelet-like BaTiO3 particles heated at 1100 °C for 1 h. Reproduced with permission [75]. Copyright 2007, The American Chemical Society.
Fig. 10.  Dielectric constant and dielectric loss of the BiFeO3 ceramics measured as a function of the frequency. The BiFeO3 ceramics were prepared from the corresponding BiFeO3 micro- and nano-crystals synthesized by MSS method at different (a) annealing temperatures, (b) soaking time, and (c) molar ratios of Fe2O3:Bi2O3:NaCl:KCl. Reproduced with permission [81]. Copyright 2011, Elsevier Ltd.
Fig. 11.  Polarization - electric field (P - E) and current - electric field (I - E) loops measured at room temperature and at 10 Hz for the NaNbO3 ceramics (a) before and (b) after polarization treatment. Reproduced with permission [83]. Copyright 2014, The American Ceramic Society.
Fig. 12.  (a) Schematic diagram for measuring the effective piezoelectric coefficient d33 along the vertical direction of an individual (K,Na)NbO3 nanorod. (b) Top view image of an individual (K,Na)NbO3 nanorod and three measured points. (c) - (e) Displacement - voltage curve (black line) and d33 - voltage curve (blue line) measured at three points 1, 2, and 3, respectively. Reproduced with permission [86]. Copyright 2011, The American Ceramic Society.
Fig. 13.  Plots of (a) MR ratio measured at 5 T for LSMO calcined at different temperatures, and (b) their resistance (@0 T and 5 T) as a function of the temperature. (c) Temperature dependence of the ZFC and FC magnetizations (@H = 200 Oe) of the LSMO particles calcined at different temperatures. The inset shows typical M - H curves at 5 K. Reproduced with permission [98]. Copyright 2003, Elsevier Ltd.
Fig. 14.  (a) Photoluminescence spectrum and (b) excitation spectra of the Eu-doped LaAlO3 nanocrystals. The inset in Fig. a shows the local photoluminescence spectrum from 550 nm to 590 nm. Reproduced with permission [107]. Copyright 2012, Elsevier Ltd.
Fig. 15.  (a) Photoluminescence spectra of the Eu-doped CaTiO3 prepared by MSS method with different doping concentrations (i.e. 0, 2, 4, and 6%), and (b) Photoluminescence spectra obtained from 6 mol% Eu-doped CaTiO3, BaTiO3, and SrTiO3, prepared by MSS method. Data are collected with an excitation wavelength of 399 nm. Reproduced with permission [108]. Copyright 2016, Royal Society of Chemistry.
Fig. 16.  Response characteristics of a gas sensor fabricated with single-crystalline LaFeO3 nanotubes. (a) Response rate of the gas sensor to five different gases. (b) The response rate as a function of the chlorine gas concentration measured at room temperature. (c) The response transients of the gas sensor to 5 ppm and 20 ppm chlorine at room temperature. Reproduced with permission [58]. Copyright 2006, IOP Publishing LTD.
Fig. 17.  (a) Schematic illustration for the measurement setup of random BiFeO3 nanofiber-based photovoltaic devices. (b) I - V curve for BiFeO3 nanofibers in dark and under illumination. Inset (i) shows expanded view of current density behavior around zero-bias. Inset (ii) shows averaged photocurrent after several measurements for different deposition time from 1 to 4 h. Reproduced with permission [151]. Copyright 2015, American Chemical Society. (c) I - V curve for BiFeO3 nanowires in dark and under illumination. Inset shows enlarged I - V curve in the portion of dotted circle. Reproduced with permission [152]. Copyright 2015, Elsevier Ltd.
[1] K.H. Yoon, Y.S. Cho, D.H. Kang, J. Mater. Sci. 33(1998) 2977-2984.
[2] T. Phatungthane, G. Rujijanagul, Ceram. Int. 41(2015) S841-845.
[3] P. Xiang, Y. Kinemuchi, K. Watari, Mater. Lett. 59(2005) 1876-1879.
[4] J.T. Zeng, K.W. Kwok, H.L.W. Chan, Mater. Lett. 61(2007) 409-411.
[5] J.H. Park, D.H. Lee, H.S. Shin, B.K. Lee, J. Am. Ceram. Soc. 79(1996)1130-1132.
[6] Y. Hayashi, T. Kimura, T. Yamaguchi, J. Mater. Sci. 21(1986) 757-762.
[7] C.Y. Xu, Q. Zhang, H. Zhang, L. Zhen, J. Tang, L.C. Qin, J. Am. Chem. Soc. 127(2005) 11584-11585.
[8] M. Park, C.L. Choi, W.T. Lim, M.C. Kim, J. Choi, N.H. Heo, MicroporousMesoporous Mater. 37(2000) 81-89.
[9] C. Xu, L. Zhen, R. Yang, Z. Wang, J. Am. Chem. Soc. 129(2007) 15444-15445.
[10] H.Y. Ge, Y.D. Hou, M.K. Zhu, H. Wang, H. Yan, Chem. Commun. 41(2008)5137-5139.
[11] A. Kikuchihara, F. Sakurai, T. Kimura, J. Am. Ceram. Soc. 95(2012)1556-1562.
[12] K.H. Yoon, K.Y. Oh, S.O. Yoon, Mater. Res. Bull. 21(1986) 1429-1437.
[13] Y. Ito, S. Shimada, M. Inagaki, J. Am. Ceram. Soc. 78(1995) 2695-2699.
[14] H. Zhou, Y. Mao, S.S. Wong, J. Mater. Chem. 17(2007) 1707-1713.
[15] H.L. Li, Z.N. Du, G.L. Wang, Y.C. Zhang, Mater. Lett. 64(2010) 431-434.
[16] Y. Mao, S.S. Wong, Adv. Mater. 17(2005) 2194-2199.
[17] S. Banerjee, D.-I. Kim, R.D. Robinson, I.P. Herman, Y. Mao, S.S. Wong, Appl.Phys. Lett. 89 (2006), 223130-1-3.
[18] Z. Cai, X. Xing, R. Yu, X. Sun, G. Liu, Inorg. Chem. 46(2007) 7423-7427.
[19] K.H. Yoon, Y.S. Cho, D.H. Kang, J. Mater. Sci. 30(1995) 4244-4248.
[20] K.B. Park, K.H. Yoon, Ferroelectrics 132 (1992) 1-8.
[21] C.C. Chiu, C.C. Li, S.B. Desu, J. Am. Ceram. Soc. 74(1991) 38-41.
[22] Y. Mao, S. Banerjee, S.S. Wong, J. Am. Chem. Soc. 125(2003) 15718-15719.
[23] H. Deng, Y. Qiu, S. Yang, J. Mater. Chem. 19(2009) 976-982.
[24] T. Kimura, M.H. Holmes, R.E. Newnham, J. Am. Ceram. Soc. 65(1982)223-226.
[25] B.R. Li, W. Shang, Z.L. Hu, N.Q. Zhang, Ceram. Int. 40(2014) 73-80.
[26] T. Kimura, in: C. Sikalidis (Ed.), Advances in Ceramics - Synthesis and Characterization, Processing and Specific Applications, INTECH Open AccessPublisher, Rijeka, 2011, p. 75.
[27] M.N. Kamalasanan, S. Chandra, P.C. Joshi, A. Mansingh, Appl. Phys. Lett. 59(1992) 3547-3549.
[28] X.Y. Zhang, X. Zhao, C.W. Lai, J. Wang, X.G. Tang, J.Y. Dai, Appl. Phys. Lett. 85(2004) 4190-4192.
[29] C. Vázquez-Vázquez, M.C. Blanco, M.A. López-Quintela, R.D. Sánchez, J. Rivas, S. Oseroff, J. Mater. Chem. 8(1998) 991-1000.
[30] C. Gomez-Yanez, C. Benitez, H. Balmori-Ramirez, Ceram. Int. 26(2000)271-277.
[31] Y. Mao, S. Banerjee, S.S. Wong, Chem. Commun. 3(2003) 408-409.
[32] M.T. Buscaglia, M. Bassoli, V. Buscaglia, J. Am. Ceram. Soc. 88(2005)2374-2379.
[33] K.H. Yoon, Y.S. Cho, D.H. Lee, D.H. Kang, J. Am. Ceram. Soc. 76(1993)1373-1376.
[34] K. Katayama, M. Abe, T. Akiba, J. Eur. Ceram. Soc. 5(1989) 183-191.
[35] H. Wu, X.H. Zhu, in: L.K. Pan, G.A. Zhu (Eds.), Perovskites Materials:Synthesis, Characterization, Properties, and Applications, INTECH OpenAccess Publisher, Rijeka, 2016, pp. 153-183.
[36] X.H. Zhu, Z.G. Liu, N.B. Ming, J. Mater. Chem. 20(2010) 4015-4030.
[37] X.H. Zhu, Z.G. Liu, N.B. Ming, J. Nanosci. Nanotechnol. 10(2010) 4109-4123.
[38] P.M. R?rvik, T. Grande, M.A. Einarsrud, Adv. Mater. 23(2011) 4007-4034.
[39] Y.F. Liu, Y.N. Lu, M. Xu, L.F. Zhou, S.Z. Shi, Mater. Chem. Phys. 114(2009)37-42.
[40] Y. Yan, D. Liu, W. Zhao, H. Zhou, H. Fang, J. Am. Ceram. Soc. 90(2007)2399-2403.
[41] L. Li, J. Deng, R. Yu, J. Chen, X. Wang, X. Xing, Inorg. Chem. 49(2010)1397-1403.
[42] L. Li, J. Deng, J. Chen, X. Xing, Chem. Sci. 7(2016) 855-865.
[43] J.P. Attfield, Cryst. Eng. 5(2002) 427-438.
[44] A.S. Bhalla, R. Guo, R. Roy, Mater. Res. Innovat. 4(2000) 3-26.
[45] H. Gleiter, Acta Mater. 48(2000) 1-29.
[46] S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, E.L. Vander, R.N. Muller,Chem. Rev. 108(2008) 2064-2110.
[47] J. Yang, R.S. Li, X.C. Li, Y.L. Long, J.Y. Zhou, Y.M. Zhang, Jpn. J. Ceram. Soc. 119(2011) 736-739.
[48] H.J. Zhou, Y.B. Mao, S.S. Wong, Chem. Mater. 19(2007) 5238-5249.
[49] C.C. Chiu, C.C. Li, S.B. Desu, J. Am. Ceram. Soc. 74(1991) 38-41.
[50] J. Chen, X.R. Xing, A. Watson, W. Wang, R.B. Yu, J.X. Deng, L. Yan, C. Sun, X.B. Chen, Chem. Mater. 19(2007) 3598-3600.
[51] J. Chen, R.B. Yu, L.H. Li, C. Sun, T. Zhang, H.W. Chen, X.R. Xing, Eur. J. Inorg.Chem. 2008 (2008) 3655-3660.
[52] X. He, L. Gao, Ceram. Int. 35(2009) 975-978.
[53] X.H. Zheng, P.J. Chen, N. Ma, Z.H. Ma, D.P. Tang, J. Mater. Sci.-Mater. Electron.23(2012) 990-994.
[54] X.H. Zhu, J. Zhou, M.C. Jiang, J. Xie, S.A. Liang, S.Y. Li, Z.D. Liu, Y.Y. Zhu, J.M. Zhu, Z.G. Liu, J. Am. Ceram. Soc. 7(2014) 2223-2232.
[55] F. Bortolani, R.A. Dorey, J. Eur. Ceram. Soc. 30(2010) 2073-2079.
[56] M. Kacenka, O. Kaman, Z. Jirák, M. Maryszko, P. ?vátora, S. Vratislav, I. Lukes,J. Appl. Phys. 115 (2014), 17B525-1-4.
[57] U.N. Maiti, K.K. Chattopadhyay, J. Mater. Sci. 48(2013) 3967-3974.
[58] D. Wang, X. Chu, M. Gong, Nanotechnology 17 (2006) 5501-5505.
[59] L.Q. Cheng, K. Wang, Q. Yu, J.F. Li, J. Mater. Chem. C 2 (2014) 1519-1524.
[60] L.Q. Cheng, K. Wang, J.F. Li, Chem. Commun. 49(2013) 4003-4005.
[61] Y.B. Mao, T.J. Park, F. Zhang, H.J. Zhou, S.S. Wong, Small 3 (2007) 1122-1139.
[62] H. Zhao, G.A. Yang, Z.Y. Wang, X.W. Cao, L. Gu, N.J. Zhao, J. Exp. Nanosci. 10(2015) 1126-1136.
[63] A.B. Kaul, J. Mater. Res. 29(2014) 348-361.
[64] S. Su, R. Zuo, D. Lv, J. Fu, Powder Technol. 217(2012) 11-15.
[65] M.H. Zhang, H.Q. Fan, L. Chen, C. Yang, J. Alloy. Compd. 476(2009) 847-853.
[66] F. Madaro, J.R. Tolchard, Y.D. Yu, M.A. Einarsrud, T. Grande, Cryst. Eng.Comm. 13(2011) 1350-1359.
[67] G.K. Sahoo, R. Mazumder, Ferroelectrics 402 (2010) 193-199.
[68] H. Liu, C.G. Hu, Z.L. Wang, Nano Lett. 6(2006) 1535-1540.
[69] L.H. Li, J.X. Deng, J. Chen, X.Y. Sun, R.B. Yu, G.R. Liu, X.R. Xing, Chem. Mater.21(2009) 1207-1213.
[70] A.C. Santulli, H.J. Zhou, S. Berweger, M.B. Raschke, E. Sutter, S.S. Wong, Cryst.Eng. Comm. 12(2010) 2675-2678.
[71] J.F. Yang, Y.D. Hou, C. Wang, M.K. Zhu, H. Yan, Appl. Phys. Lett. 91 (2007)023118-1-3.
[72] C.G. Hu, H. Liu, C.S. Lao, L.Y. Zhang, D. Davidovic, Z.L. Wang, J. Phys. Chem. B110(2006) 14050-14054.
[73] C.G. Hu, Y. Xi, H. Liu, Z.L. Wang, J. Mater. Chem. 19(2009) 858-868.
[74] D. Arney, B. Porter, B. Greve, P.A. Maggard, J. Photochem. Photobiol. A 199(2008) 230-235.
[75] D. Liu, Y.K. Yan, H.P. Zhou, J. Am. Ceram. Soc. 90(2007) 1323-1326.
[76] J.F. Scott, C.A. Paz de Araujo, Science 246 (1989) 1400-1405.
[77] J.F. Scott, Science 315 (2007) 954-959.
[78] J.F. Scott, J. Phys. Condens. Matter 18 (2006) R361-386.
[79] M.E. Lines, A.M. Glass, Principles and Applications of Ferroelectrics andRelated Materials, Oxford University Press, Oxford, 1977, pp. 241-292.
[80] W. Eerenstein, N.D. Mathur, J.F. Scott, Nature 442 (2006) 759-765.
[81] Z.D. Liu, S.A. Liang, S.Y. Li, Y.Y. Zhu, X.H. Zhu, Ceram. Int. 41(2015) S19-S25.
[82] S.X. Zhao, Q.A. Li, Y.C. Feng, C.W. Nan, J. Phys. Chem. Solids 70 (2009)639-644.
[83] H.Y. Ge, Y.D. Hou, C.A. Xia, M.K. Zhu, H. Wang, H. Yan, J. Am. Ceram. Soc. 94(2011) 4329-4334.
[84] L.A. Reznitchenko, A.V. Turik, E.M. Kuznetsova, V.P. Sakhnenko, J. Phys.Condens. Matter 13 (2001) 3875-3881.
[85] T. Hungr?a, L. Pardo, A. Moure, A. Castro, J. Alloy. Compd. 395(2005)166-173.
[86] S.Y. Xu, J.F. Li, J. Am. Ceram. Soc. 94(2011) 3812-3818.
[87] J.G. Hao, Z.J. Xu, R.Q. Chu, Y.J. Zhang, Q. Chen, P. Fu, W. Li, G.R. Li, Q.Y. Yin,Mater. Des. 31(2010) 3146-3150.
[88] H.L. Du, Z.M. Li, F.S. Tang, S.B. Qu, Z.B. Pei, W.C. Zhou, Mater. Sci. Eng. B 131(2006) 83-87.
[89] M.B. Salamon, M. Jaime, Rev. Mod. Phys. 73(2011) 583-628.
[90] E. Dagotto, T. Hotta, A. Moreo, Phys. Rep. 344(2001) 1-153.
[91] L.P. Gorkov, V.Z. Kresin, Phys. Rep. 400(2004) 149-208.
[92] Z. Jirák, E. Hadová, O. Kaman, K. Kní?ek, M. Marysko, E. Pollert, M. Dlouhá, S. Vratislav, Phys. Rev. B 81 (2010) 24403-1-8.
[93] M. Pissas, G. Kallias, Phys. Rev. B 68 (2003) 134414-1-8.
[94] J.L. Dormann, D. Fiorani, E. Tronc, Adv. Chem. Phys. 98(1997) 283-494.
[95] R.S. Devan, R.A. Patil, J.H. Lin, Y.R. Ma, Adv. Funct. Mater. 22(2012)3326-3370.
[96] L.Z. Liang, L. Li, H. Wu, X.H. Zhu, Nanoscale. Res. Lett. 9 (2014) 325-1-14.
[97] L. Li, L.Z. Liang, H. Wu, X.H. Zhu, Nanoscale. Res. Lett. 11 (2016) 121-1-17.
[98] F. Luo, Y.H. Huang, C.H. Yan, S. Jiang, X.H. Li, Z.M. Wang, C.S. Liao, J. Magn.Magn. Mater. 260(2003) 173-180.
[99] Y.H. Huang, Z.G. Xu, C.H. Yan, Z.M. Wang, T. Zhu, C.S. Liao, S. Gao, G.X. Xu,Solid State Commun. 114(2000) 43-47.
[100] H.Y. Hwang, S.W. Cheong, N.P. Ong, B. Batlogg, Phys. Rev. Lett. 77(1996)2041-2044.
[101] Z. Jirák, M. Kacenka, O. Kaman, M. Marysko, IEEE Trans. Magn. 51(2015) 1-4.
[102] W.F. Zhang, Z. Yin, M.S. Zhang, Appl. Phys. A 70 (2000) 93-96.
[103] P.S. Pizani, H.C. Basso, F. Lanciotti, T.M. Boschi, F.M. Pontes, E. Longo, E.R. Leite, Appl. Phys. Lett. 81(2002) 253-255.
[104] F. Montoncello, M.C. Carotta, B. Cavicchi, M. Ferroni, A. Giberti, V. Guidi, C. Malagù, G. Martinelli, F. Meinardi, J. Appl. Phys. 94(2003) 1501-1505.
[105] W.F. Zhang, Z. Yin, M.S. Zhang, Z.L. Du, W.C. Chen, J. Phys: Cond. Matter 11(1999) 5655-5660.
[106] W.F. Zhang, X.T. Zhang, Z. Yin, M.S. Zhang, G.H. Ma, Z.L. Du, Chin. Phys. Lett.15(1998) 758-760.
[107] M. Maczka, A. Bednarkiewicz, E. Mendoza-Mendoza, A.F. Fuentes, L. Kepinski, J. Solid State Chem. 194(2012) 264-269.
[108] C.S. Lewis, H. Liu, J. Han, L. Wang, S. Yue, N.A. Brennana, S.S. Wong,Nanoscale 8 (2016) 2129-2142.
[109] F. Gao, Y. Yuan, K.F. Wang, X.Y. Chen, F. Chen, J.M. Liu, Z.F. Ren, Appl. Phys.Lett. 89 (2006) 102506-1-3.
[110] U.A. Joshi, J.S. Jang, P.H. Borse, J.S. Lee, Appl. Phys. Lett. 92 (2008) 242106-1-3.
[111] J. Luo, P.A. Maggard, Adv. Mater. 18(2006) 514-517.
[112] N. Nuraje, R. Asmatulu, S.E. Kudaibergenov, Curr. Inorg. Chem. 2(2012)124-146.
[113] A. Kudo, Y. Miseki, Chem. Soc. Rev. 38(2009) 253-278.
[114] G. Zhang, G. Liu, L.Z. Wang, J.T. Irvine, Chem Soc. Rev. 45(2016) 5951-5984.
[115] H. Kato, A. Kudo, J. Phys. Chem. B 105 (2001) 4285-4292.
[116] J. Kim, D.W. Hwang, H.G. Kim, S.W. Bae, J.S. Lee, W. Li, S.H. Oh, Topics. Catal.35(2005) 295-303.
[117] H.G. Kim, D.W. Hwang, J. Kim, Y.G. Kim, J.S. Lee, Chem. Commun. 12(1999)1077-1078.
[118] D.W. Hwang, J.S. Lee, W. Li, S.H. Oh, J. Phys. Chem. B 107 (2003) 4963-4970.
[119] R. Abe, M. Higashi, K. Sayama, Y. Abe, H. Sugihara, J. Phys. Chem. B 110(2006) 2219-2226.
[120] M. Uno, A. Kosuga, M. Okui, K. Horisaka, S. Yamanaka, J. Alloy. Compd. 400(2005) 270-275.
[121] D.W. Hwang, H.G. Kim, J.S. Lee, J. Kim, W. Li, S.H. Oh, J. Phys. Chem. B 109(2005) 2093-2102.
[122] D.W. Hwang, H.G. Kim, J.S. Jang, S.W. Bae, S.M. Ji, J.S. Lee, Catal. Today 845(2004) 93-95.
[123] J. Kim, D.W. Hwang, H.G. Kim, S.W. Bae, S.M. Ji, J.S. Lee, Chem. Commun. 21(2002) 2488-2489.
[124] D.W. Hwang, K.Y. Cha, J. Kim, H.G. Kim, S.W. Bae, J.S. Lee, Ind. Eng. Chem.Res. 42(2003) 1184-1189.
[125] F.K. Meng, Z.L. Hong, J. Arndt, M. Li, M.J. Zhi, F. Yang, N.Q. Wu, Nano. Res. 5(2012) 213-221.
[126] Q. Wang, T. Hisatomi, Y. Moriya, K. Maeda, K. Domen, Catal. Sci. Technol. 3(2013) 2098-2103.
[127] G.H. Haertling, J. Am. Ceram. Soc. 82(1989) 797-818.
[128] K.M. Rabe, M. Dawber, C. Lichtensteiger, C.H. Ahn, J.M. Triscone, in: K.M.Rabe, C.H. Ahn, J.M. Triscone (Eds.), Physics of Ferroelectrics: A Modern Perspective, Springer Berlin/Heidelberg, 2007, pp. 1-30.
[129] N. Setter, D. Damjanovic, L. Eng, G. Fox, S. Gevorgian, S. Hong, A. Kingon, H. Kohlstedt, N.Y. Park, G.B. Stephenson, I. Stolitchnov, A.K. Taganstev, D.V. Taylor, T. Yamada, S. Streiffer, J. Appl. Phys. 100(2006) 051606-051646.
[130] K.A. Vorotilov, A.S. Sigov, Phys. Solid State 54 (2012) 894-899.
[131] W.S. Yun, J.J. Urban, Q. Gu, H.K. Park, Nano. Lett. 2(2002) 447-450.
[132] D.J. Wouters, D. Maes, L. Goux, J.G. Lisoni, V. Paraschiv, J.A. Johnson, M. Schwitters, J.L. Everaert, W. Boullart, M. Schaekers, M. Willegems, H.V. Meeren, L. Haspeslagh, C. Artoni, C. Caputa, P. Casella, G. Corallo, G. Russo, R. Zambrano, H. Monchoix, G. Vecchio, L.V. Autryve, J. Appl. Phys. 100 (2006),051603-1-16.D.J. Wouters, D. Maes, L. Goux, J.G. Lisoni, V. Paraschiv, J.A. Johnson, M. Schwitters, J.L. Everaert, W. Boullart, M. Schaekers, M. Willegems, H.V. Meeren, L. Haspeslagh, C. Artoni, C. Caputa, P. Casella, G. Corallo, G. Russo, R. Zambrano, H. Monchoix, G. Vecchio, L.V. Autryve, J. Appl. Phys. 100 (2006),051603-1-16.D.J. Wouters, D. Maes, L. Goux, J.G. Lisoni, V. Paraschiv, J.A. Johnson, M. Schwitters, J.L. Everaert, W. Boullart, M. Schaekers, M. Willegems, H.V. Meeren, L. Haspeslagh, C. Artoni, C. Caputa, P. Casella, G. Corallo, G. Russo, R. Zambrano, H. Monchoix, G. Vecchio, L.V. Autryve, J. Appl. Phys. 100 (2006),051603-1-16.
[133] B.I. Seo, U.A. Shaislamov, S.W. Kim, H.K. Kim, B. Yang, S.K. Hong, Phys. E 37(2007) 274-278.
[134] M. Feng, W. Wang, Y. Zhou, D.C. Jia, J. Sol-Gel. Sci. Technol. 52(2009)120-123.
[135] Y. Luo, I. Szafraniak, N.D. Zakharov, V. Nagarajan, M. Steinhart, R.B. Wehrspohn, J.H. Wendorff, R. Ramesh, M. Alexe, Appl. Phys. Lett. 83(2003)440-442.
[136] N. Nuraje, K. Su, A. Haboosheh, J. Samson, E.P. Manning, N.L. Yang, H. Matsui,Adv. Mater. 18(2006) 807-811.
[137] S. O’Brien, L. Brus, C.B. Murray, J. Am. Chem. Soc. 123(2001) 12085-12086.
[138] C. Liu, B. Zou, A.J. Rondinone, Z.J. Zhang, J. Am. Chem. Soc. 123(2001)4344-4345.
[139] L. Huang, Z. Jia, I. Kymissis, S. O’Brien, Adv. Funct. Mater. 20(2010) 554-560.
[140] T. Zhou, J.W. Zha, R.Y. Cui, B.H. Fan, J.K. Yuan, Z.M. Dang, ACS Appl. Mater.Interfaces 3 (2011) 2184-2188.
[141] M.N. Almadhoun, U.S. Bhansali, H.N. Alshareef, J. Mater. Chem. 22(2012)11196-11200.
[142] P. Kim, N.M. Doss, J.P. Tillotson, P.J. Hotchkiss, M.J. Pan, S.R. Marder, J.Y. Li,J.P. Calame, J.W. Perry, ACS Nano 3 (2009) 2581-2592.
[143] J.J. Li, J. Claude, L.E. Norena-Franco, S.I. Seok, Q. Wang, Chem. Mater. 20(2008) 6304-6306.
[144] K.I. Park, M. Lee, Y. Liu, S. Moon, G.T. Hwang, G.A. Zhu, J.E. Kim, S.O. Kim, D.K. Kim, Z.L. Wang, K.J. Lee, Adv. Mater. 24(2012) 2999-3004.
[145] Z.L. Wang, Adv. Mater. 24(2012) 4632-4646.
[146] Y. Qi, J. Kim, T.D. Nguyen, B. Lisko, P.K. Purohit, M.C. McAlpine, Nano.Lett. 11(2011) 1331-1336.
[147] S.N. Cha, S.M. Kim, H.J. Kim, J.Y. Ku, J.I. Sohn, Y.J. Park, B.G. Song, M.H. Jung,E.K. Lee, B.L. Choi, J.J. Park, Z.L. Wang, J.M. Kim, K. Kim, Nano. Lett. 11(2011)5142-5147.
[148] S. Xu, B.J. Hansen, Z.L. Wang, Nat. Commun. 1 (2010) 93-1-4.
[149] Z.L. Wang, Adv. Mater. 24(2012) 280-285.
[150] J. Wei, D. Xue, Y. Xu, Scr. Mater. 58(2015) 45-48.
[151] L. Fei, Y. Hu, X. Li, R. Song, L. Sun, H. Huang, H. Gu, H.L.W. Chan, Y. Wang, ACSAppl. Mater. Interfaces 7 (2015) 3665-3670.
[152] K. Prashanthi, P. Dhandharia, N. Miriyala, R. Gaikwad, D. Barlage, T. Thundat,Nano Energy 13 (2015) 240-248.
[1] Zhang Lihua, Lan Jianbo, Yang Jianyu, Guo Shenghui, Peng Jinhui, Zhang Libo, Zhou Chaojin, Ju Shaohua. Facile Synthesis of Nanocrystal Tin Oxide Hollow Microspheres by Microwave-Assisted Spray Pyrolysis Method[J]. 材料科学与技术, 2017, 33(8): 874-878.
[2] A. Barroso-Bogeat , M. Alexandre-Franco, C. Fern, ndez-Gonz, lez, V. G, mez-Serrano. Preparation and Microstructural Characterization of Activated Carbon-Metal Oxide Hybrid Catalysts: New Insights into Reaction PathsA.[J]. J. Mater. Sci. Technol., 2015, 31(8): 806-814.
[3] Xiaoli Cui, Yuying Wu, Xiangfa Liu. Microstructural Characterization and Mechanical Properties of VB2/A390 Composite Alloy[J]. J. Mater. Sci. Technol., 2015, 31(10): 1027-1033.
[4] A.U. Ubale, M.R. Belkhedkar. Size Dependent Physical Properties of Nanostructured α-Fe2O3 Thin Films Grown by Successive Ionic Layer Adsorption and Reaction Method for Antibacterial Application[J]. J. Mater. Sci. Technol., 2015, 31(1): 1-9.
[5] W.S. Khan, R. Asmatulu, S. Davuluri, V.K. Dandin. Improving the Economic Values of the Recycled Plastics Using Nanotechnology Associated Studies[J]. J. Mater. Sci. Technol., 2014, 30(9): 854-859.
[6] Haibao Zhang, Shaowei Jin, Guotao Duan, Jingjing Wang, Weiping Cai. Controllable Synthesis of Well-aligned ZnO Nanorod Arrays on Varying Substrates via Rapid Electrodeposition[J]. J. Mater. Sci. Technol., 2014, 30(11): 1118-1123.
[7] Ying Wang, Zhenghong Guo, Nailu Chen, Yonghua Rong. Deformation Temperature Dependence of Mechanical Properties and Microstructures for a Novel Quenching-Partitioning-Tempering Steel[J]. J. Mater. Sci. Technol., 2013, 29(5): 451-457.
[8] C.S. Naveen, M.L. Dinesha, H.S. Jayanna. Effect of Fuel to Oxidant Molar Ratio on Structural and DC Electrical Conductivity of ZnO Nanoparticles Prepared by Simple Solution Combustion Method[J]. J. Mater. Sci. Technol., 2013, 29(10): 898-902.
[9] F. Yan, H.W. Zhang, N.R. Tao, K. Lu. Quantifying the Microstructures of Pure Cu Subjected to Dynamic Plastic Deformation at Cryogenic Temperature[J]. J. Mater. Sci. Technol., 2011, 27(8): 673-679.
[10] Vipin Chawla R. Jayaganthan Ramesh Chandra. Influence of Sputtering Pressure on the Structure and Mechanical Properties of Nanocomposite Ti-Si-N Thin Films[J]. J. Mater. Sci. Technol., 2010, 26(8): 673-678.
[11] Boming ZHANG, Shuyuan ZHAO, Xiaodong HE, Shanyi DU. High Temperature Thermal Physical Properties of High-alumina Fibrous Insulation[J]. J. Mater. Sci. Technol., 2007, 23(06): 860-864.
[12] Lei Miao, Sakae Tanemura, Shoichi Toh, Kenji Kaneko, Masaki Tanemura. Preparation and Characterization of Rutile-TiO2 Nanorods[J]. J. Mater. Sci. Technol., 2004, 20(Supl.): 59-62.
No Suggested Reading articles found!
ISSN: 1005-0302
CN: 21-1315/TG
Home
About JMST
Privacy Statement
Terms & Conditions
Editorial Office: Journal of Materials Science & Technology , 72 Wenhua Rd.,
Shenyang 110016, China
Tel: +86-24-83978208
E-mail:JMST@imr.ac.cn

Copyright © 2016 JMST, All Rights Reserved.