J. Mater. Sci. Technol. ›› 2019, Vol. 35 ›› Issue (12): 2809-2813.DOI: 10.1016/j.jmst.2019.07.002
• Orginal Article • Previous Articles Next Articles
Wei Zhoua*(), Lan Longab, Yang Lib*(
)
Received:
2019-07-09
Online:
2019-12-05
Published:
2019-12-18
Contact:
Zhou Wei,Li Yang
Wei Zhou, Lan Long, Yang Li. Mechanical and electromagnetic wave absorption properties of Cf-Si3N4 ceramics with PyC/SiC interphases[J]. J. Mater. Sci. Technol., 2019, 35(12): 2809-2813.
Fig. 2. SEM images of fracture surface of as-prepared Si3N4 ceramics after sintering: (a) pure Si3N4 ceramics, (b) Cf-Si3N4 ceramics without PyC/SiC interphases, (c) Si3N4 ceramics with 4?wt% PyC/SiC coated carbon fibers, (d) magnification of Fig. 2(c).
Samples | Fiber content (wt%) | Density (g/cm3) | Open Porosity (%) | Flexure strength (MPa) | Fracture toughness (MPa·m1/2) |
---|---|---|---|---|---|
C0 | 0 | 3.25?±?0.03 | 1.2?±?0.2 | 512?±?23 | 3.43?±?0.7 |
C2 | 2 | 3.18?±?0.03 | 2.3?±?0.3 | 368?±?18 | 6.98?±?0.6 |
C4 | 4 | 3.03?±?0.04 | 4.1?±?0.3 | 326?±?21 | 8.94?±?1.1 |
Table 1 Density, open porosity and mechanical properties of the as-prepared ceramics.
Samples | Fiber content (wt%) | Density (g/cm3) | Open Porosity (%) | Flexure strength (MPa) | Fracture toughness (MPa·m1/2) |
---|---|---|---|---|---|
C0 | 0 | 3.25?±?0.03 | 1.2?±?0.2 | 512?±?23 | 3.43?±?0.7 |
C2 | 2 | 3.18?±?0.03 | 2.3?±?0.3 | 368?±?18 | 6.98?±?0.6 |
C4 | 4 | 3.03?±?0.04 | 4.1?±?0.3 | 326?±?21 | 8.94?±?1.1 |
Fig. 3. Complex permittivity of Si3N4 based ceramics with different PyC/SiC coated carbon fibers contents: (a) the real permittivity (ε′), (b) the imaginary permittivity (ε″).
Fig. 4. (a) Reflection loss of Si3N4 based ceramics with different PyC/SiC coated carbon fibers contents at 2.0?mm thickness, (b) Reflection loss of Si3N4 based ceramics with 4?wt% PyC/SiC coated carbon fibers in various thicknesses.
|
[1] | Lin Yuan, Jiangtao Xiong, Yajie Du, Jin Ren, Junmiao Shi, Jinglong Li. Microstructure and mechanical properties in the TLP joint of FeCoNiTiAl and Inconel 718 alloys using BNi2 filler [J]. J. Mater. Sci. Technol., 2021, 61(0): 176-185. |
[2] | Xiaoxiao Li, Meiqiong Ou, Min Wang, Long Zhang, Yingche Ma, Kui Liu. Effect of boron addition on the microstructure and mechanical properties of K4750 nickel-based superalloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 177-185. |
[3] | Hui Jiang, Dongxu Qiao, Wenna Jiao, Kaiming Han, Yiping Lu, Peter K. Liaw. Tensile deformation behavior and mechanical properties of a bulk cast Al0.9CoFeNi2 eutectic high-entropy alloy [J]. J. Mater. Sci. Technol., 2021, 61(0): 119-124. |
[4] | Qin Xu, Dezhi Chen, Chongyang Tan, Xiaoqin Bi, Qi Wang, Hongzhi Cui, Shuyan Zhang, Ruirun Chen. NbMoTiVSix refractory high entropy alloys strengthened by forming BCC phase and silicide eutectic structure [J]. J. Mater. Sci. Technol., 2021, 60(0): 1-7. |
[5] | C. Yang, J.F. Zhang, G.N. Ma, L.H. Wu, X.M. Zhang, G.Z. He, P. Xue, D.R. Ni, B.L. Xiao, K.S. Wang, Z.Y. Ma. Microstructure and mechanical properties of double-side friction stir welded 6082Al ultra-thick plates [J]. J. Mater. Sci. Technol., 2020, 41(0): 105-116. |
[6] | Miao Cao, Qi Zhang, Ke Huang, Xinjian Wang, Botao Chang, Lei Cai. Microstructural evolution and deformation behavior of copper alloy during rheoforging process [J]. J. Mater. Sci. Technol., 2020, 42(0): 17-27. |
[7] | Ze-Tian Liu, Bing-Yu Wang, Cheng Wang, Min Zha, Guo-Jun Liu, Zhi-Zheng Yang, Jin-Guo Wang, Jie-Hua Li, Hui-Yuan Wang. Microstructure and mechanical properties of Al-Mg-Si alloy fabricated by a short process based on sub-rapid solidification [J]. J. Mater. Sci. Technol., 2020, 41(0): 178-186. |
[8] | Praveen Sreeramagiri, Ajay Bhagavatam, Abhishek Ramakrishnan, Husam Alrehaili, Guru Prasad Dinda. Design and development of a high-performance Ni-based superalloy WSU 150 for additive manufacturing [J]. J. Mater. Sci. Technol., 2020, 47(0): 20-28. |
[9] | Yu Yin, Damon Kent, Qiyang Tan, Michael Bermingham, Ming-Xing Zhang. Spheroidization behaviour of a Fe-enriched eutectic high-entropy alloy [J]. J. Mater. Sci. Technol., 2020, 51(0): 173-179. |
[10] | S.Z. Wu, X.G. Qiao, M.Y. Zheng. Ultrahigh strength Mg-Y-Ni alloys obtained by regulating second phases [J]. J. Mater. Sci. Technol., 2020, 45(0): 117-124. |
[11] | Liang Chen, Zhi Li, Gangyong Li, Minjie Zhou, Binhong He, Jie Ouyang, Wenyuan Xu, Wei Wang, Zhaohui Hou. A facile self-catalyzed CVD method to synthesize Fe3C/N-doped carbon nanofibers as lithium storage anode with improved rate capability and cyclability [J]. J. Mater. Sci. Technol., 2020, 44(0): 229-236. |
[12] | Zhaohui Shan, Jing Bai, Jianfeng Fan, Hongfei Wu, Hua Zhang, Qiang Zhang, Yucheng Wu, Weiguo Li, Hongbiao Dong, Bingshe Xu. Exceptional mechanical properties of AZ31 alloy wire by combination of cold drawing and EPT [J]. J. Mater. Sci. Technol., 2020, 51(0): 111-118. |
[13] | Kui Wang, Jingfeng Wang, Xiaoxu Dou, Yuanding Huang, Norbert Hort, Sarkis Gavras, Shijie Liu, Yanwu Cai, Jinxing Wang, Fusheng Pan. Microstructure and mechanical properties of large-scale Mg-Gd-Y-Zn-Mn alloys prepared through semi-continuous casting [J]. J. Mater. Sci. Technol., 2020, 52(0): 72-82. |
[14] | Yinchuan Wang, Hua Huang, Gaozhi Jia, Guizhou Ke, Jian Zhang, Guangyin Yuan. Effect of grain size on the mechanical properties of Mg foams [J]. J. Mater. Sci. Technol., 2020, 58(0): 46-54. |
[15] | Beiping Zhou, Wencai Liu, Guohua Wu, Liang Zhang, Xiaolong Zhang, HaoJi Wen, jiang Ding. Microstructure and mechanical properties of sand-cast Mg-6Gd-3Y-0.5Zr alloy subject to thermal cycling treatment [J]. J. Mater. Sci. Technol., 2020, 43(0): 208-219. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||