J. Mater. Sci. Technol. ›› 2022, Vol. 131: 68-81.DOI: 10.1016/j.jmst.2022.04.052
• Research Article • Previous Articles Next Articles
Ting Zhanga,b, Daixiu Weic, Eryi Lud, Wen Wangb, Kuaishe Wangb,*(), Xiaoqing Lie, Lai-Chang Zhangf, Hidemi Katoc, Weijie Lua, Liqiang Wanga,*(
)
Received:
2022-03-29
Revised:
2022-04-20
Accepted:
2022-04-21
Published:
2022-06-06
Online:
2022-06-06
Contact:
Kuaishe Wang,Liqiang Wang
About author:
wang_liqiang@sjtu.edu.cn (L. Wang)1 Ting Zhang and Daixiu Wei contributed equally to this work.
Ting Zhang, Daixiu Wei, Eryi Lu, Wen Wang, Kuaishe Wang, Xiaoqing Li, Lai-Chang Zhang, Hidemi Kato, Weijie Lu, Liqiang Wang. Microstructure evolution and deformation mechanism of α+β dual-phase Ti-xNb-yTa-2Zr alloys with high performance[J]. J. Mater. Sci. Technol., 2022, 131: 68-81.
Fig. 1. (a) Influence of Ta and Nb on the phase stability of Ti alloys calculated by ab initio method; (b) Phase stability diagram based on $\overline{Bo}$-$\overline{Md}$ parameters (adapted and redrawn from Ref. [16]).
Alloys | Nb | Ta | Zr | Ti |
---|---|---|---|---|
T3102 | 1.8 | 6.5 | 1.3 | Bal. |
T3132 | 1.9 | 8.4 | 1.3 | Bal. |
T5132 | 3.3 | 8.4 | 1.4 | Bal. |
Table 1. Chemical constitutions of the designed Ti-xNb-yTa-2Zr alloys (wt.%).
Alloys | Nb | Ta | Zr | Ti |
---|---|---|---|---|
T3102 | 1.8 | 6.5 | 1.3 | Bal. |
T3132 | 1.9 | 8.4 | 1.3 | Bal. |
T5132 | 3.3 | 8.4 | 1.4 | Bal. |
Fig. 3. Microstructures of as-cast samples: OM images of (a) T3102, (b) T3132, and (c) T5132 alloys; (d) XRD spectra; TEM micrographs of (e) T3102, (f) T3132, and (g) T5132 alloys (the inset is the corresponding dark-filed image); (h, i) Corresponding EDS results of regions A and B in (f), respectively.
Fig. 4. (a) Stress-strain curves of three alloys measured by compressive procedure; the stress-strain curves of cycle compression for (b) T3102, (c) T3132 and (d) T5132 alloys in the same states. The cyclic compressive strain during loading-unloading testing was 3%, 6%, 9%, 12%, 15%, 18%, 21%, 24%, and 27%, respectively (εE, εSE and εR denote elastic recovery, superelastic recovery, and residual strain, respectively); (e) Comparison of strain after unloading. Ti-xNb-yTa-2ZrE, Ti-xNb-yTa-2ZrSE, and Ti-xNb-yTa-2ZrR are the values of Ti-xNb-yTa-2Zr specimens respectively; (f) Relationship between compressive strength and strain of various β/(α+β) Ti alloys and compressive properties of the present alloys.
Alloys | YS (MPa) | UCS (MPa) | MS (%) |
---|---|---|---|
T3102 | 596 ± 5 | 2260 ± 14 | 71.3 ± 0.5 |
T3132 | 668 ± 11 | 2270 ± 10 | 74.3 ± 0.4 |
T5132 | 742 ± 7 | 970 ± 3 | 36.2 ±0.7 |
Table 2. Comparison of the yield strength (YS), ultimate compressive strength (UCS), and maximum strain (MS) of the designed alloys.
Alloys | YS (MPa) | UCS (MPa) | MS (%) |
---|---|---|---|
T3102 | 596 ± 5 | 2260 ± 14 | 71.3 ± 0.5 |
T3132 | 668 ± 11 | 2270 ± 10 | 74.3 ± 0.4 |
T5132 | 742 ± 7 | 970 ± 3 | 36.2 ±0.7 |
Fig. 5. TEM and HRTEM images of as-cast T3132 alloy after compression: (a) TEM image of a longitudinal section of the sample; (b) Magnified view of α" martensite in (a); (c) Corresponding diffraction patterns of α, β, and α" phases in (a); (d) Aberration-corrected HRTEM image of the interface between α and β phases in (a), with the inset showing the corresponding FFT pattern; (e, f) IFFT images in (d) along [0001]α zone axis; (g) Aberration-corrected HRTEM image of the interface between β and α" phases in (b); (h) Corresponding IFFT image of (b); (i, j) Magnified view of marked region in (h).
Fig. 6. TEM and HRTEM images of as-cast T5132 alloy after compression: (a) Low-magnification overview of the lamellae microstructure; (b) Magnified view of ω phase and dislocations in (a); (c) HRTEM image of the interface between the α and β phases in (a); (d) Corresponding IFFT image of (c).
Fig. 7. (a) XRD profiles of the cold-rolled T3102, T3132, and T522 alloys; (b-d) IPF maps viewed in the normal direction of the alloys, respectively; (e) Legend of the IPF maps; (f-h) Phase maps, respectively.
Fig. 8. TEM images of cold-rolled T3102 alloy: (a) An overview of the deformation region; (b) Morphology of martensite and dislocations; (c) Diffraction patterns of α, β, and α" phases; (d) Shear bands; (e) Interfaces of α, β, and α" phases; (f) Ultrafine grains formed by rolling. (RD: rolling direction).
Fig. 9. TEM analysis of cold-rolled T3132 alloy: (a) Low-magnification overview of the deformed microstructure; (b) Bright-filed image of the stripe structure; (c, d) HRTEM images of stripes of areas A and B, respectively; (e, f) Bright-filed and dark-filed images of the martensite phases, respectively; (g) Corresponding SAED of (e); (h) Corresponding energy dispersive spectroscopy (EDS) of circled regions A, B, C, and D in (b) and (e), respectively. (RD: rolling direction).
Fig. 10. TEM images of cold-rolled T5132 alloy: (a) Low-magnification overview of the deformed microstructure; (b) Magnified view of ω phase and dislocations in (a); (c, d) Bright -filed and drak-filed images of the nanograins, respectively.
Fig. 11. (a) Stress-strain curves of the as-rolled alloys; (b) Comparison of modulus of elasticity of β/(α+β) Ti alloys; (c) Comparison of the strength-to-modulus ratio of representative biomedical materials.
Alloy | UTS (MPa) | YS (MPa) | Elongation (%) | Elastic modulus (GPa) | Ratio of strength-to-modulus |
---|---|---|---|---|---|
T3102 | 706 ± 7 | 588 ± 2 | 13.1 ± 0.2 | 74 ± 5 | 9.5 |
T3132 | 802 ± 3 | 758 ± 13 | 10.5 ± 0.3 | 61 ± 5 | 13.1 |
T5132 | 794 ± 6 | 673 ± 25 | 1.4 ± 0.2 | 91 ± 3 | 8.7 |
Table 3. Summary of the mechanical properties of cold-rolled Ti-xNb-yTa-2Zr (wt.%) alloys.
Alloy | UTS (MPa) | YS (MPa) | Elongation (%) | Elastic modulus (GPa) | Ratio of strength-to-modulus |
---|---|---|---|---|---|
T3102 | 706 ± 7 | 588 ± 2 | 13.1 ± 0.2 | 74 ± 5 | 9.5 |
T3132 | 802 ± 3 | 758 ± 13 | 10.5 ± 0.3 | 61 ± 5 | 13.1 |
T5132 | 794 ± 6 | 673 ± 25 | 1.4 ± 0.2 | 91 ± 3 | 8.7 |
Fig. 12. APT analysis of as-cast T3132 alloy before compressive deformation. (a) LEAP used in the APT test; (b) 3D reconstruction of Ti (black), Nb (yellow), Ta (blue) and Zr (green) atom distribution in the T3132 sample; (c) Proxigram of L1 showing the average concentration of various elements as a function of the distance from the α/β phase interface (L1: Lamellar 1); (d) 1D concentration profile of L1 along with the cyan cylinder (20 nm diameter) indicated in (b); (e, f) 1D concentration profile of L1 indicated in (d), showing clearer element distribution.
Elements | α | β | |||
---|---|---|---|---|---|
Lamellar 1 | Ⅰ | Ⅱ | Ⅲ | ||
Ti | 94.24 | 74.17 | 74.54 | 75.53 | 73.75 |
Nb | 1.98 | 12.26 | 12.06 | 11.49 | 12.36 |
Ta | 2.87 | 11.90 | 12.72 | 11.42 | 12.01 |
Zr | 0.89 | 1.49 | 1.45 | 1.41 | 1.54 |
Table 4. Chemical compositions (in at.%) of α and β phases measured by APT in the T3132 alloy.
Elements | α | β | |||
---|---|---|---|---|---|
Lamellar 1 | Ⅰ | Ⅱ | Ⅲ | ||
Ti | 94.24 | 74.17 | 74.54 | 75.53 | 73.75 |
Nb | 1.98 | 12.26 | 12.06 | 11.49 | 12.36 |
Ta | 2.87 | 11.90 | 12.72 | 11.42 | 12.01 |
Zr | 0.89 | 1.49 | 1.45 | 1.41 | 1.54 |
Alloys | $\overline{{{Z}_{\text{eff}}}}$ | Bonding force |
---|---|---|
T3102 | 3.187 | 1.483 |
T3132 | 3.188 | 1.489 |
T5132 | 3.190 | 1.491 |
Table 5. Calculated values of $\overline{{{Z}_{\text{eff}}}}$, and bonding force for the Ti-xNb-yTa-2Zr alloys in this work.
Alloys | $\overline{{{Z}_{\text{eff}}}}$ | Bonding force |
---|---|---|
T3102 | 3.187 | 1.483 |
T3132 | 3.188 | 1.489 |
T5132 | 3.190 | 1.491 |
[1] |
L.Y. Chen, Y.W. Cui, L.C. Zhang, Metals 10 (2020) 1139.
DOI URL |
[2] | C. Leyens, M. Peters, Titanium and Titanium Alloys: Fundamentals and Appli-cations, Wiley Online Library, 2006. |
[3] |
Y. Zhentao, Z. Lian, Mater. Sci. Eng. A 438-440 (2006) 391-394.
DOI URL |
[4] | L.Y. Chen, H.Y. Zhang, C. Zheng, H.Y. Yang, P. Qin, C. Zhao, S. Lu, S.X. Liang, L. Chai, L.C. Zhang, Mater. Des. 208 (2021) 109907. |
[5] |
S.X. Liang, X.J. Feng, L.X. Yin, X.Y. Liu, M.Z. Ma, R.P. Liu, Mater. Sci. Eng. C 61 (2016) 338-343.
DOI URL |
[6] |
S. Liu, J. Liu, L. Wang, L.W. Ma, L.C. Zhang, Scr. Mater. 181 (2020) 121-126.
DOI URL |
[7] |
N. Hafeez, S. Liu, E. Lu, L. Wang, R. Liu, W. Lu, L.C. Zhang, J. Alloy. Compd. 790 (2019) 117-126.
DOI |
[8] |
R.P. Kolli, W.J. Joost, S. Ankem, JOM 67 (2015) 1273-1280.
DOI URL |
[9] |
Y. Li, C. Yang, H. Zhao, S. Qu, X. Li, Y. Li, Materials 7 (2014) 1709-1800.
DOI URL |
[10] |
L. Wang, L. Xie, Y. Lv, L.C. Zhang, L. Chen, Q. Meng, J. Qu, D. Zhang, W. Lu, Acta Mater 131 (2017) 499-510.
DOI URL |
[11] |
D. Kuroda, M. Niinomi, M. Morinaga, Y. Kato, T. Yashiro, Mater. Sci. Eng. A 243 (1998) 244-249.
DOI URL |
[12] |
Y.L. Hao, S.J. Li, S.Y. Sun, C.Y. Zheng, R. Yang, Acta Biomater 3 (2007) 277-286.
PMID |
[13] |
C. Brozek, F. Sun, P. Vermaut, Y. Millet, A. Lenain, D. Embury, P.J. Jacques, F. Prima, Scr. Mater. 114 (2016) 60-64.
DOI URL |
[14] |
H. Zhan, W. Zeng, G. Wang, D. Kent, M. Dargusch, Scr. Mater. 107 (2015) 34-37.
DOI URL |
[15] |
L. You, X. Song, Scr. Mater. 67 (2012) 57-60.
DOI URL |
[16] |
M. Abdel-Hady, K. Hinoshita, M. Morinaga, Scr. Mater. 55 (2006) 477-480.
DOI URL |
[17] |
R.J. Talling, R.J. Dashwood, M. Jackson, D. Dye, Acta Mater 57 (2009) 1188-1198.
DOI URL |
[18] |
Y. Yang, S.Q. Wu, G.P. Li, Y.L. Li, Y.F. Lu, K. Yang, P. Ge, Acta Mater 58 (2010) 2778-2787.
DOI URL |
[19] |
M.J. Lai, C.C. Tasan, D. Raabe, Acta Mater 111 (2016) 173-186.
DOI URL |
[20] |
M. Ahmed, D. Wexler, G. Casillas, D.G. Savvakin, E.V. Pereloma, Acta Mater 104 (2016) 190-200.
DOI URL |
[21] | C. Mao, W. Yu, M. Jin, Y. Wang, X. Shang, L. Lin, X. Zeng, L. Wang, E. Lu, Bioact. Mater. 16 (2022) 15-26. |
[22] |
M. Besse, P. Castany, T. Gloriant, Acta Mater 59 (2011) 5982-5988.
DOI URL |
[23] |
T. Saito, T. Furuta, J.H. Hwang, S. Kuramoto, K. Nishino, Science 300 (2003) 464-467.
DOI URL |
[24] |
T.W. Duerig, J. Albrecht, D. Richter, P. Fischer, Acta Metall 30 (1982) 2161-2172.
DOI URL |
[25] |
M.J. Lai, T. Li, D. Raabe, Acta Mater 151 (2018) 67-77.
DOI URL |
[26] |
T. Grosdidier, C. Roubaud, M.-J. Philippe, Y. Combres, Scr. Mater. 36 (1997) 21-28.
DOI URL |
[27] |
M. Li, X. Min, K. Yao, F. Ye, Acta Mater 164 (2019) 322-333.
DOI URL |
[28] |
X. Min, K. Tsuzaki, S. Emura, K. Tsuchiya, Mater. Sci. Eng. A 554 (2012) 53-60.
DOI URL |
[29] |
M. Hida, E. Sukedai, C. Henmi, K. Sakaue, H. Terauchi, Acta Metall 30 (1982) 1471-1479.
DOI URL |
[30] |
M. Marteleur, F. Sun, T. Gloriant, P. Vermaut, P.J. Jacques, F. Prima, Scr. Mater. 66 (2012) 749-752.
DOI URL |
[31] | M. Morinaga, N. Yukawa, T. Maya, K. Sone, H. Adachi, in:Proceedings to the 6th World Conference on Titanium III, Cannes, France, June 6-9, 1988, pp. 1601-1606. |
[32] |
L. Lilensten, Y. Danarda, C. Brozek, S. Mantri, P. Castany, T. Gloriant, P. Vermaut, F. Sun, R. Banerjee, F. Prima, Acta Mater 162 (2019) 268-276.
DOI |
[33] | L. Guo, S.A. Naghavi, Z. Wang, S.N. Varma, Z. Han, Z. Yao, L. Wang, L. Wang, C. Liu, Mater. Des. (2022) 110552. |
[34] |
F. Sun, J. Zhang, M. Marteleur, T. Gloriant, P. Vermaut, D. Laillé, P. Castany, C. Curfs, P. Jacques, F. Prima, Acta Mater 61 (2013) 6406-6417.
DOI URL |
[35] |
X. Min, X. Chen, S. Emura, K. Tsuchiya, Scr. Mater. 69 (2013) 393-396.
DOI URL |
[36] |
F. Sun, J.Y. Zhang, M. Marteleur, C. Brozek, E.F. Rauch, M. Veron, P. Vermaut, P.J. Jacques, F. Prima, Scr. Mater. 94 (2015) 17-20.
DOI URL |
[37] |
Q. Wei, L. Wang, Y. Fu, J. Qin, W. Lu, D. Zhang, Mater. Des. 32 (2011) 2934-2939.
DOI URL |
[38] |
Z. Lin, L. Wang, X. Xue, W. Lu, J. Qin, D. Zhang, Mater. Sci. Eng. C 33 (2013) 4551-4561.
DOI URL |
[39] | H. Gu, Z. Ding, Z. Yang, W. Yu, W. Zhang, W. Lu, L.C. Zhang, K. Wang, L. Wang, Y. Fu, Mater. Des. 169 (2019) 107680. |
[40] | S. Liu, S. Han, L. Zhang, L.-Y. Chen, L. Wang, L. Zhang, Y. Tang, J. Liu, H. Tang, L.C. Zhang, Compos. Pt. B-Eng. 200 (2020) 108358. |
[41] | L.Y. Chen, S.X. Liang, Y. Liu, L.C. Zhang, Mater. Sci. Eng. R 146 (2021) 100648. |
[42] |
G. Lütjering, Mater. Sci. Eng. A 243 (1998) 32-45.
DOI URL |
[43] |
C. Li, X. Wu, J.H. Chen, S. van der Zwaag, Mater. Sci. Eng. A 528 (2011) 5854-5860.
DOI URL |
[44] |
T. Grosdidier, Y. Combres, E. Gautier, M.J. Philippe, Metall. Mater. Trans. A 31 (2000) 1095-1106.
DOI URL |
[45] | W. Zhenhuan, D. Yu, L. Junsi, J. Xiaowei, X. Zongyu, L. Li, X. Xiaoli, Biomed. Mater. 15 (2020) 045017. |
[46] |
P. Hohenberg, W. Kohn, Phys. Rev. 136 (1964) B864.
DOI URL |
[47] | V. Kumar, O.K. Andersen, A. Mookerjee, in:Lectures on Methods of Elec-tronic Structure Calculations: Proceedings of the Miniworkshop on" Methods of Electronic Structure Calculations" and Working Group on" Disordered Al-loys", World Scientific, Singapore, 1994. |
[48] |
L. Vitos, H.L. Skriver, B. Johansson, J. Kollár, Comput. Mater. Sci. 18 (2000) 24-38.
DOI URL |
[49] |
J.P. Perdew, Y. Wang, Phys. Rev. B 45 (1992) 13244.
PMID |
[50] |
B. Gyorffy, Phys. Rev. B 5 (1972) 2382.
DOI URL |
[51] | L. Vitos, I.A. Abrikosov, B. Johansson, Phys. Rev. Lett. 87 (2001) 156401. |
[52] |
R. Talling, R. Dashwood, M. Jackson, D. Dye, Scr. Mater. 60 (2009) 1000-1003.
DOI URL |
[53] | N. Hafeez, D. Wei, L. Xie, Y. Tang, J. Liu, H. Kato, W. Lu, L.-C. Zhang, L. Wang, Addit. Manuf. 48 (2021) 102376. |
[54] | G. Welsch, R. Boyer, E. Collings, Materials Properties Handbook:Titanium Al-loys, ASM International, Ohio, United States, 1994. |
[55] |
J.D. Cotton, R.D. Briggs, R.R. Boyer, S. Tamirisakandala, P. Russo, N. Shchetnikov, J.C. Fanning, JOM 67 (2015) 1281-1303.
DOI URL |
[56] |
Y. Sun, G. Luo, J. Zhang, C. Wu, J. Li, Q. Shen, L. Zhang, J. Alloy. Compd. 741 (2018) 918-926.
DOI URL |
[57] |
P. Lin, Y. Sun, S. Zhang, C. Zhang, C. Wang, C. Chi, Mater. Charact. 104 (2015) 10-15.
DOI URL |
[58] |
M. Bönisch, M. Calin, L. Giebeler, A. Helth, A. Gebert, W. Skrotzki, J. Eckert, J. Appl. Crystallogr. 47 (2014) 1374-1379.
DOI URL |
[59] |
W.F. Ho, C.P. Ju, J.H. Chern Lin, Biomaterials 20 (1999) 2115-2122.
PMID |
[60] | D. Henry, ASM International, Ohio, United States, 2009, pp. 151-186. |
[61] |
S. Ozan, J. Lin, Y. Li, C. Wen, J. Mech. Behav. Biomed. Mater. 75 (2017) 119-127.
DOI URL |
[62] |
T. Grosdidier, M.-J. Philippe, Mater. Sci. Eng. A 291 (20 0 0) 218-223.
DOI URL |
[63] |
C. Li, J.H. Chen, X. Wu, W. Wang, S. van der Zwaag, J. Mater. Sci. 47 (2012) 4093-4100.
DOI URL |
[64] | D. Wei, L. Wang, Y. Zhang, W. Gong, T. Tsuru, I. Lobzenko, J. Jiang, S. Harjo, T. Kawasaki, J.W. Bae, W. Lu, Z. Lu, Y. Hayasaka, T. Kiguchi, N.L. Okamoto, T. Ichitsubo, H.S. Kim, T. Furuhara, E. Ma, H. Kato, Acta Mater 225 (2022) 117571. |
[65] |
E. Sukedai, Y. Kitano, A. Ohnishi, Micron 28 (1997) 269-277.
DOI URL |
[66] | S. Banerjee, P. Mukhopadhyay, Phase Transformations: Examples from Titanium and Zirconium Alloys, Pergamon, Oxford, UK, 2007. |
[67] |
A.S. Konopatsky, S.M. Dubinskiy, Y.S. Zhukova, V. Sheremetyev, V. Brailovski, S.D. Prokoshkin, M.R. Filonov, Mater. Sci. Eng. A 702 (2017) 301-311.
DOI URL |
[68] |
Y.L. Hao, R. Yang, M. Niinomi, D. Kuroda, Y.L. Zhou, K. Fukunaga, A. Suzuki, Metall. Mater. Trans. A 33 (2002) 3137-3144.
DOI URL |
[69] |
L. Wang, W. Lu, J. Qin, F. Zhang, D. Zhang, Mater. Sci. Eng. A 490 (2008) 421-426.
DOI URL |
[70] |
L. Ren, W. Xiao, W. Han, C. Ma, L. Zhou, Mater. Charact. 144 (2018) 1-8.
DOI URL |
[71] |
M. Ahmed, D. Wexler, G. Casillas, O.M. Ivasishin, E.V. Pereloma, Acta Mater 84 (2015) 124-135.
DOI URL |
[72] |
T. Li, D. Kent, G. Sha, L.T. Stephenson, A.V. Ceguerra, S.P. Ringer, M.S. Dargusch, J.M. Cairney, Acta Mater 106 (2016) 353-366.
DOI URL |
[73] | Y. Karpat, J. Mater. Proc. Technol. 211 (2011) 737-749. |
[74] |
J. Guo, M. Zhan, Y.Y. Wang, P.F. Gao, J. Alloy. Compd. 767 (2018) 34-45.
DOI URL |
[75] |
H.Y. Kim, S. Hashimoto, J.I. Kim, H. Hosoda, S. Miyazaki, Mater. Trans. 45 (2004) 2443-2448.
DOI URL |
[76] |
H.Y. Kim, Y. Ikehara, J.I. Kim, H. Hosoda, S. Miyazaki, Acta Mater 54 (2006) 2419-2429.
DOI URL |
[77] |
M. Niinomi, Mater. Sci. Eng. A 243 (1998) 231-236.
DOI URL |
[78] |
S. Guo, Z. Bao, Q. Meng, L. Hu, X. Zhao, Metall. Mater. Trans. A 43 (2012) 3447-3451.
DOI URL |
[79] |
Y.L. Zhou, M. Niinomi, T. Akahori, Mater. Sci. Eng. A 384 (2004) 92-101.
DOI URL |
[80] |
X. Tang, T. Ahmed, H. Rack, J. Mater. Sci. 35 (2000) 1805-1811.
DOI URL |
[81] |
I. Weiss, S. Semiatin, Mater. Sci. Eng. A 243 (1998) 46-65.
DOI URL |
[82] | J. Liu, Q. Yang, J. Yin, H. Yang, Mater. Sci. Eng. C 110 (2020) 110542. |
[83] |
M. Bönisch, A. Panigrahi, M. Calin, T. Waitz, M. Zehetbauer, W. Skrotzki, J. Eck-ert, J. Alloy. Compd. 697 (2017) 300-309.
DOI URL |
[84] |
H. Matsumoto, S. Watanabe, S. Hanada, Mater. Trans. 46 (2005) 1070-1078.
DOI URL |
[85] |
E. Plancher, C.C. Tasan, S. Sandloebes, D. Raabe, Scr. Mater. 68 (2013) 805-808.
DOI URL |
[86] |
L.M. Hsiung, D.H. Lassila, Acta Mater 48 (2000) 4851-4865.
DOI URL |
[87] |
R. Hoppe, F. Appel, Acta Mater 64 (2014) 169-178.
DOI URL |
[88] |
G.M. Cheng, H. Yuan, W.W. Jian, W.Z. Xu, P.C. Millett, Y.T. Zhu, Scr. Mater. 68 (2013) 130-133.
DOI URL |
[89] |
C.H. Wang, A.M. Russell, G.H. Cao, Scr. Mater. 158 (2019) 62-65.
DOI URL |
[90] |
S. Guo, Q. Meng, L. Hu, G. Liao, X. Zhao, H. Xu, J. Alloy. Compd. 550 (2013) 35-38.
DOI URL |
[91] |
P.J. Buenconsejo, H.Y. Kim, H. Hosoda, S. Miyazaki, Acta Mater 57 (2009) 1068-1077.
DOI URL |
[92] |
J. Qazi, B. Marquardt, L. Allard, H. Rack, Mater. Sci. Eng. C 25 (2005) 389-397.
DOI URL |
[93] |
M. Jiang, Z. Chen, J. Tong, C. Liu, G. Xu, H. Liao, P. Wang, X. Wang, M. Xu, C. Lao, Mater. Res. Lett. 7 (2019) 426-432.
DOI |
[94] |
F. Han, B. Tang, H. Kou, J. Li, Y. Deng, Y. Feng, Mater. Lett. 185 (2016) 115-118.
DOI URL |
[95] |
C. Li, X. Zhang, Z. Li, K.-C. Zhou, Mater. Sci. Eng. A 573 (2013) 75-83.
DOI URL |
[96] | G.E. Dieter, D.J. Bacon, Mechanical Metallurgy, McGraw-Hill Science, New York, United States, 1976. |
[97] | D. Mack, Trans. Am. Inst. Min. Metall. Eng. 166 (1946) 68-84. |
[98] |
J.C. Slater, Phys. Rev. 35 (1930) 509.
DOI URL |
[1] | Tianzi Yang, Tianyu Ma, Feng Liu, Xiaobing Ren. Formation mechanism of partial stacking faults by incomplete mixed-mode phase transformation: A case study of Fe-Ga alloys [J]. J. Mater. Sci. Technol., 2022, 117(0): 59-64. |
[2] | Yinghao Zhou, Xiyu Yao, Wenfei Lu, Dandan Liang, Xiaodi Liu, Ming Yan, Jun Shen. Heat treatment of hot-isostatic-pressed 60NiTi shape memory alloy: Microstructure, phase transformation and mechanical properties [J]. J. Mater. Sci. Technol., 2022, 107(0): 124-135. |
[3] | Jinlong Su, Xiankun Ji, Jin Liu, Jie Teng, Fulin Jiang, Dingfa Fu, Hui Zhang. Revealing the decomposition mechanisms of dislocations and metastable α' phase and their effects on mechanical properties in a Ti-6Al-4V alloy [J]. J. Mater. Sci. Technol., 2022, 107(0): 136-148. |
[4] | X. Li, X.N. Wang, K. Liu, G.H. Cao, M.B. Li, Z.S. Zhu, S.J. Wu. Hierarchical structure and deformation behavior of a novel multicomponent β titanium alloy with ultrahigh strength [J]. J. Mater. Sci. Technol., 2022, 107(0): 227-242. |
[5] | Seungchan Cho, Junghwan Kim, Ilguk Jo, Jae Hyun Park, Jaekwang Lee, Hyun-Uk Hong, Bong Ho Lee, Wook Ryol Hwang, Dong-Woo Suh, Sang-Kwan Lee, Sang-Bok Lee. Quantitative reorientation behaviors of macro-twin interfaces in shape-memory alloy under compression stimulus in situ TEM [J]. J. Mater. Sci. Technol., 2022, 107(0): 243-251. |
[6] | Gen Li, Chengqi Sun. High-temperature failure mechanism and defect sensitivity of TC17 titanium alloy in high cycle fatigue [J]. J. Mater. Sci. Technol., 2022, 122(0): 128-140. |
[7] | Kai Chen, Qunbo Fan, Jiahao Yao, Lin Yang, Shun Xu, Wei Lei, Duoduo Wang, Jingjiu Yuan, Haichao Gong, Xingwang Cheng. Composition design of a novel Ti-6Mo-3.5Cr-1Zr alloy with high-strength and ultrahigh-ductility [J]. J. Mater. Sci. Technol., 2022, 131(0): 276-286. |
[8] | Xiaolin Li, Xiaoxiao Hao, Chi Jin, Qi Wang, Xiangtao Deng, Haifeng Wang, Zhaodong Wang. The determining role of carbon addition on mechanical performance of a non-equiatomic high-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 110(0): 167-177. |
[9] | Jinhu Zhang, Min Qi, Haisheng Xu, Hao Wang, Yingjie Ma, Dongsheng Xu, Rui Yang. A phase-field model for simulating the growth of α sideplates with branching in titanium alloys [J]. J. Mater. Sci. Technol., 2022, 123(0): 154-158. |
[10] | Z.H. Cao, B.N. Zhang, M.X. Huang. Comparing hydrogen embrittlement behaviors of two press hardening steels: 2 GPa vs. 1.5 GPa grade [J]. J. Mater. Sci. Technol., 2022, 124(0): 109-115. |
[11] | MengCheng Deng, Shang Sui, Bo Yao, Liang Ma, Xin Lin, Jing Chen. Microstructure and room-temperature tensile property of Ti-5.7Al-4.0Sn-3.5Zr-0.4Mo-0.4Si-0.4Nb-1.0Ta-0.05C with near equiaxed β grain fabricated by laser directed energy deposition technique [J]. J. Mater. Sci. Technol., 2022, 101(0): 308-320. |
[12] | Wenjun Lu, Jianjun Li. Synergetic deformation mechanism in hierarchical twinned high-entropy alloys [J]. J. Mater. Sci. Technol., 2022, 102(0): 80-88. |
[13] | Xu Liu, Lin Song, Andreas Stark, Uwe Lorenz, Zhanbing He, Junpin Lin, Florian Pyczak, Tiebang Zhang. Deformation and phase transformation behaviors of a high Nb-containing TiAl alloy compressed at intermediate temperatures [J]. J. Mater. Sci. Technol., 2022, 102(0): 89-96. |
[14] | Dongxu Li, Guoying Zhang, Gang Lu, Yujie Liu, Jianjun Wang, Chunming Liu. Precipitation of Ti2Al phases at lamellar interfaces in a high-Nb-containing TiAl alloy during thermal exposure [J]. J. Mater. Sci. Technol., 2022, 126(0): 132-140. |
[15] | Qinyang Zhao, Leandro Bolzoni, Yongnan Chen, Yiku Xu, Rob Torrens, Fei Yang. Processing of metastable beta titanium alloy: Comprehensive study on deformation behaviour and exceptional microstructure variation mechanisms [J]. J. Mater. Sci. Technol., 2022, 126(0): 22-43. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||