J. Mater. Sci. Technol. ›› 2022, Vol. 131: 82-90.DOI: 10.1016/j.jmst.2022.05.022
• Research Article • Previous Articles Next Articles
Yujia Panga,b, Jianqi Huanga,b,*(), Teng Yanga,b,*(
), Zhidong Zhanga,b
Received:
2022-03-12
Revised:
2022-04-21
Accepted:
2022-05-05
Published:
2022-06-07
Online:
2022-06-07
Contact:
Jianqi Huang,Teng Yang
About author:
yangteng@imr.ac.cn, yanghaiteng@msn.com (T. Yang)Yujia Pang, Jianqi Huang, Teng Yang, Zhidong Zhang. Accurate assignment of double resonant Raman bands in Janus MoSSe monolayer from first-principles calculations[J]. J. Mater. Sci. Technol., 2022, 131: 82-90.
Fig. 1. (a) Top view and side view of Janus MoSSe monolayer in hexagonal lattice with a primitive unit cell enclosed by the red dashed line. (b) The hexagonal first Brillouin zone (BZ) surrounded by solid black lines and the irreducible BZ denoted by the pink region. High-symmetry points and line segments along the edge of irreducible BZ are labeled with Greek letters at their corresponding positions. (c) Calculated electronic energy band structure and electronic density of states (DOS) with considering the spin-orbit coupling. (d) The phonon dispersion relation and phonon DOS. Little-point-groups (point group of the space group of wavevector) of the wavevectors Γ, K and M are listed in parenthesis with the irreducible representations given on each colored vibrational branch. (e) Visualization of Raman-active optical modes at Γ point.
C3v (Γ) | A1 | A2 | E | C3 (K, K') | A | 1E | 2E |
---|---|---|---|---|---|---|---|
A1 | A1 | A2 | E | A | A1 (C3v) A + 1E (C3) | A2 (C3v) 2E (C3) | E (C3v) 2E (C3) |
A2 | A2 | A1 | E | 1E | A2 (C3v) 2E (C3) | E (C3v) A + 1E (C3) | A1 (C3v) 2E (C3) |
E | E | E | A1±A2±E | 2E | E (C3v) 2E (C3) | A1 (C3v) 2E (C3) | A2 (C3v) A + 1E (C3) |
Cs (M) | A' × A' | A' × A" | A" × A' | A" × A" | |||
A1±E (C3v) A' + A" (Cs) | A2±E (C3v) A' + A" (Cs) | A2 ± E (C3v) A' + A" (Cs) | A1 ± E (C3v) A' + A" (Cs) |
Table 1. Group theoretical selection rules for two-phonon Raman activity at the Brillouin zone points of Γ, K(K′) and M in Janus MoSSe monolayer. The cell with underlined irreducible representations (Irreps) means including at least one of the two Raman-active Irreps of A1 and E within point group C3v in the reduction and thus corresponds to a Raman-active binary combination.
C3v (Γ) | A1 | A2 | E | C3 (K, K') | A | 1E | 2E |
---|---|---|---|---|---|---|---|
A1 | A1 | A2 | E | A | A1 (C3v) A + 1E (C3) | A2 (C3v) 2E (C3) | E (C3v) 2E (C3) |
A2 | A2 | A1 | E | 1E | A2 (C3v) 2E (C3) | E (C3v) A + 1E (C3) | A1 (C3v) 2E (C3) |
E | E | E | A1±A2±E | 2E | E (C3v) 2E (C3) | A1 (C3v) 2E (C3) | A2 (C3v) A + 1E (C3) |
Cs (M) | A' × A' | A' × A" | A" × A' | A" × A" | |||
A1±E (C3v) A' + A" (Cs) | A2±E (C3v) A' + A" (Cs) | A2 ± E (C3v) A' + A" (Cs) | A1 ± E (C3v) A' + A" (Cs) |
Fig. 2. Calculated double resonant Raman (DRR) spectrum of Janus MoSSe monolayer under the laser excitation energies of 1.96 eV, with positions of the first-order Raman modes identified by thin blue bars. A total number of eleven DRR bands indicated by the green arrows are labeled with Pi (i = 1, 2, · · ·, 11) and the Raman shifts are presented in the bottom panel.
Fig. 3. Process of assigning P1 band. (a) The q-resolved Raman intensity distribution pattern of P1 band in the whole Brillouin zone. (b) The q-resolved Raman intensity distribution pattern of five major binary combinations. Each one shows the dominant q points associated with branches pair indicated by the binary combination. (c) Contribution percentages of Raman intensity of each binary combination with respect to that of P1 band. (d) The double resonant Raman spectra of five binary combinations with two peaks in each Raman curve corresponding to one subtraction mode and one combination mode. (e) Subtraction modes of ZO2-ZO1 and LO2-LO1 are assigned to the P1 band with ZO2-LO1 and TO2-LA removed for deviating from P1 band and ZO2-TO1 having a relatively minor contribution.
Raman band | Raman shift (cm−1) | Assignments | Ratio |
---|---|---|---|
P1 | 136.7 | ZO2-ZO1(Γ) LO2-LO1(Γ) | 2.28 |
P2 | 172.1 | LO2-LA(M) TO2-LA(K) | 1.80 |
P3 | 238.3 | 2TA (M) LO2-LA(Γ) | 3.56 |
P4 | 292.8 | 2ZA (K) 2TA (K) | 1.79 |
P5 | 349.5 | 2LA (M) | 1 |
P6 | 413.1 | LA+LO1(M) | 1 |
P7 | 452.9 | 2TO1 (M) LA+ZO1(M) | 1.56 |
P8 | 505.1 | TO1+ZO1(M) | 1 |
P9 | 536.8 | 2ZO1 (M) | 1 |
P10 | 618.2 | ZO1+LO2(Γ) | 1 |
P11 | 687.3 | 2LO2 (Γ) | 1 |
Table 2. Assignments of the eleven double resonant Raman bands in Janus MoSSe monolayer. For the bands with more than one assignment, the ratio between the contribution proportion of the assignments with respect to the Raman intensity of the band is given. If the band consists of only one assignment, the ratio is set to 1. Generally speaking, the Brillouin zone point in the parenthesis denotes that the corresponding assignment distribute over the area around the point, not exactly at the point.
Raman band | Raman shift (cm−1) | Assignments | Ratio |
---|---|---|---|
P1 | 136.7 | ZO2-ZO1(Γ) LO2-LO1(Γ) | 2.28 |
P2 | 172.1 | LO2-LA(M) TO2-LA(K) | 1.80 |
P3 | 238.3 | 2TA (M) LO2-LA(Γ) | 3.56 |
P4 | 292.8 | 2ZA (K) 2TA (K) | 1.79 |
P5 | 349.5 | 2LA (M) | 1 |
P6 | 413.1 | LA+LO1(M) | 1 |
P7 | 452.9 | 2TO1 (M) LA+ZO1(M) | 1.56 |
P8 | 505.1 | TO1+ZO1(M) | 1 |
P9 | 536.8 | 2ZO1 (M) | 1 |
P10 | 618.2 | ZO1+LO2(Γ) | 1 |
P11 | 687.3 | 2LO2 (Γ) | 1 |
Fig. 4. Assignments verification in terms of Raman selection rules for linearly polarized light. (a) Double resonant Raman spectra of Janus MoSSe monolayer between 100 and 150 cm?1 under parallel and cross configuration. (b) The q-resolved Raman intensity distribution pattern of $\text{P}_{1}^{\prime }$ band.
Fig. 5. Assignments verification in terms of Raman band shift induced by strain. (a) Calculated double resonant Raman spectra of Janus MoSSe monolayer under no strain and biaxial compressive (-3%) and tensile (+3%) strain. (b) The q-resolved Raman intensity distribution patterns of P1 band and (c) optical phonon dispersion relations and corresponding phonon DOS under various strains. The arrows with different colors mark the q points under various strains at which the ZO2-ZO1 is assigned to the P1 band.
[1] | S. Lebegue, O. Eriksson, Phys. Rev. B 79 (2009) 115409. |
[2] | K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinz, Phys. Rev. Lett. 105 (2010) 136805. |
[3] |
D. Ovchinnikov, A. Allain, Y.-S. Huang, D. Dumcenco, A. Kis, ACS Nano 8 (2014) 8174.
DOI PMID |
[4] |
B.W. Baugher, H.O. Churchill, Y. Yang, P. Jarillo-Herrero, Nano Lett. 13 (2013) 4212.
DOI URL |
[5] |
H.P.C. Miranda, S. Reichardt, G. Froehlicher, A. Molina-Sánchez, S. Berciaud, L. Wirtz, Nano Lett. 17 (2017) 2381-2388.
DOI URL |
[6] |
S. Zhang, J. Huang, Y. Yu, S. Wang, T. Yang, Z. Zhang, L. Tong, J. Zhang, Nat. Commun. 13 (2022) 1254.
DOI URL |
[7] | D. Xiao, G.-B. Liu, W. Feng, X. Xu, W. Yao, Phys. Rev. Lett. 108 (2012) 196802. |
[8] |
X. Xu, W. Yao, D. Xiao, T.F. Heinz, Nat. Phys. 10 (2014) 343.
DOI URL |
[9] |
Y. Gong, J. Lin, X. Wang, G. Shi, S. Lei, Z. Lin, X. Zou, G. Ye, R. Vajtai, B.I. Yakob-son, Nat. Mater. 13 (2014) 1135.
DOI URL |
[10] | X. He, H. Li, Z. Zhu, Z. Dai, Y. Yang, P. Yang, Q. Zhang, P. Li, U. Schwingenschlogl, X. Zhang, Appl. Phys. Lett. 109 (2016) 173105. |
[11] |
X. Duan, C. Wang, J.C. Shaw, R. Cheng, Y. Chen, H. Li, X. Wu, Y. Tang, Q. Zhang, A. Pan, Nat. Nanotechnol. 9 (2014) 1024.
DOI URL |
[12] | C. Mu, W. Wei, J. Li, B. Huang, Y. Dai, Mater. Res. Exp. 5 (2018) 046307. |
[13] |
J. Kang, J. Li, S.-S. Li, J.-B. Xia, L.-W. Wang, Nano Lett. 13 (2013) 5485.
DOI PMID |
[14] |
F. Li, B. Xu, W. Yang, Z. Qi, C. Ma, Y. Wang, X. Zhang, Z. Luo, D. Liang, D. Li, Nano Res. 13 (2020) 1053.
DOI URL |
[15] |
A.-Y. Lu, H. Zhu, J. Xiao, C.-P. Chuu, Y. Han, M.-H. Chiu, C.-C. Cheng, C.-W. Yang, K.-H. Wei, Y. Yang, Nat. Nanotechnol. 12 (2017) 744.
DOI URL |
[16] |
J. Zhang, S. Jia, I. Kholmanov, L. Dong, D. Er, W. Chen, H. Guo, Z. Jin, V.B. Shenoy, L. Shi, ACS Nano 11 (2017) 8192.
DOI PMID |
[17] |
Y.-C. Lin, C. Liu, Y. Yu, E. Zarkadoula, M. Yoon, A.A. Puretzky, L. Liang, X. Kong, Y. Gu, A. Strasser, ACS Nano 14 (2020) 3896.
DOI PMID |
[18] | D.B. Trivedi, G. Turgut, Y. Qin, M.Y. Sayyad, D. Hajra, M. Howell, L. Liu, S. Yang, N.H. Patoary, H. Li, Adv. Mater. 32 (2020) 2006320. |
[19] |
W.-L. Tao, Y. Mu, C.-E. Hu, Y. Cheng, G.-F. Ji, Philos. Mag. 99 (2019) 1025.
DOI URL |
[20] |
Y. Yang, Y. Zhang, H. Ye, Z. Yu, Y. Liu, B. Su, W. Xu, Superlattices Microst. 131 (2019) 8.
DOI URL |
[21] | W.-L. Tao, J.-Q. Lan, C.-E. Hu, Y. Cheng, J. Zhu, H.-Y. Geng, J. Appl. Phys. 127 (2020) 035101. |
[22] | V.V. Thanh, N.D. Van, R. Saito, N.T. Hung, Appl. Surf. Sci. 526 (2020) 146730. |
[23] |
J. Wang, H. Shu, T. Zhao, P. Liang, N. Wang, D. Cao, X. Chen, Phys. Chem. Chem. Phys. 20 (2018) 18571.
DOI PMID |
[24] | G. Chaney, A. Ibrahim, F. Ersan, D. Çakır, C. Ataca, ACS Appl, Appl. ACS Mater. Interfaces 13 (2021) 36388. |
[25] |
S. Jia, A. Bandyopadhyay, H. Kumar, J. Zhang, W. Wang, T. Zhai, V.B. Shenoy, J. Lou, Nanoscale 12 (2020) 10723.
DOI URL |
[26] |
K. Zhang, Y. Guo, D.T. Larson, Z. Zhu, S. Fang, E. Kaxiras, J. Kong, S. Huang, ACS Nano 15 (2021) 14394.
DOI URL |
[27] | Y. Guo, S. Zhou, Y. Bai, J. Zhao, Appl. Phys. Lett. 110 (2017) 163102. |
[28] | H. Li, Y. Qin, B. Ko, D.B. Trivedi, D. Hajra, M.Y. Sayyad, L. Liu, S.-H. Shim, H. Zhuang, S. Tongay, Adv. Mater. 32 (2020) 2002401. |
[29] | J. Huang, H. Guo, L. Zhou, S. Zhang, L. Tong, R. Saito, T. Yang, Z. Zhang, Phys. Rev. B 105 (2022) 235401. |
[30] | P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, J. Phys. Cond. Matter 21 (2009) 395502. |
[31] | P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M.B. Nardelli, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, M. Cococcioni, J. Phys. Cond. Matter 29 (2017) 465901. |
[32] |
X. Gonze, C. Lee, Phys. Rev. B 55 (1997) 10355.
DOI URL |
[33] |
S. Poncé, E.R. Margine, C. Verdi, F. Giustino, Comput. Phys. Commun. 209 (2016) 116.
DOI URL |
[34] | F. Giustino, M.L. Cohen, S.G. Louie, Phys. Rev. B 76 (2007) 165108. |
[35] | A. Molina-Sánchez, M. Palummo, A. Marini, L. Wirtz, Phys. Rev. B 93 (2016) 155435. |
[36] | D. Sánchez-Portal, E. Hernandez, Phys. Rev. B 66 (2002) 235415. |
[37] | M.S. Dresselhaus, G. Dresselhaus, A. Jorio, Group theory:application to the physics of condensed matter, Springer Science & Business Media, 2007. |
[38] |
J.L. Birman, Phys. Rev. 127 (1962) 1093.
DOI URL |
[39] |
J.L. Birman, Phys. Rev. 131 (1963) 1489.
DOI URL |
[40] | M.I. Aroyo, A. Kirov, C. Capillas, J. Perez-Mato, H. Wondratschek, Acta Crystal-logr. Sect. A 62 (2006) 115. |
[41] | M.M. Petrić, M. Kremser, M. Barbone, Y. Qin, Y. Sayyad, Y. Shen, S. Tongay, J.J. Finley, A.R. Botello-Méndez, K. Müller, Phys. Rev. B 103 (2021) 035414. |
[42] |
B.R. Carvalho, Y. Wang, S. Mignuzzi, D. Roy, M. Terrones, C. Fantini, V.H. Crespi, L.M. Malard, M.A. Pimenta, Nat. Commun. 8 (2017) 1.
DOI URL |
[43] |
J. Huang, Z. Liu, T. Yang, Z. Zhang, J. Mater. Sci. Technol. 102 (2022) 132-136.
DOI URL |
[1] | Chunyang Gao, Yixiao Jiang, Tingting Yao, Ang Tao, Xuexi Yan, Xiang Li, Chunlin Chen, Xiu-Liang Ma, Hengqiang Ye. Atomic origin of magnetic coupling of antiphase boundaries in magnetite thin films [J]. J. Mater. Sci. Technol., 2022, 107(0): 92-99. |
[2] | H.L. Zhang, D.D. Cai, X. Sun, H. Huang, S. Lu, Y.Z. Wang, Q.M. Hu, L. Vitos, X.D. Ding. Solid solution strengthening of high-entropy alloys from first-principles study [J]. J. Mater. Sci. Technol., 2022, 121(0): 105-116. |
[3] | Ze Zhang, Shizhen Zhu, Fu-Zhi Dai, Huimin Xiang, Yanbo Liu, Ling Liu, Zhuang Ma, Shijiang Wu, Fei Liu, Kuang Sun, Yanchun Zhou. Theoretical predictions and experimental verification on the phase stability of enthalpy-stabilized HE TMREB2s [J]. J. Mater. Sci. Technol., 2022, 121(0): 154-162. |
[4] | Meng Cai, Peng Feng, Han Yan, Yuting Li, Shijie Song, Wen Li, Hao Li, Xiaoqiang Fan, Minhao Zhu. Hierarchical Ti3C2Tx@MoS2 heterostructures: A first principles calculation and application in corrosion/wear protection [J]. J. Mater. Sci. Technol., 2022, 116(0): 151-160. |
[5] | Li Liu, Jian-Tang Jiang, Xiang-Yuan Cui, Bo Zhang, Liang Zhen, Simon P. Ringer. Correlation between precipitates evolution and mechanical properties of Al-Sc-Zr alloy with Er additions [J]. J. Mater. Sci. Technol., 2022, 99(0): 61-72. |
[6] | Q. Zhang, F.W. Tang, Z. Zhao, Z.R. Nie, X.Y. Song. Surface modification of tungsten oxide by oxygen vacancies for hydrogen adsorption [J]. J. Mater. Sci. Technol., 2022, 117(0): 23-35. |
[7] | Lu Yu, Zipei Zhang, Juan Li, Wenhao Li, Shikai Wei, Sitong Wei, Guiwu Lu, Weiyu Song, Shuqi Zheng. Enhanced thermoelectric performance in n-type Mg3.2Sb1.5Bi0.5 doping with lanthanides at the Mg site [J]. J. Mater. Sci. Technol., 2022, 127(0): 108-114. |
[8] | Fu-Zhi Dai, Yinjie Sun, Yixiao Ren, Huimin Xiang, Yanchun Zhou. Segregation of solute atoms in ZrC grain boundaries and their effects on grain boundary strengths [J]. J. Mater. Sci. Technol., 2022, 101(0): 234-241. |
[9] | Daxian Zuo, Cuiping Wang, Jiajia Han, Qinghao Han, Yanan Hu, Junwei Wu, Huajun Qiu, Qian Zhang, Xingjun Liu. One-step synthesis of novel core-shell bimetallic hexacyanoferrate for high performance sodium-storage cathode [J]. J. Mater. Sci. Technol., 2022, 114(0): 180-190. |
[10] | Hailong Yuan, Zhifeng Huang, Jianwen Zhang, Ziqian Yin, Xiangyu Lu, Fei Chen, Qiang Shen. Enhancing thermal stability and photoluminescence of red-emitting Sr2Si5N8:Eu phosphors via boron doping [J]. J. Mater. Sci. Technol., 2021, 94(0): 130-135. |
[11] | Bin Liu, Juanli Zhao, Yuchen Liu, Jianqi Xi, Qian Li, Huimin Xiang, Yanchun Zhou. Application of high-throughput first-principles calculations in ceramic innovation [J]. J. Mater. Sci. Technol., 2021, 88(0): 143-157. |
[12] | Huimin Xiang, Fuzhi Dai, Yanchun Zhou. Secrets of high thermal emission of transition metal disilicides TMSi2 (TM = Ta, Mo) [J]. J. Mater. Sci. Technol., 2021, 89(0): 114-121. |
[13] | Hai-Le Yan, Hao-Xuan Liu, Ying Zhao, Nan Jia, Jing Bai, Bo Yang, Zongbin Li, Yudong Zhang, Claude Esling, Xiang Zhao, Liang Zuo. Impact of B alloying on ductility and phase transition in the Ni-Mn-based magnetic shape memory alloys: Insights from first-principles calculation [J]. J. Mater. Sci. Technol., 2021, 74(0): 27-34. |
[14] | Ziqi Guan, Jing Bai, Jianglong Gu, Xinzeng Liang, Die Liu, Xinjun Jiang, Runkai Huang, Yudong Zhang, Claude Esling, Xiang Zhao, Liang Zuo. First-principles investigation of B2 partial disordered structure, martensitic transformation, elastic and magnetic properties of all-d-metal Ni-Mn-Ti Heusler alloys [J]. J. Mater. Sci. Technol., 2021, 68(0): 103-111. |
[15] | Lakshitha Jasin Arachchige, Yongjun Xu, Zhongxu Dai, Xiao Li Zhang, Feng Wang, Chenghua Sun. Double transition metal atoms anchored on Graphdiyne as promising catalyst for electrochemical nitrogen reduction reaction [J]. J. Mater. Sci. Technol., 2021, 77(0): 244-251. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||