J. Mater. Sci. Technol. ›› 2022, Vol. 114: 180-190.DOI: 10.1016/j.jmst.2021.11.020
• Research Article • Previous Articles Next Articles
Daxian Zuoa, Cuiping Wanga,*(), Jiajia Hana,*(
), Qinghao Hana, Yanan Hua, Junwei Wub, Huajun Qiub, Qian Zhangb, Xingjun Liuc,b,a,*(
)
Received:
2021-09-17
Revised:
2021-11-06
Accepted:
2021-11-16
Published:
2022-07-01
Online:
2022-01-15
Contact:
Cuiping Wang,Jiajia Han,Xingjun Liu
About author:
lxj@xmu.edu.cn (X. Liu).Daxian Zuo, Cuiping Wang, Jiajia Han, Qinghao Han, Yanan Hu, Junwei Wu, Huajun Qiu, Qian Zhang, Xingjun Liu. One-step synthesis of novel core-shell bimetallic hexacyanoferrate for high performance sodium-storage cathode[J]. J. Mater. Sci. Technol., 2022, 114: 180-190.
Fig. 1. (a) Preparation process of MnFeHCF@MnFeHCF core-shell material; (b) MnFeHCF@MnFeHCF samples synthesized under different Fe/Mn molar ratios; (c) Disordered crystal structure and (f) corresponding charge density difference; (d) The ordered crystal structure and (g) corresponding charge density difference; (e, h) Calculated XRD patterns of ordered and disordered crystal structure.
Fig. 2. (a) XRD patterns of different samples; TG and DTG curves of (b) MnFeHCF@MnFeHCF core-shell material and (e) FeHCF@NiHCF core-shell material; (c, f) FTIR spectra of different materials; (d) Nitrogen adsorption-desorption isotherms of different samples; (g) XPS surveys of all samples; (h) Mn 2p spectrum of MnFeHCF@MnFeHCF core-shell material; (i) Ni 2p spectrum of FeHCF@NiHCF core-shell material.
Fig. 3. Morphology characterizations of MnFeHCF@MnFeHCF core-shell material: (a) SEM image; (b) TEM image; (c) The corresponding SAED patterns; (d, e) STEM images in different modes; (f-k) The energy dispersive spectroscopy mapping images. Morphology characterizations of FeHCF@NiHCF core-shell material: (l) SEM image; (m) TEM image; (n) The corresponding SAED patterns; (o, p) STEM images in different modes; (q-v) The energy dispersive spectroscopy mapping images.
Fig. 4. CV curves of different samples measured at a scan rate of 0.1 mV s-1: (a) MnFeHCF@MnFeHCF core-shell electrode; (b) FeHCF@NiHCF core-shell electrode; (c) FeHCF electrode. (d) Rate performances of different three samples; Corresponding charge and discharge curves of (e) MnFeHCF@MnFeHCF and (f) FeHCF@NiHCF electrodes at different current densities. (g) Cycle performance of different three electrodes at current density of 200 mA g-1.
Fig. 5. GITT curves and corresponding Na+ ion diffusion coefficients upon charging/discharging: (a) MnFeHCF@MnFeHCF core-shell material; (d) FeHCF@NiHCF core-shell material. CV curves of (b) MnFeHCF@MnFeHCF and (e) FeHCF@NiHCF with different scan rates of 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1 mV s-1. Linear plots of the relationship between Ip and ν-1/2 for both the anodic and cathodic scans of (c) MnFeHCF@MnFeHCF and (f) FeHCF@NiHCF. Schematic illustration of extraction/insertion process of Na+ ions between shell and core during the first cycle: (g) FeHCF@NiHCF; (h) MnFeHCF@MnFeHCF.
Fig. 6. (a) Ex-situ XRD results of MnFeHCF@MnFeHCF at different charge and discharge states, enlarged view showing the shift of the (220) diffraction peak are on the left column, the charge/discharge voltage curve is on the right column; (b) Schematic diagrams for the phase transformation during charge and discharge; (c, d) The morphologies of MnFeHCF@MnFeHCF core-shell material after 500 cycling; (e) Mn 2p spectrum of MnFeHCF@MnFeHCF core-shell material under different charge and discharge states; (f) Corresponding XRD patterns before and after cycling.
Fig. 7. (a) Total and partial densities of states (DOS) for the Na, Fe and Mn in the Na2FeFe(CN)6 and Na2Mn2/3Fe1/3Fe(CN)6; Band structure of (b) Na2FeFe(CN)6 and (c) Na2Mn2/3Fe1/3Fe(CN)6; Crystal structure of PBA compounds with different sodium concentration, among them, the yellow ball represents the sodium atom: (d) NaxFeFe(CN)6 compound, (e) NaxNiFe(CN)6 compound, (f) NaxFeFe(CN)6@NaxNiFe(CN)6 compound; Electrostatic potential of PBA compounds with different sodium concentration: (g) NaxFeFe(CN)6 compound, (h) NaxFeFe(CN)6@NaxNiFe(CN)6 compound.
[1] |
B. Dunn, H. Kamath, J.M. Tarascon, Science 334 (2011) 928-935.
DOI URL |
[2] |
D. Larcher, J.M. Tarascon, Nat. Chem. 7 (2015) 19.
DOI URL PMID |
[3] | T.F. Yi, H. Sari, X. Li, F. Wang, Y.R. Zhu, J. Hu, J. Zhang, X. Li, Nano Energy 85 (2021) 105955. |
[4] | H. Kim, H. Kim, Z. Ding, M.H. Lee, K. Lim, G. Yoon, K. Kang, Adv. Energy Mater. 6 (2016) 1600943. |
[5] |
P. Hu, W. Peng, B. Wang, D. Xiao, U. Ahuja, J. Rethore, K. Aifantis, ACS Energy Lett. 5 (2020) 100-108.
DOI URL |
[6] | X. Song, S. Song, D. Wang, H. Zhang, Small Methods 5 (2021) 2001000. |
[7] | L. Ma, H. Cui, S. Chen, X. Li, B. Dong, C. Zhi, Nano Energy 81 (2021) 105632. |
[8] | H. Yi, R. Qin, S. Ding, Y. Wang, S. Li, Q. Zhao, F. Pan, Adv. Funct. Mater. 31 (2021) 2006970. |
[9] | W. Ren, Z. Zhu, M. Qin, S. Chen, X. Yao, Q. Li, X. Xu, Q. Wei, L. Mai, C. Zhao, Adv. Funct. Mater. 29 (2019) 1806405. |
[10] |
Y. You, H.R. Yao, S. Xin, Y.X. Yin, T.T. Zuo, C.P. Yang, Y.G. Guo, Y. Cui, L.J. Wan, J.B. Goodenough, Adv. Mater. 28 (2016) 7243-7248.
DOI URL |
[11] |
Y. You, X. Yu, Y.X. Yin, K.W. Nam, Y.G. Guo, Nano Res. 8 (2015) 117-128.
DOI URL |
[12] | W.J. Li, C. Han, G. Cheng, S.L. Chou, H.K. Liu, S.X. Dou, Small 15 (2019) 1900470. |
[13] |
Y. Huang, M. Xie, J. Zhang, Z. Wang, Y. Jiang, G. Xiao, S. Li, L. Li, F. Wu, R. Chen, Nano Energy 39 (2017) 273-283.
DOI URL |
[14] |
J. Song, L. Wang, Y. Lu, J. Liu, B. Guo, P. Xiao, J.J. Lee, X.Q. Yang, G. Henkelman, J.B. Goodenough, J. Am. Chem. Soc. 137 (2015) 2658-2664.
DOI URL PMID |
[15] | F. Feng, S. Chen, S. Zhao, W. Zhang, Y. Miao, H. Che, X.Z. Liao, Z.F. Ma, Chem. Eng. J. 411 (2021) 128518. |
[16] | S. Wu, G. Zhuang, J. Wei, Z. Zhuang, Y. Yu, J. Mater. Chem. A 6 (2018) 18234. |
[17] |
M. Wan, Y. Tang, L. Wang, X. Xiang, X. Li, K. Chen, L. Xue, W. Zhang, Y. Huang, J. Power Sources 329 (2016) 290-296.
DOI URL |
[18] |
D. Pajerowski, B. Ravel, C. Li, M. Dumont, D. Talham, Chem. Mater. 26 (2014) 2586-2594.
DOI URL |
[19] |
X. Yang, S. Yuan, L. Zou, H. Drake, Y. Zhang, J. Qin, A. Alsalme, H.C. Zhou, Angew. Chem. Int. Ed. 57 (2018) 3927-3932.
DOI URL |
[20] |
M. Okubo, C. Li, D. Talham, Chem. Commun. 50 (2014) 1353-1355.
DOI URL |
[21] |
J. Yin, Y. Shen, C. Li, C. Fan, S. Sun, Y. Liu, J. Peng, L. Qing, J. Han, ChemSusChem 12 (2019) 4786-4790.
DOI URL |
[22] | T.U. Choi, G. Baek, S. Lee, J.H. Lee, ACS Appl. Mater. Interfaces 12 (2020) 24817-24826. |
[23] | G. Kresse, J. Furthmüller, Phys. Rev. B 54 (16) (1996) 11169-11186. |
[24] | J. Hafner, G. Kresse, J. Hafner, G. Kresse, in: Properties of Complex Inorganic Solids, Springer, US, 1997, pp. 68-100. |
[25] |
J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (18) (1996) 3865-3868.
DOI URL PMID |
[26] | L. Li, P. Nie, Y. Chen, J. Wang, J. Mater. Chem. A 7 (2019) 12134-12144. |
[27] | Y. Tang, W. Li, P. Feng, M. Zhou, K. Wang, Y. Wang, K. Zaghib, K. Jiang, Adv. Funct. Mater. 30 (2020) 1908754. |
[28] | W. Wang, Z. Hu, Z. Yan, J. Peng, M. Chen, W. Lai, Q.F. Gu, S.L. Chou, H.K. Liu, S.X. Dou, Energy Storage Mater. 30 (2020) 42-51. |
[29] |
C. Li, R. Zang, P. Li, Z. Man, S. Wang, X. Li, Y. Wu, S. Liu, G. Wang, Chem. Asian J. 13 (2018) 342-349.
DOI URL |
[30] |
M. Xie, M. Xu, Y. Huang, R. Chen, X. Zhang, L. Li, F. Wu, Electrochem. Commun. 59 (2015) 91-94.
DOI URL |
[31] | Q. Liu, Z. Hu, M. Chen, C. Zou, H. Jin, S. Wang, S.L. Chou, Y. Liu, S.X. Dou, Adv. Funct. Mater. 30 (2020) 1909530. |
[32] | Y. Liu, G. Wei, M. Ma, Y. Qiao, Chem. Eur. J. 23 (2017) 15991-15996. |
[33] | F. Feng, S. Chen, X.Z. Liao, Z.F. Ma, Small Methods 1 (2018) 1800259. |
[34] |
W. Ren, M. Qin, Z. Zhu, M. Yan, Q. Li, L. Zhang, D. Liu, L. Mai, Nano Lett. 17 (2017) 4713-4718.
DOI URL |
[35] |
Y. You, X.L. Wu, Y.X. Yin, Y.G. Guo, Energy Environ. Sci. 7 (2014) 1643.
DOI URL |
[36] |
A. Yamada, M. Tanaka, Mater. Res. Bull. 30 (1995) 715-721.
DOI URL |
[37] |
S.D. Ouyang, D.Y. Liu, L.J. Zou, H.Q. Lin, J. Appl. Phys. 109 (2011) 07D716.
DOI URL |
[38] | X. Chen, Y. Wang, K. Wiaderek, X. Sang, O. Borkiewicz, K. Chapman, J. Lebeau, J. Lynn, X. Li, Adv. Funct. Mater. 28 (2018) 1805105. |
[39] |
D. Zuo, G. Tian, D. Chen, H. Shen, C. Lv, K. Shu, Y. Zhou, Electrochim. Acta 178 (2015) 447-457.
DOI URL |
[40] |
T. Schied, A. Nickol, C. Heubner, M. Schneider, A. Michaelis, M. Bobeth, G. Cu-niberti, ChemPhysChem 22 (2021) 885-893.
DOI URL |
[41] | K. Chudzik, M. Swietosławski, M. Bakierska, M. Kubicka, P. Natkanski, J. Kawałko, M. Molenda, Electrochim. Acta 373 (2021) 137901. |
[42] |
T. Paixão, ChemElectroChem 7 (2020) 3414-3415.
DOI URL |
[43] |
K. Ngamchuea, S. Eloul, K. Tschulik, R. Compton, J. Solid State Electrochem. 18 (2014) 3251-3257.
DOI URL |
[44] | Y. You, X.L. Wu, Y.X. Yin, Y.G. Guo, J. Mater. Chem. A 1 (2013) 14061-14065. |
[45] | J. Han, Y. Lin, Y. Yang, D. Zuo, C. Wang, X. Liu, J. Alloys Compd. 870 (2021) 159533. |
[46] |
L. Xu, W.Q. Huang, W. Hu, K. Yang, B.X. Zhou, A. Pan, G.F. Huang, Chem. Mater. 29 (2017) 5504-5512.
DOI URL |
[1] | Yihan Chen, Longxing Su, Mingming Jiang, Xiaosheng Fang. Switch type PANI/ZnO core-shell microwire heterojunction for UV photodetection [J]. J. Mater. Sci. Technol., 2022, 105(0): 259-265. |
[2] | Rui Guo, Qi Zheng, Lianjun Wang, Yuchi Fan, Wan Jiang. Porous N-doped Ni@SiO2/graphene network: Three-dimensional hierarchical architecture for strong and broad electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 106(0): 108-117. |
[3] | Yun Tian, Zhengyu Wei, Fan Li, Songjie Li, Lixiang Shao, Mengyuan He, Panfei Sun, Yuanyuan Li. Enhanced multiple anchoring and catalytic conversion of polysulfides by SnO2-decorated MoS2 hollow microspheres for high-performance lithium-sulfur batteries [J]. J. Mater. Sci. Technol., 2022, 100(0): 216-223. |
[4] | Muhammad Mushtaq, Xianwei Guo, Zihe Zhang, Zhiyuan Lin, Xiaolong Li, Zhangquan Peng, Haijun Yu. Dual-function redox mediator enhanced lithium-oxygen battery based on polymer electrolyte [J]. J. Mater. Sci. Technol., 2022, 113(0): 199-206. |
[5] | Xubing Wei, Shaomiao Shi, Chuangming Ning, Zhibin Lu, Guangan Zhang. Si-DLC films deposited by a novel method equipped with a co-potential auxiliary cathode for anti-corrosion and anti-wear application [J]. J. Mater. Sci. Technol., 2022, 109(0): 114-128. |
[6] | Jijun Wang, Songlin Yu, Qingqing Wu, Yan Li, Fangyuan Li, Xiao Zhou, Yuhua Chen, Bingzhen Li, Panbo Liu. Heterogeneous junctions of magnetic Ni core@binary dielectric shells toward high-efficiency microwave attenuation [J]. J. Mater. Sci. Technol., 2022, 115(0): 71-80. |
[7] | Xiao-Tong Wang, Yang Yang, Jin-Zhi Guo, Zhen-Yi Gu, Edison Huixiang Ang, Zhong-Hui Sun, Wen-Hao Li, Hao-Jie Liang, Xing-Long Wu. An advanced cathode composite for co-utilization of cations and anions in lithium batteries [J]. J. Mater. Sci. Technol., 2022, 102(0): 72-79. |
[8] | Jiashun Wang, Linlin Wang, Jiangyong Diao, Xi Xie, Guoming Lin, Qing Jia, Hongyang Liu, Guoxin Sui. Fabrication of three dimensional SiC@C hybrid for efficient direct dehydrogenation of ethylbenzene to styrene [J]. J. Mater. Sci. Technol., 2022, 103(0): 209-214. |
[9] | Ting He, Jiajia Ru, Yutong Feng, Dapeng Bi, Jiansheng Zhang, Feng Gu, Chi Zhang, Jinhu Yang. Templated spherical coassembly strategy to fabricate MoS2/C hollow spheres with physical/chemical polysulfides trapping for lithium-sulfur batteries [J]. J. Mater. Sci. Technol., 2022, 98(0): 136-142. |
[10] | Li Liu, Jian-Tang Jiang, Xiang-Yuan Cui, Bo Zhang, Liang Zhen, Simon P. Ringer. Correlation between precipitates evolution and mechanical properties of Al-Sc-Zr alloy with Er additions [J]. J. Mater. Sci. Technol., 2022, 99(0): 61-72. |
[11] | Jingqi Chen, Xianlei Hu, Haitao Gao, Shu Yan, Shoudong Chen, Xianghua Liu. Graphene-wrapped MnCO3/Mn3O4 nanocomposite as an advanced anode material for lithium-ion batteries: Synergistic effect and electrochemical performances [J]. J. Mater. Sci. Technol., 2022, 99(0): 9-17. |
[12] | Biao Zhao, Yang Li, Qingwen Zeng, Bingbing Fan, Lei Wang, Rui Zhang, Renchao Che. Growth of magnetic metals on carbon microspheres with synergetic dissipation abilities to broaden microwave absorption [J]. J. Mater. Sci. Technol., 2022, 107(0): 100-110. |
[13] | Chunyang Gao, Yixiao Jiang, Tingting Yao, Ang Tao, Xuexi Yan, Xiang Li, Chunlin Chen, Xiu-Liang Ma, Hengqiang Ye. Atomic origin of magnetic coupling of antiphase boundaries in magnetite thin films [J]. J. Mater. Sci. Technol., 2022, 107(0): 92-99. |
[14] | Ziqi Guan, Jing Bai, Jianglong Gu, Xinzeng Liang, Die Liu, Xinjun Jiang, Runkai Huang, Yudong Zhang, Claude Esling, Xiang Zhao, Liang Zuo. First-principles investigation of B2 partial disordered structure, martensitic transformation, elastic and magnetic properties of all-d-metal Ni-Mn-Ti Heusler alloys [J]. J. Mater. Sci. Technol., 2021, 68(0): 103-111. |
[15] | Hemdan S.H. Mohamed, Mohamed Rabia, Xian-Gang Zhou, Xu-Sen Qin, Gomaa Khabiri, Mohamed Shaban, Hussein A. Younus, S. Taha, Zhi-Yi Hu, Jing Liu, Yu Li, Bao-Lian Su. Phase-junction Ag/TiO2 nanocomposite as photocathode for H2 generation [J]. J. Mater. Sci. Technol., 2021, 83(0): 179-187. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||