J. Mater. Sci. Technol. ›› 2022, Vol. 123: 154-158.DOI: 10.1016/j.jmst.2021.09.070
• Letter • Previous Articles Next Articles
Jinhu Zhanga,b,c, Min Qia,c,d, Haisheng Xua,c,d, Hao Wange, Yingjie Maa,c,d,*(), Dongsheng Xua,c,d,*(
), Rui Yanga,c,d
Published:
2022-10-01
Online:
2022-09-30
Contact:
Yingjie Ma,Dongsheng Xu
About author:
dsxu@imr.ac.cn (D. Xu)Jinhu Zhang, Min Qi, Haisheng Xu, Hao Wang, Yingjie Ma, Dongsheng Xu, Rui Yang. A phase-field model for simulating the growth of α sideplates with branching in titanium alloys[J]. J. Mater. Sci. Technol., 2022, 123: 154-158.
Fig. 2. Morphology of α sideplates with branching at τ=7 × 104 under 1023 K (a-c), 1073 K (d-f) and 1123 K (g-i) respectively. (a, d, g) represent the morphology of α sideplates, (b, e, h) and (c, f, i) represent the distributions of Al and V respectively.
Fig. 3. Growth process of α branching from τ=1 × 104-7 × 104 under 1023 K. The pictures correspond to the position of the rectangular box in Fig. 2(a).
Fig. 4. SEM images of α colony in Ti-6Al-2Sn-4Zr-6Mo (a) and Ti-6Al-4V (b-d) alloys. The insets in (b) show the corresponding orientation map of α colony. (e) The schematics of the growth mechanism of α sideplates with branching in one α colony.
[1] |
D. Banerjee, J.C. Williams, Acta Mater 61 (2013) 844-879.
DOI URL |
[2] | G. Lütjering, J.C. Williams, Titanium, Springer, Berlin, Heidelberg, 2007 second ed.ed.. |
[3] |
Z. Sun, S. Guo, H. Yang, Acta Mater 61 (2013) 2057-2064.
DOI URL |
[4] | Y. Wang, N. Ma, Q. Chen, F. Zhang, S.L. Chen, Y.A. Chang, JOM 57 (2005) 32-39. |
[5] |
W.W. Mullins, R.F. Sekerka, J. Appl. Phys. 34 (1963) 323-329.
DOI URL |
[6] | N. Ma, F. Yang, C. Shen, G. Wang, G. Viswanathan, P. Collins, D.S. Xu, R. Yang, H. Fraser, Y. Wang, M. Niinomi, in: Ti-2007: Science and Technology, Japan In- stitute of Metals, Tokyo, 2007, pp. 287-290. |
[7] | G. Wang, D.S. Xu, R. Yang, Acta Phys. Sin. 58 (2009) s343-s348. |
[8] |
M. Yang, G. Wang, C.Y. Teng, D.S. Xu, J. Zhang, R. Yang, Y. Wang, Acta Metall. Sin. 48 (2012) 148-158.
DOI URL |
[9] |
G. Choudhuri, S. Chakraborty, D. Srivastava, G.K. Dey, Results Phys 3 (2013) 7-13.
DOI URL |
[10] |
H. Sharma, S. M.C. van Bohemen, R.H. Petrov, J. Sietsma, Acta Mater 58 (2010) 2399-2407.
DOI URL |
[11] |
S.L. Semiatin, P.S. Poteet, Metall. Mater. Trans. A 39 (2008) 2538-2541.
DOI URL |
[12] |
J. Sun, M. Qi, J. Zhang, X. Li, H. Wang, Y. Ma, D. Xu, J. Lei, R. Yang, J. Mater. Sci. Technol. 71 (2021) 98-108.
DOI URL |
[13] |
E. S.K. Menon, H.I. Aaronson, Acta Metall 35 (1987) 549-563.
DOI URL |
[14] |
Q. Chen, N. Ma, K.S. Wu, Y. Wang, Scr. Mater. 50 (2004) 471-476.
DOI URL |
[15] | F. Zhang, S.L. Chen, Y.A. Chang, N. Ma, Y. Wang, Phase Equilib. Diffus. 28 (2007) 115-120. |
[16] |
Q. Luo, Y. Guo, B. Liu, Y. Feng, J. Zhang, Q. Li, K. Chou, J. Mater. Sci. Technol. 44 (2020) 171-190.
DOI |
[17] |
T. Xie, H. Shi, H. Wang, Q. Luo, Q. Li, K.-C. Chou, J. Mater. Sci. Technol. 97 (2022) 147-155.
DOI URL |
[18] |
N. Zhou, D.C. Lv, H.L. Zhang, D. McAllister, F. Zhang, M.J. Mills, Y. Wang, Acta Mater 65 (2014) 270-286.
DOI URL |
[19] |
J.Y. Zhang, F.Z. Dai, Z.P. Sun, W.Z. Zhang, J. Mater. Sci. Technol. 67 (2021) 50-60.
DOI URL |
[20] |
J.H. Zhang, X.X. Li, D.S. Xu, C.Y. Teng, H. Wang, L. Yang, H.T. Ju, H.S. Xu, Z. C. Meng, Y.J. Ma, Y. Wang, R. Yang, J. Mater. Sci. Technol. 90 (2021) 168-182.
DOI URL |
[21] |
J.H. Zhang, H.T. Ju, H.S. Xu, L. Yang, Z.C. Meng, C. Liu, P. Sun, J.K. Qiu, C.G. Bai, D. S. Xu, R. Yang, J. Mater. Sci. Technol. 94 (2021) 1-9.
DOI URL |
[22] |
M. Yang, G. Wang, T. Liu, W.J. Zhao, D.S. Xu, Acta Metall. Sin. 30 (2017) 745-752.
DOI URL |
[23] |
S.S. Huang, J.H. Zhang, Y.J. Ma, S.L. Zhang, S.S. Youssef, M. Qi, H. Wang, J.K. Qiu, D. S. Xu, J.F. Lei, R. Yang, J. Alloys Compd. 791 (2019) 575-585.
DOI URL |
[24] |
D. Qiu, P.Y. Zhao, R.P. Shi, Y. Wang, W.J. Lu, Comput. Mater. Sci. 124 (2016) 282-289.
DOI URL |
[25] |
S. Balachandran, A. Kashiwar, A. Choudhury, D. Banerjee, R.P. Shi, Y. Wang, Acta Mater 106 (2016) 374-387.
DOI URL |
[26] |
Y. Zheng, R.E.A. Williams, G.B. Viswanathan, W.A.T. Clark, H.L. Fraser, Acta Mater 150 (2018) 25-39.
DOI URL |
[1] | J. Ding, A. Inoue, F.L. Kong, S.L. Zhu, Y.L. Pu, E. Shalaan, A.A. Al-Ghamdi, A.L. Greer. Novel heating-and deformation-induced phase transitions and mechanical properties for multicomponent Zr50M50, Zr50(M,Ag)50 and Zr50(M,Pd)50 (M = Fe,Co,Ni,Cu) amorphous alloys [J]. J. Mater. Sci. Technol., 2022, 104(0): 109-118. |
[2] | Seungmi Kwak, Jaehwang Kim, Hongsheng Ding, Xuesong Xu, Ruirun Chen, Jingjie Guo, Hengzhi Fu. Using multiple regression analysis to predict directionally solidified TiAl mechanical property [J]. J. Mater. Sci. Technol., 2022, 104(0): 285-291. |
[3] | Mehmet R. Abul, Robert F. Cochrane, Andrew M. Mullis. Microstructural development and mechanical properties of drop tube atomized Al-2.85 wt% Fe [J]. J. Mater. Sci. Technol., 2022, 104(0): 41-51. |
[4] | Shengfeng Zhou, Min Xie, Changyi Wu, Yanliang Yi, Dongchu Chen, Lai-Chang Zhang. Selective laser melting of bulk immiscible alloy with enhanced strength: Heterogeneous microstructure and deformation mechanisms [J]. J. Mater. Sci. Technol., 2022, 104(0): 81-87. |
[5] | Qimin Shi, Shoufeng Yang, Yi Sun, Yifei Gu, Ben Mercelis, Shengping Zhong, Bart Van Meerbeek, Constantinus Politis. In-situ formation of Ti-Mo biomaterials by selective laser melting of Ti/Mo and Ti/Mo2C powder mixtures: A comparative study on microstructure, mechanical and wear performance, and thermal mechanisms [J]. J. Mater. Sci. Technol., 2022, 115(0): 81-96. |
[6] | Hui Shen, Qingquan Zhang, Ying Yang, Yang Ren, Yanbao Guo, Yafeng Yang, Zhonghan Li, Zhiwei Xiong, Xiangguang Kong, Zhihui Zhang, Fangmin Guo, Lishan Cui, Shijie Hao. Selective laser melted high Ni content TiNi alloy with superior superelasticity and hardwearing [J]. J. Mater. Sci. Technol., 2022, 116(0): 246-257. |
[7] | Wu Qi, Wenrui Wang, Xiao Yang, Lu Xie, Jiaming Zhang, Dongyue Li, Yong Zhang. Effect of Zr on phase separation, mechanical and corrosion behavior of heterogeneous CoCrFeNiZrx high-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 109(0): 76-85. |
[8] | Yue Wu, Xiaofan Zhang, Boyi Wang, Jingxuan Liang, Zipei Zhang, Jiawei Yang, Ximeng Dong, Shuqi Zheng, Huai-zhou Zhao. Decoupling of thermoelectric transport performance of Ag doped and Se alloyed tellurium induced by carrier mobility compensation [J]. J. Mater. Sci. Technol., 2022, 101(0): 71-79. |
[9] | Yingmei Tan, Ruirun Chen, Hongze Fang, Yangli Liu, Hongzhi Cui, Yanqing Su, Jingjie Guo, Hengzhi Fu. Enhanced strength and ductility in Ti46Al4Nb1Mo alloys via boron addition [J]. J. Mater. Sci. Technol., 2022, 102(0): 16-23. |
[10] | Wenjun Lu, Jianjun Li. Synergetic deformation mechanism in hierarchical twinned high-entropy alloys [J]. J. Mater. Sci. Technol., 2022, 102(0): 80-88. |
[11] | Jiantao Fan, Liming Fu, Yanle Sun, Feng Xu, Yi Ding, Mao Wen, Aidang Shan. Unveiling the precipitation behavior and mechanical properties of Co-free Ni47-xFe30Cr12Mn8AlxTi3 high-entropy alloys [J]. J. Mater. Sci. Technol., 2022, 118(0): 25-34. |
[12] | C.L. Jia, L.H. Wu, P. Xue, H. Zhang, D.R. Ni, B.L. Xiao, Z.Y. Ma. Static spheroidization and its effect on superplasticity of fine lamellae in nugget of a friction stir welded Ti-6Al-4V joint [J]. J. Mater. Sci. Technol., 2022, 119(0): 1-10. |
[13] | Lulu Guo, Lina Zhang, Joel Andersson, Olanrewaju Ojo. Additive manufacturing of 18% nickel maraging steels: Defect, structure and mechanical properties: A review [J]. J. Mater. Sci. Technol., 2022, 120(0): 227-252. |
[14] | Xiaodong Lin, Qunjia Peng, En-Hou Han, Wei Ke. Deformation and cracking behaviors of proton-irradiated 308L stainless steel weld metal strained in simulated PWR primary water [J]. J. Mater. Sci. Technol., 2022, 120(0): 36-52. |
[15] | Jinlong Su, Xiankun Ji, Jin Liu, Jie Teng, Fulin Jiang, Dingfa Fu, Hui Zhang. Revealing the decomposition mechanisms of dislocations and metastable α' phase and their effects on mechanical properties in a Ti-6Al-4V alloy [J]. J. Mater. Sci. Technol., 2022, 107(0): 136-148. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||