J. Mater. Sci. Technol. ›› 2022, Vol. 124: 86-101.DOI: 10.1016/j.jmst.2022.01.032
• Research Article • Previous Articles Next Articles
Rui Lia, Li Liua,*(), Yu Cuib, Rui Liua, Lei Fanc, Min Caod, Zhongfen Yua, Zhiyong Chenb, Qingjiang Wangb, Fuhui Wanga
Received:
2021-12-29
Revised:
2022-01-13
Accepted:
2022-01-14
Published:
2022-10-10
Online:
2022-04-05
Contact:
Li Liu
About author:
∗E-mail address: liuli@mail.neu.edu.cn (L. Liu).Rui Li, Li Liu, Yu Cui, Rui Liu, Lei Fan, Min Cao, Zhongfen Yu, Zhiyong Chen, Qingjiang Wang, Fuhui Wang. Corrosion behavior of Ti60 alloy under continuous NaCl solution spraying at 600 °C[J]. J. Mater. Sci. Technol., 2022, 124: 86-101.
Al | Sn | Zr | Ta | Mo | Si | C | Ti |
---|---|---|---|---|---|---|---|
5.7 | 3.7 | 3.5 | 1.0 | 0.4 | 0.4 | 0.05 | Bal. |
Table 1. Chemical composition of the Ti60 alloy (wt.%).
Al | Sn | Zr | Ta | Mo | Si | C | Ti |
---|---|---|---|---|---|---|---|
5.7 | 3.7 | 3.5 | 1.0 | 0.4 | 0.4 | 0.05 | Bal. |
Fig. 1. Macrographs of the Ti60 alloy exposed to continuous NaCl solution spraying at 600 °C for 30 s, 5 min, 20 min, 1 h, 10 h, 20 h, 50 h and 100 h.
Fig. 2. Surface morphologies of the Ti60 alloy exposed to continuous NaCl solution spraying for 30 s at 600 °C: (a) SEM morphology, (b) CLSM two-dimensional morphologies, (c) three-dimensional morphologies (including the depth of z-axis focal plane), (d) statistical map of NaCl particles and (e) SEM morphology of NaCl deposition on oxide.
Fig. 4. Mass gain curves of the Ti60 alloy exposed to different environments for 100 h at 600 °C: H2O + O2 (), continuous NaCl solution spraying () and solid NaCl deposit film in H2O + O2 ().
Fig. 5. SEM morphologies of the Ti60 alloy after corrosion in continuous NaCl solution spraying for 1 h at 600 °C: (a) surface morphology and an enlarged picture, (b) EDS of surface analysis and (c) cross-section morphology.
Fig. 6. SEM morphologies of the Ti60 alloy after corrosion in continuous NaCl solution spraying for 10 h at 600 °C: (a) surface morphology and an enlarged picture, (b) EDS of surface analysis and (c) cross-section morphology.
Fig. 7. SEM morphologies of the Ti60 alloy after corrosion in continuous NaCl solution spraying for 20 h at 600 °C: (a) surface morphology and an enlarged picture, (b) EDS of surface analysis and (c) cross-section morphology.
Fig. 8. SEM morphologies of the Ti60 alloy after corrosion in continuous NaCl solution spraying for 100 h at 600 °C: (a) surface morphology and an enlarged picture, (b) cross-section morphology with the characteristics marked and (c-e) EDS analysis of area 1-3 marked in (b).
Fig. 9. XRD patterns of the corrosion products of the Ti60 alloy after corrosion in continuous NaCl solution spraying for 100 h at 600 °C: (a) the corrosion products scratched from the samples, (b) the inner layer near to the based metal.
Fig. 10. XPS spectra of the outer and the oxide layer neared the based metal, showing the corrosion products in the Ti60 alloy after corrosion in continuous NaCl solution spraying for 100 h at 600 °C: (a) Ti, (b) Al, (c) Sn, (d) Zr, (e) Na, and (f) Cl.
Fig. 11. EPMA results of the corrosion products formed in continuous NaCl solution spraying on the Ti60 alloy including main elements Ti, Al, Sn, Zr, Na, O and Cl after corrosion (a) 20 h and (b) 100 h at 600 °C.
Fig. 12. TEM morphologies of the corrosion products of the Ti60 alloy after corrosion in continuous NaCl solution spraying for 100 h at 600 °C: (a) inner layer and (b) outer layer.
Fig. 13. Observation of corrosion products with lamellar structures in the inner layer: (a) bright-field image, (b) SAED pattern and (c) EDS analysis of the selected area.
Fig. 14. Observation of corrosion products with strip-shaped structures in the inner layer: (a) bright-field image, (b) SAED pattern and (c) EDS analysis of the selected area.
Fig. 15. Observation of corrosion products with nanocrystalline structures in the inner layer: (a) bright-field image, (b) SAED pattern and (c) EDS analysis of the selected area.
Fig. 16. TEM elemental mappings of the corrosion products of the Ti60 alloy after corrosion for 100 h in continuous NaCl solution spraying at 600 °C: (a) the inner layer and (b) the outer layer.
Fig. 17. Observation of the NaCl deposition on the surfa ce of the sample in continuous NaCl solution spraying for different time: (a) 5 min, (b) 20 min, (c) 20 h and (d) 50 h.
Fig. 18. Overlay of the theoretical predominance diagrams at 600 °C and 1 atm pressure as determined by HSC Chemistry 6.0 software from the thermodynamic databases OwnDB6. HSC and MainDB6. HSC: (a) M-O-Cl (M = Ti, Al, Sn and Zr) for pure constituents and (b) for Ti-TiCl4-Ti2O, Ti-TiCl4-TiO and Ti-TiCl4-TiO2.
Chemical reaction | ΔGo (KJ mol-1) |
---|---|
Ti + O2(g) ↔ TiO2 Ti + 2H2O(g) ↔ TiO2 + 2H2 2Ti + H2O ↔ Ti2O + H2(g) 4NaCl(s) + 2TiO2(s) + O2(g) ↔ 2Na2TiO3(s) + 2Cl2(g) 4NaCl(s) + 2TiO2(s) + 2H2O(g) ↔ 2Na2TiO3(s) + 4HCl(g) 4NaCl(g) + O2(g) + 2TiO2 ↔ 2Na2TiO3 + 2Cl2(g) 4NaCl(g) + 2H2O(g) + 2TiO2 ↔ 2Na2TiO3 + 4HCl(g) Ti + 2Cl2(g) ↔ TiCl4(g) Ti + 4HCl(g) ↔ TiCl4(g) + 2H2(g) TiCl4(g) + O2(g) ↔ TiO2 + 2Cl2(g) 2TiCl4(g) + O2(g) ↔ 2TiO + 4Cl2(g) 4TiCl4(g) + O2(g) ↔ 2Ti2O + 8Cl2(g) 4Al + 3O2(g) ↔ 2Al2O3 2Al + 3H2O(g) ↔ Al2O3 + 3H2(g) 2Al + 3Cl2(g) ↔ 2AlCl3(g) 2Al + 6HCl(g) ↔ 2AlCl3(g) + 3H2(g) 4AlCl3(g) + 3O2(g) ↔ 2Al2O3 + 6Cl2(g) 2AlCl3(g) + 3H2O ↔ Al2O3 + 6HCl(g) Zr + O2(g) ↔ ZrO2 Zr + 2H2O(g) ↔ ZrO2 + 2H2(g) Zr + 2Cl2(g) ↔ ZrCl4(g) Zr + 4HCl(g) ↔ ZrCl4(g) + 2H2(g) ZrCl4(g) + O2(g) ↔ ZrO2 + 2Cl2(g) ZrCl4(g) + 2H2O ↔ ZrO2 + 4HCl(g) Sn + O2(g) ↔ SnO2 Sn + Cl2(g) ↔ SnCl2(g) Sn + 2Cl2(g) ↔ SnCl4(g) Sn + 2HCl(g) ↔ SnCl2(g) + H2(g) SnCl2(g) + O2(g) ↔ SnO2 + Cl2(g) SnCl4(g) + O2(g) ↔ SnO2 + 2Cl2(g) SnCl4(g) + 2H2O ↔ SnO2 + 4HCl(g) Si + O2(g) = SiO2 Si + 2H2O(g) = SiO2 + 2H2(g) Si + 2Cl2(g) = SiCl4(g) Si + 4HCl(g) = SiCl4(g) + 2H2(g) SiCl4(g) + O2(g) = SiO2 + 2Cl2(g) SiCl4(g) + 2H2O(g) = SiO2 + 4HCl(g) | -785.13 -385.82 -304.91 354.76 354.04 -36.81 -37.53 -656.29 -256.26 -128.84 396.41 1616.03 -2803.8 -802.94 -1082.05 -482.01 -639.7 -444.71 -933.2 -533.89 -768.04 -368.01 -165.16 -248.4 -399.98 -222.19 -360.46 -22.17 -177.79 -39.51 -122.75 -752.54 -353.24 -547.16 -147.14 -205.38 -206.10 |
Table 2. Reactions proposed for the mechanisms of the chemical reactions and their corresponding values of standard Gibbs free-energy calculated by HSC Chemistry 6.0 software from the thermodynamic databases OwnDB6. HSC and MainDB6. HSC.
Chemical reaction | ΔGo (KJ mol-1) |
---|---|
Ti + O2(g) ↔ TiO2 Ti + 2H2O(g) ↔ TiO2 + 2H2 2Ti + H2O ↔ Ti2O + H2(g) 4NaCl(s) + 2TiO2(s) + O2(g) ↔ 2Na2TiO3(s) + 2Cl2(g) 4NaCl(s) + 2TiO2(s) + 2H2O(g) ↔ 2Na2TiO3(s) + 4HCl(g) 4NaCl(g) + O2(g) + 2TiO2 ↔ 2Na2TiO3 + 2Cl2(g) 4NaCl(g) + 2H2O(g) + 2TiO2 ↔ 2Na2TiO3 + 4HCl(g) Ti + 2Cl2(g) ↔ TiCl4(g) Ti + 4HCl(g) ↔ TiCl4(g) + 2H2(g) TiCl4(g) + O2(g) ↔ TiO2 + 2Cl2(g) 2TiCl4(g) + O2(g) ↔ 2TiO + 4Cl2(g) 4TiCl4(g) + O2(g) ↔ 2Ti2O + 8Cl2(g) 4Al + 3O2(g) ↔ 2Al2O3 2Al + 3H2O(g) ↔ Al2O3 + 3H2(g) 2Al + 3Cl2(g) ↔ 2AlCl3(g) 2Al + 6HCl(g) ↔ 2AlCl3(g) + 3H2(g) 4AlCl3(g) + 3O2(g) ↔ 2Al2O3 + 6Cl2(g) 2AlCl3(g) + 3H2O ↔ Al2O3 + 6HCl(g) Zr + O2(g) ↔ ZrO2 Zr + 2H2O(g) ↔ ZrO2 + 2H2(g) Zr + 2Cl2(g) ↔ ZrCl4(g) Zr + 4HCl(g) ↔ ZrCl4(g) + 2H2(g) ZrCl4(g) + O2(g) ↔ ZrO2 + 2Cl2(g) ZrCl4(g) + 2H2O ↔ ZrO2 + 4HCl(g) Sn + O2(g) ↔ SnO2 Sn + Cl2(g) ↔ SnCl2(g) Sn + 2Cl2(g) ↔ SnCl4(g) Sn + 2HCl(g) ↔ SnCl2(g) + H2(g) SnCl2(g) + O2(g) ↔ SnO2 + Cl2(g) SnCl4(g) + O2(g) ↔ SnO2 + 2Cl2(g) SnCl4(g) + 2H2O ↔ SnO2 + 4HCl(g) Si + O2(g) = SiO2 Si + 2H2O(g) = SiO2 + 2H2(g) Si + 2Cl2(g) = SiCl4(g) Si + 4HCl(g) = SiCl4(g) + 2H2(g) SiCl4(g) + O2(g) = SiO2 + 2Cl2(g) SiCl4(g) + 2H2O(g) = SiO2 + 4HCl(g) | -785.13 -385.82 -304.91 354.76 354.04 -36.81 -37.53 -656.29 -256.26 -128.84 396.41 1616.03 -2803.8 -802.94 -1082.05 -482.01 -639.7 -444.71 -933.2 -533.89 -768.04 -368.01 -165.16 -248.4 -399.98 -222.19 -360.46 -22.17 -177.79 -39.51 -122.75 -752.54 -353.24 -547.16 -147.14 -205.38 -206.10 |
Fig. 19. Diagram of the corrosion mechanism of the Ti60 alloy in a continuous NaCl solution spraying environment at 600 °C: (a) initial corrosion mechanism of Ti60 alloy under NaCl particles deposited on the surface in NaCl solution spray at 600 °C and (b) latter corrosion mechanism of Ti60 alloy under formation compact TiO2 out layer in NaCl solution spray at 600 °C.
[1] |
G. Lutjering, Mater. Sci. Eng. A 243 (1998) 32-45.
DOI URL |
[2] |
W.J. Evans, Mater. Sci. Eng. A 243 (1998) 89-96.
DOI URL |
[3] |
S.L. Semiatin, V. Seetharaman, I. Weiss, Mater. Sci. Eng. A 243 (1998) 1-24.
DOI URL |
[4] | D. Eylon, S.R. Seagle, J. Mater. Sci. Technol. 17 (2001) 439-443. |
[5] |
W. Jia, W. Zeng, Y. Zhou, J. Liu, Q. Wang, Mater. Sci. Eng. A 528 (2011) 4068-4074.
DOI URL |
[6] |
W. Li, Z. Chen, J. Liu, Q. Wang, G. Sui, Mater. Sci. Eng. A 688 (2017) 322-329.
DOI URL |
[7] |
Y. Shu, F. Wang, W. Wu, Oxid. Met. 51 (1999) 97-110.
DOI URL |
[8] |
Y. Shu, F. Wang, W. Wu, Oxid. Met. 54 (2000) 457-471.
DOI URL |
[9] |
F. Wang, S. Geng, S. Zhu, Oxid. Met. 58 (2002) 185-195.
DOI URL |
[10] |
F. Wang, Y. Shu, Oxid. Met. 59 (2003) 201-214.
DOI URL |
[11] |
C. Wang, F. Jiang, F. Wang, Oxid. Met. 62 (2003) 1-13.
DOI URL |
[12] |
L. Liu, Y. Li, C. Zeng, F. Wang, Electrochim. Acta 51 (2006) 4736-4743.
DOI URL |
[13] |
L. Liu, Y. Li, F. Wang, Sci. China Technol. Sci. 55 (2012) 369-376.
DOI URL |
[14] |
Y. Tang, L. Liu, Y. Li, F. Wang, J. Electrochem. Soc. 158 (2011) C237-C241.
DOI URL |
[15] |
Y. Tang, L. Liu, Y. Li, F. Wang, Electrochem. Commun. 12 (2010) 191-193.
DOI URL |
[16] |
D.L. Douglass, P. Kofstad, A. Rahmel, G.C. Wood, Oxid. Met. 45 (1996) 529-620.
DOI URL |
[17] |
D. Poquillon, C. Armand, J. Huez, Oxid. Met. 79 (2013) 249-259.
DOI URL |
[18] |
O.W. Johnson, S.H. Paek, J.W. Deford, J. Appl. Phys. 46 (1975) 1026-1033.
DOI URL |
[19] |
S. Taniguchi, N. Hongawara, T. Shibata, Mater. Sci. Eng. A 307 (2001) 107-112.
DOI URL |
[20] |
A. Zeller, F. Dettenwanger, M. Schutze, Intermetallics 10 (2002) 59-72.
DOI URL |
[21] |
Y. Shu, F. Wang, W. Wu, Oxid. Met. 52 (1999) 463-473.
DOI URL |
[22] |
L. Fan, L. Liu, M. Cao, Z. Yu, Y. Li, M. Chen, F. Wang, Metals 6 (2016) 72-83.
DOI URL |
[23] |
L. Fan, L. Liu, Z. Yu, M. Cao, Y. Li, F. Wang, Sci. Rep. 6 (2016) 29019.
DOI URL |
[24] |
L. Fan, L. Liu, Y. Cui, M. Cao, Z. Yu, E.E. Oguzie, Y. Li, F. Wang, Corros. Sci. 160 (2019) 108177.
DOI URL |
[25] |
C. Ciszak, I. Popa, J.M. Brossard, D. Monceau, S. Chevalier, Corros. Sci. 110 (2016) 91-104.
DOI URL |
[26] | C. Ciszak, I. Abdallah, I. Popa, J. Brossard, A. Put, D. Monceau, S. Chevalier, Cor- ros.Sci 172 (2020) 108611. |
[27] |
M. Cao, L. Liu, Z. Yu, L. Fan, L. Ying, F. Wang, Corros. Sci. 133 (2018) 165-177.
DOI URL |
[28] | G. Xie, Theory and Application of Molten Salt, 1st ed., Metallurgical Industry Press, Beijing, 1998. |
[29] |
C. Zhang, J. Lan, S. Wang, S. Han, H. Yang, Q. Niu, J. Wang, Q. Wang, Y. Xiang, Y. Wu, X. Zhang, H. Lin, X. Zhang, H. Qiao, Y. Huang, Ceram. Int. 45 (2019) 24528-24537.
DOI |
[30] |
H.F. Franzen, M.X. Umana, J.R. McCreary, R.J. Thorn, J. Solid State Chem. 18 (1976) 363-368.
DOI URL |
[31] |
Z. Li, L. Tang, X. Liu, T. Song, Q. Xu, H. Liu, Y. Wang, Electrochim. Acta 310 (2019) 1-12.
DOI URL |
[32] |
D. Fregonese, A. Glisenti, S. Mortara, G.A. Rizzi, E. Tondello, S. Bresadola, J. Mol. Catal. A Chem. 178 (2002) 115-123.
DOI URL |
[33] |
W.K. Choi, H.J. Jung, S.K. Koh, J. Vac. Sci. Technol. A 14 (1996) 359-366.
DOI URL |
[34] |
D.D. Sarma, C.N.R. Rao, J. Electron Spectrosc. Relat. Phenom. 20 (1980) 25-45.
DOI URL |
[35] | Y. Tang, X. Shen, Z. Liu, Y. Qiao, L. Yang, D. Lu, J. Zou, J. Xu, Acta Metall. Sin. 58 (2022) 324-333. (in Chinese) |
[36] | N. Folkeson, T. Jonsson, M. Halvarsson, L.G. Johansson, J.E. Svensson, Mater. Corros. 62 (2011) 606-615. |
[37] | H.L. Chang, M.S. Liang, Appl. Phys. Lett. 97 (2010) 04912. |
[38] |
N. Israelsson, K. Hellstrom, J.E. Svensson, L.G. Johansson, Oxid. Met. 83 (2015) 1-27.
DOI URL |
[39] |
P. Dumas, C. St. John, Oxid. Met. 10 (1976) 127-134.
DOI URL |
[40] |
C. Ciszak, I. Popa, J. Brossard, D. Monceau, S. Chevalier, Oxid. Met. 87 (2017) 729-740.
DOI URL |
[41] |
S. Wang, K. Zheng, Z. Zheng, J. Long, J. Wang, Mater. Chem. Phys. 275 (2022) 125324.
DOI URL |
[1] | Yonghua Sun, Yuyu Zhao, He Zhang, Youjie Rong, Runhua Yao, Yi Zhang, Xiaohong Yao, Ruiqiang Hang. Corrosion behavior, antibacterial ability, and osteogenic activity of Zn-incorporated Ni-Ti-O nanopore layers on NiTi alloy [J]. J. Mater. Sci. Technol., 2022, 97(0): 69-78. |
[2] | Min Cheng, Zhengguan Lu, Jie Wu, Ruipeng Guo, Junwei Qiao, Lei Xu, Rui Yang. Effect of thermal induced porosity on high-cycle fatigue and very high-cycle fatigue behaviors of hot-isostatic-pressed Ti-6Al-4V powder components [J]. J. Mater. Sci. Technol., 2022, 98(0): 177-185. |
[3] | Yanxi Li, Pengfei Gao, Jingyue Yu, Shuo Jin, Shuqun Chen, Mei Zhan. Mesoscale deformation mechanisms in relation with slip and grain boundary sliding in TA15 titanium alloy during tensile deformation [J]. J. Mater. Sci. Technol., 2022, 98(0): 72-86. |
[4] | Lixia Ma, Min Wan, Weidong Li, Jie Shao, Xiaoning Han, Jichun Zhang. On the superplastic deformation mechanisms of near-α TNW700 titanium alloy [J]. J. Mater. Sci. Technol., 2022, 108(0): 173-185. |
[5] | Juan Li, Yaqun Xu, Wenlong Xiao, Chaoli Ma, Xu Huang. Development of Ti-Al-Ta-Nb-(Re) near-α high temperature titanium alloy: Microstructure, thermal stability and mechanical properties [J]. J. Mater. Sci. Technol., 2022, 109(0): 1-11. |
[6] | Jing Wu, Meng Li, Chuanchuan Lin, Pengfei Gao, Rui Zhang, Xuan Li, Jixi Zhang, Kaiyong Cai. Moderated crevice corrosion susceptibility of Ti6Al4V implant material due to albumin-corrosion interaction [J]. J. Mater. Sci. Technol., 2022, 109(0): 209-220. |
[7] | Mohammed Arroussi, Qing Jia, Chunguang Bai, Shuyuan Zhang, Jinlong Zhao, Zhizhou Xia, Zhiqiang Zhang, Ke Yang, Rui Yang. Inhibition effect on microbiologically influenced corrosion of Ti-6Al-4V-5Cu alloy against marine bacterium Pseudomonas aeruginosa [J]. J. Mater. Sci. Technol., 2022, 109(0): 282-296. |
[8] | Wei Wei, Shujiang Geng, Fuhui Wang. Evaluation of Ni-Fe base alloys as inert anode for low-temperature aluminium electrolysis [J]. J. Mater. Sci. Technol., 2022, 107(0): 216-226. |
[9] | Jinlong Su, Xiankun Ji, Jin Liu, Jie Teng, Fulin Jiang, Dingfa Fu, Hui Zhang. Revealing the decomposition mechanisms of dislocations and metastable α' phase and their effects on mechanical properties in a Ti-6Al-4V alloy [J]. J. Mater. Sci. Technol., 2022, 107(0): 136-148. |
[10] | X. Li, X.N. Wang, K. Liu, G.H. Cao, M.B. Li, Z.S. Zhu, S.J. Wu. Hierarchical structure and deformation behavior of a novel multicomponent β titanium alloy with ultrahigh strength [J]. J. Mater. Sci. Technol., 2022, 107(0): 227-242. |
[11] | Jinhu Zhang, Min Qi, Haisheng Xu, Hao Wang, Yingjie Ma, Dongsheng Xu, Rui Yang. A phase-field model for simulating the growth of α sideplates with branching in titanium alloys [J]. J. Mater. Sci. Technol., 2022, 123(0): 154-158. |
[12] | C.L. Jia, L.H. Wu, P. Xue, H. Zhang, D.R. Ni, B.L. Xiao, Z.Y. Ma. Static spheroidization and its effect on superplasticity of fine lamellae in nugget of a friction stir welded Ti-6Al-4V joint [J]. J. Mater. Sci. Technol., 2022, 119(0): 1-10. |
[13] | Cong Wu, Qinyang Zhao, Shixing Huang, Yongqing Zhao, Lei Lei, Junqiang Ren, Qiaoyan Sun, Lian Zhou. Deformation mechanisms in a β-quenched Ti-5321 alloy: In-situ investigation related to slip activity, orientation evolution and stress induced martensite [J]. J. Mater. Sci. Technol., 2022, 112(0): 36-48. |
[14] | Bin Wu, Hongliang Ming, Fanjiang Meng, Yifeng Li, Guangqing He, Jianqiu Wang, En-Hou Han. Effects of surface grinding for scratched alloy 690TT tube in PWR nuclear power plant: Microstructure and stress corrosion cracking [J]. J. Mater. Sci. Technol., 2022, 113(0): 229-245. |
[15] | MengCheng Deng, Shang Sui, Bo Yao, Liang Ma, Xin Lin, Jing Chen. Microstructure and room-temperature tensile property of Ti-5.7Al-4.0Sn-3.5Zr-0.4Mo-0.4Si-0.4Nb-1.0Ta-0.05C with near equiaxed β grain fabricated by laser directed energy deposition technique [J]. J. Mater. Sci. Technol., 2022, 101(0): 308-320. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||