J. Mater. Sci. Technol. ›› 2022, Vol. 124: 102-108.DOI: 10.1016/j.jmst.2022.01.022
• Research Article • Previous Articles Next Articles
Changwu Wan, Jie Jin, Xinyu Wei, Shizhuo Chen, Yi Zhang, Tenglong Zhu(), Hongxia Qu(
)
Received:
2021-12-03
Revised:
2022-01-20
Accepted:
2022-01-26
Published:
2022-10-10
Online:
2022-03-26
Contact:
Tenglong Zhu,Hongxia Qu
About author:
qhx@mail.njust.edu.cn (H. Qu).Changwu Wan, Jie Jin, Xinyu Wei, Shizhuo Chen, Yi Zhang, Tenglong Zhu, Hongxia Qu. Inducing the SnO2-based electron transport layer into NiFe LDH/NF as efficient catalyst for OER and methanol oxidation reaction[J]. J. Mater. Sci. Technol., 2022, 124: 102-108.
Fig. 2. SEM images of (a) SnO2/NF and (c) NiFe LDH@SnO2/NF. TEM images of (b) SnO2/NF and (d) NiFe LDH@SnO2/NF. (e) HRTEM images and (f) Electron diffraction (SAED) pattern of NiFe LDH@SnO2/NF. (g-k) HAADF STEM and EDX elemental mapping of NiFe LDH@SnO2/NF.
Fig. 3. (a) XRD patterns of NiFe LDH@SnO2/NF, NiFe LDH/NF and SnO2/NF. XPS spectra of (b) Fe 2p, (c) Ni 2p, (d) Sn 3d for NiFe LDH@SnO2/NF, NiFe LDH/NF and SnO2/NF.
Fig 4. (a) Polarization curves, (b) Over potential at 100 mA cm-2, (c) Tafel slopes, (d) Capacitance current as a function of scan rates and (e) Nyquist plots at a potential of 0.4 V(vs SCE) of SnO2/NF, NiFe LDH/NF and NiFe LDH@SnO2/NF with different amount of Sn feed in 1.0 M KOH. (f) Durability test for NiFe LDH@SnO2/NF in 1.0 M KOH under 100 mA cm-2.
Fig. 5. (a) LSV polarization curves. (b) Voltage at 10 mA cm-2 and 50 mA cm-2, (c) Tafel slopes, (d) Capacitance current as a function of scan rates and (e) EIS plot at a potential of 0.4 V(vs SCE) of different samples. (f) Durability test for NiFe LDH@SnO2/NF under 10 mA cm-2.
[1] | Z. Seh, J. Kibsgaard, C.F. Dickens, I. Chorkendorff, J.K. Nørskov, T.F. Jaramillo, Science 355 (2017) 6321. |
[2] |
J. Wang, M. Yan, K. Zhao, X. Liao, P. Wang, X. Pan, W. Yang, L. Mai, Adv. Mater. 29 (2017) 1604464.
DOI URL |
[3] | J. Zhang, Y. Huang, X. Lu, J. Yang, Y. Tong, A.C.S. Sustain, Chem. Eng. 9 (2021) 8306-8314. |
[4] | Y. Huang, L. Hu, R. Liu, Y. Hu, T. Xiong, W. Qiu, J. Tang, A. Pan, Y. Tong, Appl. Catal. B 251 (2019) 181-194. |
[5] |
J. Wang, F. Xu, H. Jin, Y. Chen, Y. Wang, Adv. Mater. 29 (2017) 1605838.
DOI URL |
[6] | X. Zou, Y. Zhang, Chem. Soc. Rev. 15 (2015) 5148-5180. |
[7] |
J. Liu, Z. Wang, K. Su, D. Xv, D. Zhao, J. Li, H. Tong, D. Qian, C. Yang, Z. Lu, ACS Appl. Mater. Interfaces 11 (2019) 25854-25862.
DOI URL |
[8] |
X. Xiao, D. Huang, X. Fu, M. Wen, X. Jiang, X. Lv, M. Li, L. Gao, S. Liu, M. Wang, C. Zhao, Y. Shen, ACS Appl. Mater. Interfaces 10 (2018) 4689-4696.
DOI URL |
[9] |
S. Li, H. Liang, C. Li, Y. Liu, J Mater Sci Technol 106 (2022) 19-27.
DOI URL |
[10] |
L. Chen, Y. Wang, X. Zhao, Y. Wang, Q. Li, Q. Wang, Y. Tang, Y. Lei, J. Mater. Sci. Technol. 110 (2022) 128-135.
DOI |
[11] |
J. Huang, P. Wang, P. Li, H. Yin, D. Wang, J. Mater. Sci. Technol. 93 (2021) 110-118.
DOI |
[12] |
C. Xiao, Y. Li, X. Lu, C. Zhao, Adv. Funct. Mater. 26 (2016) 3515-3523.
DOI URL |
[13] |
Y. Wu, F. Li, W.L. Chen, Q. Xiang, Y. Ma, H. Zhu, P. Tao, C. Song, W. Shang, T. Deng, J. Wu, Adv. Mater. 30 (2018) 1803151.
DOI URL |
[14] |
F. Yang, T. Xiong, P. Huang, S. Zhou, Q. Tan, H. Yan, Y. Huang, J. Tang, Chem. Eng. J. 423 (2021) 130279.
DOI URL |
[15] | Y. Hu, T. Xiong, J. Tang, Y. Huang, D. Adekoya, S. Zhang, Y. Tong, Mater. Today Phys 15 (2020) 100267. |
[16] |
Y. Jia, L. Zhang, G. Gao, H. Chen, B. Wang, J. Zhou, M. Soo, M. Hong, X. Yan, G. Qian, J. Zou, A. Du, X. Yao, Adv. Mater. 29 (2017) 1700017.
DOI URL |
[17] |
X. Zhao, S. Xu, L. Wang, X. Duan, F. Zhang, Nano Res 3 (2010) 200-210.
DOI URL |
[18] |
X. Li, W. Han, K. Xiao, T. Ouyang, N. Li, F. Peng, Z. Liu, Catal. Sci. Technol. 10 (2020) 4184-4190.
DOI URL |
[19] |
X. Long, J. Li, S. Xiao, K. Yan, Z. Wang, H. Chen, S. Yang, Angew. Chem. Int. Ed. 53 (2014) 7584-7588.
DOI PMID |
[20] |
J. Chen, Q. Long, K. Xiao, T. Ouyang, N. Li, S. Ye, Z. Liu, Sci. Bull. 66 (2021) 1063-1072.
DOI URL |
[21] |
Y. Wang, S. Tao, H. Lin, G. Wang, K. Zhao, R. Cai, K. Tao, C. Zhang, M. Sun, J. Hu, B. Huang, S. Yang, Nano Energy 81 (2021) 105606.
DOI URL |
[22] |
Y. Kong, Y. Wang, W. Chu, Z. Liu, J. Alloys Compd. 885 (2021) 160929.
DOI URL |
[23] |
P.F. Guo, Y. Yang, W.J. Wang, B. Zhu, W.T. Wang, Z.Y. Wang, J.L. Wang, K. Wang, Z.H. He, Z.T. Liu, Chem. Eng. J. 426 (2021) 130768.
DOI URL |
[24] |
C. Cao, D. Ma, Q. Xu, X. Wu, Q. Zhu, Adv. Funct. Mater. 29 (2019) 1807418.
DOI URL |
[25] |
T. Munonde, H. Zheng, Ultrason Sonochem 76 (2021) 105664.
DOI URL |
[26] |
X. Feng, Q. Jiao, W. Chen, Y. Dang, Z. Dai, S. Suib, J. Zhang, Y. Zhao, H. Li, C. Feng, Appl. Catal. B 286 (2016) 119869.
DOI URL |
[27] |
Zhang H, G. Shen, X. Liu, B. Ning, C. Shi, L. Pan, X. Zhang, Z. Huang, J. Zou, Chinese J. Catal. 42 (2021) 1732-1741.
DOI URL |
[28] | H. Qi, P. Zhang, H. Wang, Y. Cui, X. Liu, X. She, Y. Wen, T. Zhan, J. Colloid Inter- face Sci. 599 (2021) 370-380. |
[29] |
W. Jin, J. Chen, B. Liu, J. Hu, Z. Wu, W. Cai, G. Fu, Small 15 (2019) 1904210.
DOI URL |
[30] |
X. Lu, Y. Chen, S. Wang, S. Gao, X. Lou, Adv. Mater. 31 (2019) 1902339.
DOI URL |
[31] |
X. Wei, S. Wang, Z. Hua, L. Chen, J. Shi, ACS Appl. Mater. Interfaces 10 (2018) 25422-25428.
DOI URL |
[32] |
J. Li, R. Wei, X. Wang, Y. Zuo, X. Han, J. Arbiol, J. Llorca, Y. Yang, A. Cabot, C. Cui, Angew. Chem. Int. Ed. 59 (2020) 20826-20830.
DOI URL |
[33] |
B. Zhao, J. Liu, C. Xu, R. Feng, P. Sui, J. Luo, L. Wang, J. Zhang, J. Luo, X. Fu, Appl. Catal. B 285 (2021) 119800.
DOI URL |
[34] |
S. Huang, T. Ouyang, B. Zheng, M. Dan, Z. Liu, Angew. Chem. Int. Ed. 60 (2021) 9546-9552.
DOI URL |
[35] |
S. Huang, B. Zheng, Z. Tang, X. Mai, T. Ouyang, Z. Liu, Chem. Eng. J. 422 (2021) 130086.
DOI URL |
[36] | C. Kima, S.H. Kim, S. Lee, I. Kwon, S.H. Kim, S. Kim, C. Seok, Y.S. Park, Y. Kim, J. Energ. Chem. 64 (2022) 364-371. |
[37] |
Y. Guo, X. Zhou, J. Tang, S. Tanaka, Y.V. Kaneti, J. Na, B. Jiang, Y. Yamauchi, Y.S. Bando, Y. Sugahara, Nano Energy 75 (2020) 104913.
DOI URL |
[38] |
W. Ke, Y. Zhang, A.L. Imbault, Y. Li, Int. J. Hydrog. Energy 46 (2021) 20941-20949.
DOI URL |
[39] |
X. Yu, K. Ye, S. Zhang, J. Zhang, J. Yang, Y. Huang, H. Ji, Chem. Eng. J. 428 (2022) 131027.
DOI URL |
[40] |
T. Zhang, J. Du, P. Xi, C. Xu, ACS Appl. Mater. Interfaces 9 (2017) 362-370.
DOI URL |
[41] |
Q. Dong, C. Shuai, Z. Mo, N. Liu, G. Liu, J. Wang, H. Pei, Q. Jia, W. Liu, X. Guo, J. Solid State Chem. 296 (2021) 121967.
DOI URL |
[42] |
X. Wang, Y. Tuo, Y. Zhou, D. Wang, S. Wang, J. Zhang, Chem. Eng. J. 403 (2021) 126297.
DOI URL |
[43] |
B. Zhang, S. Chen, B. Wulan, J. Zhang, Chem. Eng. J. 421 (2021) 130003.
DOI URL |
[44] |
Q. Qian, J. Zhang, J. Li, Y. Li, X. Jin, Y. Zhu, Y. Liu, Z. Li, A. Ei-Harairy, C. Xiao, G. Zhang, Y. Xie, Angew. Chem. Int. Ed. 60 (2021) 5984-5993.
DOI URL |
[45] | R.L. Doyle, I.J. Godwin, M.P. Brandona, M.G. Lyonsa, Phys. Chem. Chem. Phys. 33 (2013) 13737-13783. |
[46] |
D. Voiry, M. Chhowalla, Y. Gogotsi, N.A. Kotov, Y. Li, R.M. Penner, R.E. Schaak, P.S. Weiss, ACS Nano 12 (2018) 9635-9638.
DOI URL |
[47] |
L. Cao, X. Gao, B. Zhang, X. Ou, J. Zhang, W. Luo, ACS Nano 14 (2020) 3610-3620.
DOI URL |
[48] |
T. Wang, D. Legut, Y. Fan, J. Qin, X. Li, Q. Zhang, Nano Lett 20 (2020) 6199-6205.
DOI URL |
[49] |
Y. Wang, B. Hou, Y. Wang, H. Lu, J. Guo, Q. Ning, J. Zhang, C. Lu, X. Wu, J. Mater. Chem. A 6 (2018) 6578-6586.
DOI URL |
[50] |
J. Long, J. Zhang, X. Xua, F. Wang, Mater. Chem. Phys. 254 (2020) 123496.
DOI URL |
[51] |
J. Hosseini, M. Abdolmaleki, H.R. Pouretedal, M.H. Keshavarz, Chinese J. Catal. 36 (2015) 1029-1034.
DOI URL |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||