J. Mater. Sci. Technol. ›› 2022, Vol. 124: 109-115.DOI: 10.1016/j.jmst.2022.02.020
• Letter • Previous Articles Next Articles
Z.H. Cao, B.N. Zhang, M.X. Huang()
Revised:
2021-12-31
Published:
2022-10-10
Online:
2022-09-27
Contact:
M.X. Huang
About author:
∗E-mail address: mxhuang@hku.hk (M.X. Huang)Z.H. Cao, B.N. Zhang, M.X. Huang. Comparing hydrogen embrittlement behaviors of two press hardening steels: 2 GPa vs. 1.5 GPa grade[J]. J. Mater. Sci. Technol., 2022, 124: 109-115.
Empty Cell | C | Mn | Si | Cr | V | Ti | B | Fe | Austenitization treatment |
---|---|---|---|---|---|---|---|---|---|
PHS1500 | 0.23 | 1.2 | 0.2 | 0.2 | - | - | 0.004 | Balance | 930 °C, 5 min |
PHS2000 | 0.33 | 1.49 | 0.13 | - | 0.16 | 0.03 | 0.002 | Balance | 900 °C, 5 min |
Table 1. Chemical composition (in wt.%) and austenitization treatment of PHS1500 and PHS2000.
Empty Cell | C | Mn | Si | Cr | V | Ti | B | Fe | Austenitization treatment |
---|---|---|---|---|---|---|---|---|---|
PHS1500 | 0.23 | 1.2 | 0.2 | 0.2 | - | - | 0.004 | Balance | 930 °C, 5 min |
PHS2000 | 0.33 | 1.49 | 0.13 | - | 0.16 | 0.03 | 0.002 | Balance | 900 °C, 5 min |
Type No. | Mechanical test type | Gauge length / width (mm) | Notch geometry / effective width (mm) | Method to introduce hydrogen |
---|---|---|---|---|
1 | SSRT test | 25 / 6 | - | Pre-charge with a current density of 0.1 mA/cm2 for various periods |
2 | 12 / 8 | Double round notch with a radius of 2 mm / 4 | ||
3 | CLT | 10 / 2 | - | Immersion during test |
Table 2. Gauge geometry of specimens and experiment conditions for various mechanical tests.
Type No. | Mechanical test type | Gauge length / width (mm) | Notch geometry / effective width (mm) | Method to introduce hydrogen |
---|---|---|---|---|
1 | SSRT test | 25 / 6 | - | Pre-charge with a current density of 0.1 mA/cm2 for various periods |
2 | 12 / 8 | Double round notch with a radius of 2 mm / 4 | ||
3 | CLT | 10 / 2 | - | Immersion during test |
Fig. 3. (a) The variation in time to fracture of PHS1500 and PHS2000 regarding different loading stresses; (b) the correlation between fracture probability and applied stress ratio.
Fig. 4. (a) Typical fracture surface overview of PHS1500 and (d) PHS2000, both SSRT-notched samples were charged for 15,000 s before straining. Arrows show the direction of crack propagation; (b) High magnification images of ductile MVC feature and (c) IG feature of PHS1500 taken from (a); (e) High magnification images of ductile MVC feature and (f) IG feature of PHS2000 taken from (d).
Fig. 5. (a) The J-integral-based resistance curves (J-R curves) measured from the side-grooved C(T) specimens at room temperature; (b) the corresponding fracture toughness in terms of K; (c) the complete stress-displacement curve of PHS notched samples under 250 minutes’ pre-charging; (d) the magnified regions in (c) after the respective peak stress.
[1] | O. Bouaziz, H. Zurob, M. Huang, Steel Res. Int. 84 (2013) 937-947. |
[2] |
A. Taub, E. De Moor, A. Luo, D.K. Matlock, J.G. Speer, U. Vaidya, Annu. Rev. Mater. Res. 49 (2019) 327-359.
DOI URL |
[3] |
H. Karbasian, A.E. Tekkaya, J. Mater. Process. Technol. 210 (2010) 2103-2118.
DOI URL |
[4] | T. Taylor, A. Clough, Mater. Sci. Technol. (United Kingdom) 34 (2018) 809-861. |
[5] | E. Billur, Hot Formed Steels, Elsevier Ltd, 2016. |
[6] |
M. Dadfarnia, P. Novak, D.C. Ahn, J.B. Liu, P. Sofronis, D.D. Johnson, I.M. Robertson, Adv. Mater. 22 (2010) 1128-1135.
DOI URL |
[7] |
J. Venezuela, Q. Liu, M. Zhang, Q. Zhou, A. Atrens, Corros. Rev. 34 (2016) 153-186.
DOI URL |
[8] |
A. Nagao, M. Dadfarnia, B.P. Somerday, P. Sofronis, R.O. Ritchie, J. Mech. Phys. Solids 112 (2018) 403-430.
DOI URL |
[9] |
J. Venezuela, F.Y. Lim, L. Liu, S. James, Q. Zhou, R. Knibbe, M. Zhang, H. Li, F. Dong, M.S. Dargusch, A. Atrens, Corros. Sci. 171 (2020) 108726.
DOI URL |
[10] |
M.R. Louthan, G.R. Caskey, J.A. Donovan, D.E. Rawl, Mater. Sci. Eng. 10 (1972) 357-368.
DOI URL |
[11] |
J.P. Hirth, Metall. Trans. A 11 (1980) 861-890.
DOI URL |
[12] | C.D. Beachem, Metall. Trans. 3 (1972) 441-455. |
[13] |
J. Venezuela, Q. Liu, M. Zhang, Q. Zhou, A. Atrens, Corros. Sci. 99 (2015) 98-117.
DOI URL |
[14] | H.F. Li, Q.Q. Duan, P. Zhang, Z.F. Zhang, Adv. Eng. Mater. 21 (2019) 1-6. |
[15] |
O. Barrera, D. Bombac, Y. Chen, T.D. Daff, E. Galindo-Nava, P. Gong, D. Haley, R. Horton, I. Katzarov, J.R. Kermode, C. Liverani, M. Stopher, F. Sweeney, J. Mater. Sci. 53 (2018) 6251-6290.
DOI PMID |
[16] | ASTM Standard E1820, ASTM B. Stand. i(2013) 1-54. |
[17] | X.K. Zhu, B.N. Leis, J. ASTM Int. 7 (2010) 130-158. |
[18] |
X.K. Zhu, J.A. Joyce, Eng. Fract. Mech. 85 (2012) 1-46.
DOI URL |
[19] |
H. Fuchigami, H. Minami, M. Nagumo, Philos. Mag. Lett. 86 (2006) 21-29.
DOI URL |
[20] |
L.W. Tsay, H.L. Lu, C. Chen, Corros. Sci. 50 (2008) 2506-2511.
DOI URL |
[21] |
K. Takasawa, Y. Wada, R. Ishigaki, R. Kayano, Mater. Trans. 51 (2010) 347-353.
DOI URL |
[22] | J.Y. Lee, J.L. Lee, W.Y. Choo, Current Solutions to Hydrogen Problems in Steels, ASM, Metals Park, OH, 1982, pp. 423-27. |
[23] |
S. Frappart, X. Feaugas, J. Creus, F. Thebault, L. Delattre, H. Marchebois, J. Phys. Chem. Solids 71 (2010) 1467-1479.
DOI URL |
[24] |
E.I. Galindo-Nava, B.I.Y. Basha, P.E.J. Rivera-Díaz-del-Castillo, J. Mater. Sci. Technol. 33 (2017) 1433-1447.
DOI |
[25] |
A. Shibata, T. Yonemura, Y. Momotani, M. heom Park, S. Takagi, Y. Madi, J. Besson, N. Tsuji, Acta Mater 210 (2021) 116828.
DOI URL |
[26] |
G. Krauss, Mater. Sci. Eng. A 273-275 (1999) 40-57.
DOI URL |
[27] |
C.L. Bauer, Mater. Sci. Eng. 59 (1) (1983) 139.
DOI URL |
[28] | H.K.D.H. Bhadeshia, R.W.K. Honeycombe, Steels: microstructure and Properties, 4th ed., 2017. |
[29] |
D. Frómeta, A. Lara, S. Molas, D. Casellas, J. Rehrl, C. Suppan, P. Larour, J. Calvo, Eng. Fract. Mech. 205 (2019) 319-332.
DOI URL |
[30] |
Z. Wang, M.X. Huang, Int. J. Plast. 134 (2020) 102851.
DOI URL |
[1] | Yu Liao, Junhua Bai, Fuwen Chen, Guanglong Xu, Yuwen Cui. Microstructural strengthening and toughening mechanisms in Fe-containing Ti-6Al-4V: A comparison between homogenization and aging treated states [J]. J. Mater. Sci. Technol., 2022, 99(0): 114-126. |
[2] | Xiaoyang Yi, Bin Sun, Kuishan Sun, Haizhen Wang, Shangzhou Zhang, Zhiyong Gao, Xianglong Meng. Revealing the interface structure of {111} type I twin in Ti-Ni-Hf shape memory alloy composite [J]. J. Mater. Sci. Technol., 2022, 105(0): 237-241. |
[3] | Yang Liu, Samuel C.V. Lim, Chen Ding, Aijun Huang, Matthew Weyland. Unravelling the competitive effect of microstructural features on the fracture toughness and tensile properties of near beta titanium alloys [J]. J. Mater. Sci. Technol., 2022, 97(0): 101-112. |
[4] | Xiaoru Liu, Hao Feng, Jing Wang, Xuefei Chen, Ping Jiang, Fuping Yuan, Huabing Li, En Ma, Xiaolei Wu. Mechanical property comparisons between CrCoNi medium-entropy alloy and 316 stainless steels [J]. J. Mater. Sci. Technol., 2022, 108(0): 256-269. |
[5] | Zhengyi Mao, Mengke Huo, Fucong Lyu, Yongsen Zhou, Yu Bu, Lei Wan, Lulu Pan, Jie Pan, Hui Liu, Jian Lu. Nacre-liked material with tough and post-tunable mechanical properties [J]. J. Mater. Sci. Technol., 2022, 114(0): 172-179. |
[6] | X.J. Fan, R.T. Qu, Z.F. Zhang. Remarkably high fracture toughness of HfNbTaTiZr refractory high-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 123(0): 70-77. |
[7] | Yuhe Huang, Junheng Gao, Vassili Vorontsov, Dikai Guan, Russell Goodall, David Dye, Shuize Wang, Qiang Zhu, W. Mark Rainforth, Iain Todd. Martensitic twinning transformation mechanism in a metastable IVB element-based body-centered cubic high-entropy alloy with high strength and high work hardening rate [J]. J. Mater. Sci. Technol., 2022, 124(0): 217-231. |
[8] | Seungchan Cho, Junghwan Kim, Ilguk Jo, Jae Hyun Park, Jaekwang Lee, Hyun-Uk Hong, Bong Ho Lee, Wook Ryol Hwang, Dong-Woo Suh, Sang-Kwan Lee, Sang-Bok Lee. Quantitative reorientation behaviors of macro-twin interfaces in shape-memory alloy under compression stimulus in situ TEM [J]. J. Mater. Sci. Technol., 2022, 107(0): 243-251. |
[9] | Cong Wu, Qinyang Zhao, Shixing Huang, Yongqing Zhao, Lei Lei, Junqiang Ren, Qiaoyan Sun, Lian Zhou. Deformation mechanisms in a β-quenched Ti-5321 alloy: In-situ investigation related to slip activity, orientation evolution and stress induced martensite [J]. J. Mater. Sci. Technol., 2022, 112(0): 36-48. |
[10] | Lihe Qian, Zhi Li, Tongliang Wang, Dongdong Li, Fucheng Zhang, Jiangying Meng. Roles of pre-formed martensite in below-Ms bainite formation, microstructure, strain partitioning and impact absorption energies of low-carbon bainitic steel [J]. J. Mater. Sci. Technol., 2022, 96(0): 69-84. |
[11] | Xinfeng Li, Jing Yin, Jin Zhang, Yanfei Wang, Xiaolong Song, Yong Zhang, Xuechong Ren. Hydrogen embrittlement and failure mechanisms of multi-principal element alloys: A review [J]. J. Mater. Sci. Technol., 2022, 122(0): 20-32. |
[12] | Xinkai Ma, Zhuo Chen, Dongling Zhong, S.N. Luo, Lei Xiao, Wenjie Lu, Shanglin Zhang. Effect of rotationally accelerated shot peening on the microstructure and mechanical behavior of a metastable β titanium alloy [J]. J. Mater. Sci. Technol., 2021, 75(0): 27-38. |
[13] | Di Wan, Yan Ma, Binhan Sun, Seyed Mohammad Javad Razavi, Dong Wang, Xu Lu, Wenwen Song. Evaluation of hydrogen effect on the fatigue crack growth behavior of medium-Mn steels via in-situ hydrogen plasma charging in an environmental scanning electron microscope [J]. J. Mater. Sci. Technol., 2021, 85(0): 30-43. |
[14] | J. Li, C. Xu, G. Zheng, W.J. Dai, C.C. Bu, G. Chen. On the microstructural origin of premature failure of creep strength enhanced martensitic steels [J]. J. Mater. Sci. Technol., 2021, 87(0): 269-279. |
[15] | Kui Chen, Huabing Li, Zhouhua Jiang, Fubin Liu, Congpeng Kang, Xiaodong Ma, Baojun Zhao. Multiphase miacrostructure formation and its effect on fracture behavior of medium carbon high silicon high strength steel [J]. J. Mater. Sci. Technol., 2021, 72(0): 81-92. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||